
2007

German e-Science

Available online at http://www.ges2007.de
This document is under the terms of the

CC-BY-NC-ND Creative Commons Attribution

Sentence Completion Tests in a Virtual
Laboratory

M. Hess and C. Mahlow

Institute of Computational Linguistics, University of Zurich, Binzmühlestrasse 14,
CH-8046 Zürich, Switzerland

email: {hess, mahlow}@cl.uzh.ch

phone: +41 44 635 43 77, fax: +41 44 635 68 09

Abstract

This Paper describes a type of on-line test, the Sentence Completion
Test (SCT), that tries to fill the gap between rigid Multiple Choice
tests and unreliable automatic essay grading approaches. We give a
short overview of the main concepts, the implementation and show
examplary uses and applications. SCTs are used as one component in
a fully operational virtual laboratory of Computational Linguistics in
use at the University of Zurich.

1 Introduction

One of the least satisfactory aspects of contemporary e-learning systems are
the limitations of on-line tests with automatic assessment. Basically, there are
MC tests (and their derivatives, like true/false and fill-the-gap tests) on the
one hand, and systems trying to rate free form text (automatic essay grading
systems like e-rater ([7]) on the other. The first type of tests are easy to create for
authors and easy to use for students but they can basically test only the presence
or absence in the students’ mind of small and relatively isolated fragments of
knowledge. This is fine for testing factual knowledge or comprehension but
more general and abstract knowledge or even application, analysis and synthesis
(according to Bloom’s taxonomy of educational objectives [1]) is hard to assess
that way. For this you would prefer the second type of test, automatic essay
rating. Given the limits of existing Natural Language Processing technologies
this approach is, however, limited to an extremely superficial analysis of the texts
submitted by students, and the resulting assessment is thus highly problematic
despite initially high correlations between human and machine assessments –
once users know how the system works cheating becomes very easy (see [3]).

In this paper we show a solution to overcome this dilemma. We developed a
type of on-line test, the Sentence Completion Test (SCT), that tries to fill the
gap between rigid MC tests and unreliable automatic essay grading approaches.
Our (fully implemented and operational) system (see [2]) allows students to in-
teractively compose answers to questions through a sequence of menu choices
each of which presents several possible continuations of the answer. Each con-
tinuation is thus a fragment of a possible answer. That way users compose, in

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/


2 M. Hess and C. Mahlow

a step-wise manner, potentially very complex answers to questions about po-
tentially very high-level concepts of the domain. Once the answer is complete
the system generates a comment which can, again, be arbitrarily complex and
detailed. Additionally the system may rate the answer in terms of marks.

We present the main concepts of Sentence Completion Tests, describe the ex-
isting implementation, and mention some instances of such tests as used in the
domain of Computational Linguistics as well as possible applications in com-
pletely different domains.

2 Main concepts

The main idea behind this novel type of test is the observation that answers to
questions (and their components) fall into a rather small number of well-defined
types. There may be considerable linguistic variability in the concrete phrasing
of answers but when we abstract away from these surface phenomena we end
up with a relatively simple semantic structure. This structure allows us, in a
second step, to generate a number of comments for each concrete answer (and
their components) by defining a small number of logical conditions on certain
properties of this structure. We end up with a system that can accept a large
number of answers and generate a large number of comments, but in a strictly
defined formal framework and therefore with quite limited effort on the part of
test authors ([5]).

2.1 Guided Input of Answers

Each sentence completion test defines a (potentially infinite) number of an-
swers to a given question by way of a finite state automaton (FSA), possibly
containing cycles. The states of the automaton represent individual proposi-
tions about crucial concepts in the domain of the question. The transitions
between states represent the linguistic manifestations of the proposition repre-
sented by the target state. Often there will be several non-trivially equivalent
ways of describing a concept. In such cases there will be several transitions to
the state representing this concept, one for each linguistic variant. In most cases
there will be several ways to continue an answer once a given state has been
reached. In such cases there will be several transitions from this state.

In the simplest case there will be one single path through the FSA defining
the one and only completely true answer, possibly with some minor linguistic
variations (such as synonyms of terms), and several paths defining a number
of completely wrong statements. More often there will be several completely
true answers, each with its own linguistic variations. In more interesting cases
paths will have to be defined for answers that are correct in principle, but too
general, and conversely for those that are nearly correct but too specific. By
way of example, the question “What is a computer?” can be answered by a
statement “Any device that ... processes information ...”. However, phrased that
way, this statement would also cover natural systems such as brains, which is



GES 2007 Sentence Completion Tests in a Virtual Laboratory 3

too general to be unconditionally correct. What we want is a statement like
“Any technical system that ... processes information ...”. On the other hand, the
answer “Any electronic system that ... processes information ...” is too specific
to be unconditionally correct (computers need not be electronic, they may well
be mechanical). It proved very important to distinguish between these cases of
answers that are neither completely true nor completely wrong. See figure 1
for the FSA representing this example. Note that this FSA is not minimal, by
design, in order to distinguish syntactically equivalent but semantically different
propositions. This is why states 1, 2, and 3 are distinguished.

Often we will need sub-paths defining redundant and/or inappropriate infor-
mation. They do not make an answer wrong but are not part of the correct
statement. Thus it is redundant to say that a computer is an information pro-
cessing system that processes data, while it is inappropriate to say who invented
the computer when the question asked for a definition of the term “computer”.

In some cases even cycles in the FSA are useful, in particular to allow the
enumeration of items (conjoined with “and” or “or”), something that is often
required in questions about the structure of systems (“What are the components
of a computer and the connections between them?”).

2.2 Automatic Creation of Comments

Once an answer has been composed by the user, a comment is generated.
The comment does not merely rate the answer (“correct”, “wrong”) but explains
in detail in what way the answer was correct or wrong, what was missing or
redundant etc.

The point now is that the accuracy (correctness, conciseness, and appropri-
ateness) of each answer can be described by the test author through first order
logical statements ranging over the individual states of the FSA traversed when
composing the answer. Once an answer has been completed, the various com-
ment fragments are collected and concatenated in a sequence that respects all
logical constraints. That way a usually rather small number of conditions on
states will define a large number of comments produced by the system even if
the answers can become long and complex.

• In the simplest case (completely correct answer), a comment condition
merely tests whether all the required true states have been traversed. If
so, the comment may be a simple “Correct”. In some cases one single
crucial proposition is sufficient for a correct answer, and then the corre-
sponding state in the FSA is itself assigned the comment “Correct”. In
most cases, however, several propositions must be contained in the answer
for it to be correct, and then the comment “Correct” is elicited only if all
the corresponding states have been traversed. This can be enforced by a
simple logical conjunction over the corresponding true states.

• If one or more states have been traversed that represent explicitly wrong
concepts (wrong answer) the comment ought to be more informative (not
just “Wrong”) and explain in what way(s) the answer is wrong (spelling
out the correct answer). This is encoded by a simple logical disjunction



4 M. Hess and C. Mahlow

a technical

any

system to process

an electric
an electronic

system to process system to process

numerical

END

START

1

5

A computer is...

4

32

information.

6

information encoded in

binary form.

information.

digital form

Figure 1: A very simple answer FSA

over the corresponding false states to first output the general comment
“Wrong” (a single serious error makes the answer wrong) plus additional
conditions for each false state to output specific explanations for each of
the errors.

• If only true states have been traversed but not all those that are re-
quired (partially correct answers), we must again concatenate comment
fragments. First, we will want to output a comment like “Correct to a
point.” and then continue with something like “However, you forgot to
mention ...”. This latter fragment will be linked with a negative logical



GES 2007 Sentence Completion Tests in a Virtual Laboratory 5

condition for each missed correct answer component. It is didactically im-
portant to mention the missed parts in order of decreasing importance.
This can be encoded as additional logical conditions for each fragment.

• Answers that are correct but contain redundant or irrelevant material
(redundantly correct answer) can also be covered (by a logical condition
testing for the existence of states that are neither required nor explicitly
wrong). Again, the most important comments will have to be output first.

• Even those (none too rare) cases where a user has run in cycles but finally
came up with the right answer (cyclically correct answer) can be covered
by logical conditions on comment fragments.

• And, finally, if parts of an answer are in mutual contradiction (inconsistent
answers) this, too, can be determined by a logical condition, and can be
commented upon accordingly.

It is important that SCTs can determine non-local properties of answers.
Thus a SCT can detect contradictions between different parts of an answer, or
a wrong order in the description of processing steps, or needless repetitions, all
of which may occur in parts of an answer that are arbitrarily far removed from
each other.

2.3 Interactions between User and System

The structure of the sentences that can be input is completely determined
by the FSA, and the kinds of comments generated by the system are equally
determined by the logical conditions on comment fragments. What is not defined
that way but has a direct bearing on the usability of the system, are the types
of interaction allowed between user and system. By way of example, it proved
useful to give users a look-ahead of one step. They can, in other words, see what
path will open if they opt for a certain continuation. Without this feature they
tend to feel lost in the space of possibilities. This is a typical case of external
condition, as implemented in the interface.

It proved equally useful that users can backtrack a step when they realise
they are completely off track. Naturally, this makes it possible to mindlessly
trying out all possible answers until a satisfactory comment has been generated.
Thus, if a user found the right answer by wildly trying around (random correct
answer) they can be reprimanded suitably (backtracking is recorded in the path,
and a suitable condition will catch these cases).

Finally, it is very useful to send users back to a specific state of the the FSA if
their answer was only partially correct. That way they can acquire the missing
piece of information without having to run through the entire FSA again. If
their answer betrays a more fundamental lack of understanding they can be sent
to the very beginning of the test or, in more serious cases, to the exact part
of a text they should read in order to fill the gaps in their knowledge. Even
specific tests or other interactive components can be triggered by certain types
of answers. That way it is possible to create completely customised learning
paths for user groups with heterogeneous backgrounds.



6 M. Hess and C. Mahlow

3 Implementation

The viability of this concept hinges on its implementation and, in particular,
on the user-friendliness of the interface. After some experimentation we found
it useful to have the system interact with the user through four windows.

Figure 2: An SCT in action



GES 2007 Sentence Completion Tests in a Virtual Laboratory 7

The interaction is started by the presentation of the question and the first
few words of the answer in the protocol window (“Formulierter Text”) at the top
(number 1 in figure 2). At the same time, in the main menu window just below
the protocol window (“Ergänzungen”), all possible continuations of the answer
are presented, in randomised order, as a menu. As soon as the user chooses
one answer fragment from the menu (number 2), the possible continuations, one
step ahead, are shown in the preview window (“Vorschau”) to the right of the
main menu window (number 3). If the user decides, in view of the possible
continations shown, that his choice of answer fragment was wrong he may click
on a different menu item, and the appropriate new continuations are shown.
Once the user is satisfied that his choice is fine, he confirms it (by clicking on the
button “Akzeptieren”) and this fragment of the answer is added to the protocol
window, whereupon the next choice opens up in the main menu window. That
way the answer, interactively composed by the user through his menu choices,
steadily grows in the protocol window, until an end state of the FSA is reached
and the answer is complete (number 4). At this point the complete comment
is output by the system to the comment window (“Kommentar”) at the bottom
(number 5), and the test is over.

The test system itself is server based (programmed largely in Prolog). The
user interface is purely browser based and, hence, platform independent. The
authoring interface is Java based, with packages for Solaris and Windows. Work
is underway to integrate the entire test system in an existing Learning Manage-
ment System (OLAT). OLAT would allow us to log individual users’ activities,
such as who worked through which SCT and how often, and what were the re-
sults. Such data could be used to better guide the user through the learning
space. Depending on how they fared with respect to a given SCT, they would
be steered either towards more difficult or towards easier learning units, helping
them to acquire supplementary information or fill the gaps in their knowledge,
respectively. And if there were several SCT covering the same topic the user
could be shown a different SCT each time they went through the learning unit.

4 Uses and applications

The richness of the comments that can be generated by SCLs with limited ef-
fort on the author’s part makes these tests particularly useful for self-assessment
and training. As users get elaborate feedback for all aspects of their answers they
can gradually explore the entire space of possibilities for a given question. This
proved particularly useful for questions where there is no absolute consensus in
the community about the correct answer to the question (and this is the case
puzzingly often, even in a highly technical domain such as computer science).
In such cases students ought to be able to assess the merits of the various com-
peting “schools of thought”, something that can be trained through the use of
SCTs.



8 M. Hess and C. Mahlow

SCTs are used as one component in a fully operational virtual laboratory of
Computational Linguistics in use at the University of Zurich, the CLab1. Close
to 100 SCTs have been designed so far. Other components of the laboratory
are demos and interactive experiments ([4]), an on-line glossary, and extensive
multi-layered interactive texts. The laboratory as a whole is used in the newly
established BA courses in Computational Linguistics and Language Technology
at the University of Zurich.

4.1 Existing applications

In the courses and self-studying units for Computational Linguistics we use
SCTs for:

• definitional questions about objects (“What is a finite state automaton?”,
“What is a parser?”)

• questions about methods and processes (“How does a compiler work?”)
• questions requiring descriptions of specific procedures (“What are the pro-

cessing steps of a transfer based Machine Translation system?”)
• questions requiring comparisons between concepts (“How does a parser

differ from an acceptor?”)
We also“abuse”SCTs to function as a formula editor with elaborate feedback

facilities. Students can, for instance, be asked to write regular expressions for
a specific task2. They get, at each step, the complete set of symbols available
(constants, variables, parentheses, Kleene star, etc.) and have to combine them,
step by step, creating an expression in the process. If their choice of a symbol is
completely off track (such as an expression beginning with a closing parenthesis)
they are warned right away. Otherwise the structure of the complete expression
is commented upon at the end. If the expression is not correct, users are given
an explanation and are sent back to the beginning. Otherwise they are sent to a
subsequent SCT, with a more demanding task. That way, by chaining SCTs, we
teach them to write increasingly complex expressions, under close guidance of
the system. According to [1] students are guided to achieve learning objectives
at the level of synthesis and even evaluation. This turned out to be a very
promising use of SCTs.

4.2 Future Applications

While SCTs have been used so far for one domain only (Computational
Linguistics), any type of question in any field that would, ideally, require a
free form answer are candidates for a Sentence Completion Test. The types of
questions are equivalent to the ones mentioned in 4.1:

• questions about natural or artifical objects –“What is a ligand?” (requiring
knowledge and comprehension3)

1http://www.cl.uzh.ch/clab
2e.g. to create complex rules for chunk-parsing:

http://arvo.ifi.uzh.ch:9090/clab/chunking/set_chunk_01/index.jsp
3all according to [1]



GES 2007 Sentence Completion Tests in a Virtual Laboratory 9

• questions about methods and processes – “How does the endogenous cir-
cadian clock activate transcription of which genes?” (requiring knowledge
and comprehension)

• questions requiring descriptions of specific procedures – “Which strategies
exist to solve diplomatic problems between two countries concerning an
airport near the border?” (requiring application, analysis and synthesis)

• questions requiring comparisons between concepts – “How does nuclear
fission differ from nuclear fusion?”, “Why doesn’t the Sun form an iron
core?” (requiring application, analysis and synthesis)

A concrete promising application might be the interpretation of medical im-
ages (scans, X-rays etc.). Describing what one sees on a scan and giving it the
most likely interpretation is very similar to writing an essay on a given topic.
Here, too, there are various ways to go about the task and the order in which
various features are described may be immaterial, while it is crucial that ev-
ery single important feature is described and interpreted correctly. Again, the
description may contain irrelevant or even distracting detail while covering all
the important ones. Or it may, of course, be blatantly wrong in certain vital
respects. An SCT might be very useful in checking the user’s ability to describe
and correctly interpret all the, and only the, important features in the image.

5 Conclusion

A careful combination of simple formal devices (Finite State Automata and
First Order Logic) makes it possible to create tests that are far more powerful
than standard Multiple Choice tests yet can be assessed in a fully automatic
manner. They are suitable for self-assessment and training as well as for exams.
They can be used in basically any domain where textual essays could be used
for testing purposes.

Acknowledgements

Our thanks go to Simon Clematide, our superb project manager, to our teaching
assistants (in chronological sequence) Sonja Brodersen, David Lee, Sandra Roth
I, Sandra Roth II, Luzius Thöny, Michael Amsler and Christos Bräunle, who
developed and implemented the whole system, and to Esther Kaufmann, who
created most of the existing SCTs.

References

1. B. Bloom, M. Englehart, E, Furst, W. Hill, and D. Krathwohl. “Taxonomy of edu-
cational objectives: The classification of educational goals. Handbook I: Cognitive
domain.” New York, Toronto: Longmans, Green. 1956

2. Sonja Brodersen, David Lee. Dynamisches Multiple-Choice mit Satz-
Ergänzungstests. Dokumentation zum gesamten Satztestprojekt. Unpublished,
December 2004.



10 M. Hess and C. Mahlow

3. Jill Burstein. The e-rater scoring engine: Automated essay scoring with natural
language processing. In M. D. Shermis and J. Burstein, editors, “Automated essay
scoring: A cross-disciplinary perspective.” Lawrence Erlbaum Associates, Inc.
Hillsdale, NJ. 2003

4. Kai-Uwe Carstensen, Michael Hess. Problem-based web-based teaching in a com-
putational linguistics curriculum. “www.linguistik-online.de”, 17(5/2003).

5. Cerstin Mahlow, Michael Hess. Sentence Completion Tests for Training and As-
sessment in a Computational Linguistics Curriculum. COLING-2004 Workshop
on eLearning for Computational Linguistics and Computational Linguistics for
eLearning, Geneva 2004. 301-319

6. Cerstin Mahlow, Michael Hess. Satzergänzungstests im web-basierten virtuellen
Laboratorium der Computerlinguistik. Poster at 11. Jahrestagung der Gesellschaft
für Medien in der Wissenschaft 2006, 19. bis 22.9.2006, Zürich

7. Donald E. Powers, Jill Burstein, Martin Chodorow, Mary E. Fowles, and Karen
Kukich. Stumping E-Rater: Challenging the Validity of Automated Essay Scoring.
“GRE Research, GRE Board Professional Report No. 98-08bP, ETS Research
Report 01-03”. 2001


	Introduction
	Main concepts
	Guided Input of Answers
	Automatic Creation of Comments
	Interactions between User and System

	Implementation
	Uses and applications
	Existing applications
	Future Applications

	Conclusion

