

Available online at http://www.ges2007.de

This document is under the terms of the
CC-BY-NC-ND Creative Commons Attribution

Versioning of Digital Objects in a Fedora-based
Repository

Matthias Razum, Frank Schwichtenberg, Rozita Fridman

FIZ Karlsruhe, Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

Email: {firstname.surname}@fiz-karlsruhe.de

Abstract
This presentation gives an overview on the complex versioning re-
quirements for digital objects in the scope of the project eSciDoc and
discusses our solution based on the flexible repository architecture
Fedora. It describes the conceptual background of how the eSciDoc
infrastructure handles versioning of digital objects. Versioning and
object identification are strongly interwoven concepts. Therefore, the
unique identification of objects and their versions are discussed as
well.

1 Introduction

eSciDoc aims to realize a platform for communication and publication in
scientific research organizations [1]. One of the major goals for eSciDoc is
to support scientific collaboration in future eScience scenarios. Collaboration
requires a shift from traditional digital library systems to a more interactive
environment in which the concept of ‘ownership’ of an object is loosened
and partly replaced by an ongoing authoring process that spans persons,
places and time. Collaborative authoring raises additional requirements on
versioning of digital objects. In distributed teams, authors may work at the
same time on the same object, or may disagree with changes made by a co-
author. If all intermediate or working versions of objects become part of the
repository – and not just the final versions – these conflicts are detectable
and can be resolved. Not all new versions created during the authoring proc-
ess will necessarily be released to become publicly available.

2 Previous Work

Versioning is a common problem to many disciplines in computer sci-
ence. In software development, versioning control systems like CVS or Sub-
version [2] track the differences between versions of (text) files. WebDAV
(Web-based Distributed Authoring and Versioning) implements a set of ex-
tensions to the HTTP protocol that allows users to collaboratively edit and
manage files on remote web servers [3]. It has a built-in support for version
management, and in this respect resembles document management systems
(DMS). However, digital libraries and institutional repositories impose addi-
tional requirements on the versioning capabilities. Stable references and

2 Matthias Razum, Frank Schwichtenberg, Rozita Fridman

citations request for persistently identified versions. Long term archiving
requires the use of a standards-based and open architecture that allows for
easy migration of objects including their version history.

The NISO/ALPSP Working Group on Versions of Journal Articles [4]
has focused its research on journal articles, but in general, the identified is-
sues apply to other object types as well. However, their work concentrates
on publicly available versions of objects. eSciDoc intends to cover the whole
lifecycle of digital objects. This requires a broader scoping of versioning.
The two JISC-funded projects RIVER (Scoping Study on Repository Ver-
sion Identification) [5] and VERSIONS [6] provide a good overview on
version identification, highlighting the problem domain, use cases, and give
recommendations. Crane [7] raises the issue of the different citing traditions
across scientific disciplines, pointing out the special requirements of the
humanities. Here, citations often precisely identify pages or even individual
lines and words. Even minor changes to a text, eventually triggered by just
reformatting the text for presentation, might invalidate such citations. It is
therefore crucial to trace all modifications of an object and create new ver-
sions appropriately. In such scenarios, citations and references need to in-
clude a pointer to a fixed version of a cited object. Out of this scenario, four
major requirements pertaining versioning have to be fulfilled by the underly-
ing repository architecture.

3 Versioning Requirements

3.1 Versioning on Object Level

eSciDoc intends to cover the whole lifecycle of digital objects. Storage of
digital objects in eSciDoc is based on the Fedora Repository Architecture
[8]. An object consists of relations to other objects, binary content (or ‘con-
tent payload’), metadata, technical properties, and policies. Fedora splits up
digital objects into these constituent parts. Each part is stored as a data-
stream. Accordingly, a Fedora object can be seen as an aggregation of
datastreams. Fedora’s versioning concept is based on the versioning of
datastreams. Every modification of a datastream leads to a new version of
the datastream, but not of the object itself. On the other hand, authors and
editors perceive objects rather as one coherent entity, and not so much as a
set of datastreams. They request a “whole-object” versioning, which com-
plies with their mental model.

3.2 Internal and public versions

The eSciDoc system differentiates between versions and revisions. Ver-
sions represent intermediate work statuses and are only visible to authors of
digital objects, whereas revisions are published versions of objects with per-
sistent identifiers. Creating a revision is an intellectual step, which most
often includes some form of quality assurance, whereas versioning is an
automated process.

GES 2007 Versioning of Digital Objects in a Fedora-based Repository 3

3.3 Fixed and Floating Object References

Scholarly work strongly relies on referencing existing material. Reposito-
ries may amplify this by providing not only secondary information (e.g. arti-
cles), but primary data and supplementary material as well. Authors may
inter-relate all kind of objects that are accessible online, thus creating added
value by revealing until then hidden or unknown connections. Other object
types relying on references include annotations, translations, transcriptions,
and so forth. In the digital domain, these associations may be expressed as
object relations.

Versioning on objects then raises the question how to handle relations
pointing to a versioned object. eSciDoc implements two approaches: fixed
references pointing exactly to a given version of an object, and floating ref-
erences always pointing to the latest version of an object. The author of the
referencing work has to decide which form of references is appropriate. Cita-
tions of type “this collection contains relevant information” should point to
the latest revision (floating reference), whereas a citation e.g., in the humani-
ties pointing to a phrase or words would rather rely on a fixed reference
pointing always to the same exact version of the cited object.

3.4 Container Objects

eSciDoc allows the grouping of objects by means of container objects
like collections or bundles. Bundles may represent e.g. books or manu-
scripts. Contained objects might be chapters or pages. Containers are again
objects within the repository. The grouping is done by defining object rela-
tions (expressed as RDF statements). Containers and their members form a
graph-oriented composition of objects. Containers are citable objects with
their own persistent identifier. Revisioning of contained objects forces a new
revision of the container object too.

Figure 1: A collection with items (on the left) and the same collection with
two bundles added (on the right). The container and item objects are con-
nected by relations, thus forming a graph-oriented composition of objects.

4 Matthias Razum, Frank Schwichtenberg, Rozita Fridman

4 Technical Approach

4.1 Fedora’s Versioning Mechanism

Fedora’s internal object model is composed of four major parts: a system
identifier, a set of key descriptive properties, datastreams, and object integ-
rity components. Datastreams either encapsulate the actual bytestream con-
tent internally or reference it externally. Object integrity components are
special datastreams managed by Fedora pertaining relations, policies, and
audit trails.

Versioning is automatically done by Fedora at datastream level. Every
time a user modifies an object, Fedora creates new versions of all affected
datastreams within the digital object, while maintaining all prior datastream
versions. Each new datastream version is identified by a timestamp. In order
to retrieve a version of a datastream, the Fedora API provides methods to
access datastreams based on a timestamp.

Fedora versioning lacks a mechanism to tag versions with a name or
number at the object level. A versioned object is just an aggregated view of
all datastream versions valid at a given point in time. The user needs to re-
trieve every single datastream of an object with the appropriate timestamp to
get the representation of a specific object version. With Fedora’s built-in
versioning mechanism, it is difficult to see how many versions for an object
have been created over time. A versioning of the entire object, as envisioned
for eSciDoc, has to associate the timestamp of modifications with a version
number or name. The eSciDoc system can retrieve the datastreams that be-
long to a concrete object version using such a version number and its associ-
ated timestamp.

4.2 Object identification

One of the keys to the development of distributed digital libraries or ar-
chives is the ability to rely on references between digital resources to remain
valid over time. Such references may be citations, bookmarks, or links em-
bedded in bibliographies, indexes, and catalogues. Much of the value of
digital resources for scholarly communication lies in enabling resources to
be referenced reliably with resolvable and actionable links over long periods.
Therefore, libraries, archives, academic institutions, and publishers have an
interest in the persistence of resource identification [9]. System Identifiers
are assigned by a system in order to manage resources within the scope of
the system. They are not guaranteed to be persistent over time. Persistent
Identifiers have a stable name and an adaptable reference to the currently
valid system identifier. This association is updated whenever the system
identifier changes. Persistent identification requires a resolution system,
which handles the association between the persistent identifier and the sys-
tem identifier and ensures the uniqueness of the persistent identifier.

GES 2007 Versioning of Digital Objects in a Fedora-based Repository 5

Persistence is provided through governance rather than through purely
technical constraints. The reliability of a persistent identifier therefore de-
pends on the reliability of the organization, which is responsible for the reso-
lution system, and the reliability of the responsible Naming Authority [10].
For the sake of simplicity, we will exclude persistent identification from our
further examinations.

System Identifiers in the eSciDoc system are generated as serial numbers.
They identify an object in its latest version. To address a previous version of
an object, the version number is appended to the system identifier, separated
by a colon (see Figure 2).

<system id> ::= <namespace> ‘:’ <serial number>[‘:’ <version number>]

Figure 2: eSciDoc System Identifier Syntax

A federation of distributed eSciDoc systems is envisioned in the medium
term. In such scenarios, the problem of moving objects from one repository
to another needs to be addressed [11]. As system identifiers are only unique
within one system, transferal of objects may result in duplicate identifiers.
These ambiguous identifiers then lead to corrupted systems. Therefore,
eSciDoc system identifiers are prefixed by a namespace that distinguishes
the sequence of serial numbers local to one repository from a sequence of
serial numbers local to another repository. Organizations running more than
one eSciDoc repository are able to guarantee the uniqueness of identifiers
across all their repositories by configuring them with differing namespaces.

At the same time, eSciDoc repositories are able to handle multiple name-
spaces, so that namespaces (including all resources created under this name-
space) may be transferred to another repository. This allows transferring
objects from one repository to another without changing the system identi-
fier. Fedora is already able to handle system identifiers in different name-
spaces.

4.3 Version Information in the Resources Properties

An eSciDoc object is treated as a resource that consists of several sub-
resources. Sub-resources of an eSciDoc object are representations of the
datastreams of the corresponding Fedora object. Each resource comes with a
set of properties used to describe the resource itself. If a client requests a
representation of a versionable resource, the respective resource handler will
provide additional properties pertaining three object versions: the latest ver-
sion, the latest revision and the current version. Based on the user role and
the context, the user may only be allowed to see revisions. In this case, the
latest version will be identical with the latest revision and the current version
will be a revision too.

The latest revision is the newest version of the object tagged as revision.
This part of the properties section will be missing if the object has never

6 Matthias Razum, Frank Schwichtenberg, Rozita Fridman

been released yet. The current version is the version of the retrieved resource
representation.

The current version section contains the versions number, timestamp,
status, and validity, while the latest version section contains only the number
and timestamp and the latest revision section the number, timestamp and the
persistent identifier of that revision.

<item:current-version xlink:type="simple" xlink:title="3rd version">
 <item:number>3</item:number>
 <item:date>2007-03-15T15:03:39.431Z</item:date>
 <item:version-status>released</item:version-status>
 <item:valid-status>valid</item:valid-status>
</item:current-version>
<item:latest-version xlink:type="simple" xlink:title="4th version">
 <item:number>4</item:number>
 <item:date>2007-03-16T22:10:03.834Z</item:date>
</item:latest-version>
<item:latest-revision xlink:type="simple" xlink:title="3rd version">
 <item:number>3</item:number>
 <item:date>2007-03-15T15:03:39.431Z</item:date>
 <item:pid>hdl:12345/ns:100:2</item:pid>
</item:latest-revision>

Figure 3: Extract of the property part of an object’s XML representation

To retrieve a version of an object, users append the version number to the
object identifier, separated by a colon. Depending on the user role and con-
text, not all versions of an object may be accessible by users. Using the ob-
ject identifier without any suffix will always retrieve the latest accessible
version of an object. Based on the user role and the context, this can be ei-
ther the latest version or the latest revision.

4.4 Introducing a Whole-Object Versioning Datastream

eSciDoc creates an additional datastream for “whole object versioning” in
each Fedora object. With every modification of the eSciDoc object, and
therefore with every modification of at least one datastream of the corre-
sponding Fedora object, this whole-object versioning datastream gets a new
version entry. Basically, a version entry consists of the version number and a
timestamp. The timestamp is used to retrieve the appropriate datastream
versions related to that “object version” from Fedora (see Figure 4).

The whole-object versioning datastream is a XML tree with version
nodes in a version-history root node. A version entry is a version node con-
taining the version number, the versions timestamp, status and validity and
an optional comment. A version with a version status “released” is a revi-
sion. The eSciDoc resource handler updates this XML tree whenever a
‘write’ operation is completed.

When retrieving a specific version of a resource, the system extracts the
timestamp of the requested version from the versioning datastream and re-
trieves the appropriate datastreams the representation of the eSciDoc object
consists of. If a datastream is newer than the provided timestamp, it will not
be included in the resulting object. This ensures that the system can always

GES 2007 Versioning of Digital Objects in a Fedora-based Repository 7

reconstruct the exact composition of an object, as it was when the version
was created. Users may request the version history of a resource by retriev-
ing its “versions” sub-resource. Based on the user role and the context, the
system will retrieve either a complete list of all versions or just the publicly
accessible revisions from the versioning datastream.

<versions:version-history xml:base="http://www.escidoc.de/">
 <versions:version xlink:title=“ver 2“ xlink:href="/ir/item/id:21:2">
 <versions:version-no>2</versions:version-no>
 <versions:timestamp>2006-07-07T12:13:34Z</versions:timestamp>
 <versions:version-status>released</versions:version-status>
 <versions:valid-status>valid</versions:valid-status>
 <versions:comment>2nd version, 1st revision</versions:comment>
 </versions:version>
 <versions:version xlink:title=“ver 1“ xlink:href="/ir/item/id:21:1">
 <versions:version-no>1</versions:version-no>
 <versions:timestamp>2006-05-10T00:21:57Z</versions:timestamp>
 <versions:version-status>submitted</versions:version-status>
 <versions:valid-status>valid</versions:valid-status>
 <versions:comment>1st whole object version</versions:comment>
 </versions:version>
</versions:version-history>

Figure 4: XML tree representation of the whole object versioning metadata

The versioning datastream itself is a non-versionable datastream. The
system sequentially prepends new object versions to the version-history
node. Prepending newer versions allows for a more efficient parsing and
faster access to the most recent versions, especially when using a streaming
parser to access the XML tree.

4.5 Versioning of Graph-oriented Compositions of Objects

One important aspect of version is the handling of complex compositions
of objects. Container objects have strong relationships with their member
objects. Relations are expressed as RDF statements and form the edges of a
graph. They are stored in a special datastream of the source object, the so-
called RELS-EXT datastream.

The basic goal of the versioning datastream is to keep track of modifica-
tions upon all digital objects that, together, form a graph-oriented composi-
tion. If the relationships of a container object are changed by adding or re-
moving objects, a new version of the RELS-EXT datastream is created by
Fedora. eSciDoc adds a new version entry to the whole-object versioning
datastream. If a specific version of the container object is retrieved, the rela-
tions are extracted from the appropriate RELS-EXT datastream version,
based on the timestamp found in the whole-object versioning datastream.
This approach ensures that only those member objects are considered as
parts of the graph-oriented composition that belong to the requested version.
Members that were added in a later version are not part of the retrieved ver-
sion of the RELS-EXT datastream.

8 Matthias Razum, Frank Schwichtenberg, Rozita Fridman

5 Conclusions

Versioning is an essential feature for repositories that cover the whole ob-
ject lifecycle. Fedora already comes with a powerful versioning mechanism,
but cannot fulfill all requirements of eSciDoc. The presented whole-object
versioning covers those aspects and can even handle versioning on object
graphs (e.g., a container with its members). The proposed approach provides
a solution for advanced versioning requirement and at the same time is a
demonstration of Fedora’s flexibility and adaptability. At this time, eSciDoc
versioning is in a prototype state. The eSciDoc team works in close coopera-
tion with the Fedora Core Development team to generalized the approach
and eventually merge it into the current Fedora code base.

Acknowledgements

The concepts presented in this paper are partly based on eSciDoc's Logi-
cal Data Model by Natasa Bulatovic (MPDL, Max Planck Society) and the
internal technical paper ‘Versioning of Publication Items’ by Inga Overkamp
(MPDL, Max Planck Society). A joint workshop of the eSciDoc Team with
Sandy Payette and Carl Lagoze greatly influenced the presented approach.
The work has been funded by the German Ministry of Education and re-
search (BMBF) as part of the eSciDoc project.

References

1. See project website <http://www.escidoc-project.de/homepage.html>
2. Concurrent Versions System website <http://www.nongnu.org/cvs/>
Subversion website <http://subversion.tigris.org/>
3. Whitehead, J. 1998. Collaborative Authoring on the Web: Introducing Web-
DAV. Bulletin of the American Society for Information Science, Vol. 25, Issue 1,
25-29. <http://www.asis.org/Bulletin/Oct-98/webdav.html>
WebDAV website <http://www.webdav.org/>
4. <http://www.niso.org/committees/Journal_versioning/JournalVer_comm.html>
5. Rumsey, S., Shipsey, F., Fraser, M., Noble, H., Bide, M., Look, H., Kahn, D.
2006. RIVER (Scoping Study on Repository Version Identification). Working
Group on Scholarly Communications, JISC (Draft Final Report)
<http://www.jisc.ac.uk/uploaded_documents/RIVER%20Final%20Report.pdf>
6. See VERSIONS project website <http://www.lse.ac.uk/library/versions/>
7. Crane, G. 2002. Cultural Heritage Digital Libraries: Needs and Components. In
Agosti, M., Thanos, C. (Eds.). 2002. ECDL 2002, Lecture Notes in Computer Sci-
ence, Vol. 2458, 626-637. Springer Berlin / Heidelberg
8. Lagoze, C., Payette, S., Shin, E., Wilper, C. 2006. Fedora: an architecture for
complex objects and their relationships. International Journal on Digital Libraries.
Volume 6, Issue 2. Springer Berlin / Heidelberg
<http://dx.doi.org/10.1007/s00799-005-0130-3>
9. Powell, A., Lyon, L. 2001. The DNER Technical Architecture: scoping the
information environment.
<http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/>
10. Kahn, R., Wilensky, R. 1995. A Framework for Distributed Digital Object Ser-
vices. Corporation for National Research Initiatives, cnri.dlib/tn95-01
<http://www.cnri.reston.va.us/k-w.html>

http://www.escidoc-project.de/homepage.html
http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://www.asis.org/Bulletin/Oct-98/webdav.html
http://www.webdav.org/
http://www.niso.org/committees/Journal_versioning/JournalVer_comm.html
http://www.jisc.ac.uk/uploaded_documents/RIVER%20Final%20Report.pdf
http://www.lse.ac.uk/library/versions/
http://dx.doi.org/10.1007/s00799-005-0130-3
http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/
http://www.cnri.reston.va.us/k-w.html

GES 2007 Versioning of Digital Objects in a Fedora-based Repository 9

11. Tansley, R. 2006. Building a Distributed, Standards-based Repository Federa-
tion, The China Digital Museum Project. D-Lib Magazine, Volume 12, Issue 7/8.
<http://www.dlib.org/dlib/july06/tansley/07tansley.html>

http://www.dlib.org/dlib/july06/tansley/07tansley.html

	1 Introduction
	2 Previous Work
	3 Versioning Requirements
	3.1 Versioning on Object Level
	3.2 Internal and public versions
	3.3 Fixed and Floating Object References
	3.4 Container Objects
	4 Technical Approach
	4.1 Fedora’s Versioning Mechanism
	4.2 Object identification
	
	4.3 Version Information in the Resources Properties
	4.4 Introducing a Whole-Object Versioning Datastream
	4.5 Versioning of Graph-oriented Compositions of Objects

	5 Conclusions
	Acknowledgements
	References

