GeS Available online at http://www.ges2007 .de
German e-Science OO BY-NCEND Crastive Commmbns At ibtion SOME RIGHTS RESERVED

A Sustainable Learning Environment based on
an Open-Source Content Management System

Dietmar Rosner, Michael Piotrowski, Mario Amelung

Otto-von-Guericke-Universitét, Institut fiir Wissens- und Sprachverarbeitung,
Universitatsplatz 2, 39106 Magdeburg, Germany
email: {roesner, mxp, amelung}@iws.cs.uni-magdeburg.de
phone: +49 (391) 67-18343, fax: +49(391)67-12018

Abstract

This paper presents our approach for supporting face-to-face courses with
software components for e-learning based on a general-purpose content
management system (CMS). These components—collectively named
eduComponents—can be combined with other modules to create tailor-
made, sustainable learning environments, which help to make teaching
and learning more efficient and effective. We give a short overview of
these components, and we report on our practical experiences with the
software in our courses.

1 Motivation

Lectures are typically accompanied by exercise courses or tutorials. These
courses are essential for the learning effect: They provide opportunities for
students to solidify the knowledge presented in the lecture and to apply it to
practical problems. Exercise courses are therefore an important part of university
teaching; they also provide teachers with a possibility to monitor the students’
performance and learning progress.

We were, however, dissatisfied with a number of aspects of the traditional
way of teaching, practicing and assessing in undergraduate computer science
courses at our university. For example, we wished to offer students more detailed
discussion on their solutions and problems, more timely feedback, as well as
more opportunities to apply their new knowledge and to exercise their new
skills. Especially for programming assignments, the traditional way of handing in
programs on paper and discussing them on the blackboard is only viable for very
small programs, and practical problems (e.g., syntax errors) are hard to detect.

The desire to make face-to-face courses more efficient and effective was the
primary motivation for the development of the e-learning components described
in this paper. The new learning environment is designed to make better use of
the possibilities of electronic support, computer-aided assessment (CAA) and
Web technologies, both for students and for educators.

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

2 Dietmar Rosner, Michael Piotrowski, Mario Amelung

2 The eduComponents learning environment

Typical learning management systems (LMS), such as Blackboard, ILIAS,
Moodle, or OLAT, are specifically designed for e-learning, but are unsuited
for general Web content. Thus, at a typical institution, at least two separate
systems—an LMS for learning content and a content management system (CMS)
for other Web content—have to be installed and administered, and users have to
learn the usage of both systems. Typical LMS’s also incorporate most common
e-learning functions in a single application. However, the conglomeration of
various functions results in large and complex systems with high total costs of
ownership. It also makes it difficult to adapt these systems to specific needs.
All of these aspects negatively affect the acceptance and the sustained use of
e-learning.

Placement Test SN

Reqular expressions
1. Which of the following words matches the pattern ab*c?

a) & abb
b) £ abbcc
c) " ac
d) ¢ ab
e) {" I don't know. (The question will be evaluated as if you had given no answer.)

2. As an extension of the above rules we introduce the notation "[]", which behaves like ™.”, but which
allows you to restrict the set of legal characters. For example, [xyz] matches "x", "y", or "z".

Which of the following words match the pattern f[aeou]r.*t?

a) [+ farsot
b) [~ fort
c) [front
d) [faet
e) [~ first

previous ER (3| [(4||5(|6||7||next submit test

Figure 1: An example multiple-choice test created with ECQuiz. The screenshot
shows a single-answer and a multiple-answer question, and the possibility to
create multi-page tests (cf. the navigation bar in the lower left). ECQuiz also
supports extended text and rating questions, not shown in this screenshot.

Instead of using a separate learning management system (LMS), which would
have required additional training and administration, we have chosen a different
approach: A component-based architecture using a general-purpose CMS as the
basis. The use of a CMS as foundation for an e-learning environment is motivated
by the observation that a large percentage of e-learning is actually document
management: Most activities in higher education involve the production, presen-
tation, and review of written material. Thus, instead of re-implementing basic

GES 2007 A Sustainable Learning Environment 3

content management functionality, we base our environment on a general-purpose
CMS, which provides a reliable implementation of basic document management
functionality. In our case this is the open-source system PlondT]

The e-learning-specific functionality is implemented by extension modules
for the CMS. We have designed, implemented and deployed a number of Plone
modules—collectively called eduComponents—that provide specialized content
types offering the following main functions (see also [IL [7]):

e ECLecture: Course information and registration.

e ECQuiz: Electronic multiple-choice tests.

e ECAssignmentBox: Electronic submissions for essay-like assignments and
support for the assessment and grading process.

o ECAutoAssessmentBox: A version of ECAssignmentBox with automatic
testing and assessment of assignments with immediate feedback.

These components can be used separately or in combination and, since
many basic functions are already provided by the CMS, they already implement
much of the standard functionality required in an e-learning environment. If
additional features are required, e.g., a discussion forum, bibliographies, a glossary,
a wiki, or domain-specific content types, they can be integrated by adding
other Plone modules. The component-based architecture thus makes it easy to
create tailor-made learning environments. Also, all components use a uniform
content representation. All objects in Plone are documents (or folders containing
documents) and can be manipulated in the same way, regardless of whether the
document is a multiple-choice test or an image. This ensures a consistent and
easy-to-learn user interface. The rest of this section describes the individual
components in more detail.

2.1 ECLecture

ECLecture is a Plone module for managing lectures, seminars and other
courses. ECLecture objects group all course-related information—including course
metadata (such as title, instructor, time, location, credits, etc.)—and resources.
ECLecture objects can thus serve as a “portal” to all course-related materials like
slides, exercises, tests, or reading lists. These materials are managed using the
appropriate content types (e.g., ECAssignmentBox for assignments, ECQuiz for
tests, or PloneBoard for discussion forums) and appear as resources to the course.
Since an ECLecture object is a folder-like object, these resources can be stored
inside of it, but they can also be stored somewhere else, even on another server.
ECLecture also handles the registration to courses.

2.2 ECQuiz

ECQuiz (cf. figure|l)) supports the creation and delivery of multiple-choice
tests (see also [6]). Multiple-choice tests are especially useful as formative tests
to quickly assess the performance of all students of a class without the need for

'http://plone.org/

http://plone.org/

4

Dietmar Rosner, Michael Piotrowski, Mario Amelung

extra grading work. ECQuiz also offers tutor-graded extended text questions, so
that selected-response and constructed-response items can be mixed in a test to
address different skills.

Another possible use of ECQuiz is for self tests with immediate feedback:
In this case, students immediately get an overall score, an overview of wrong
and right answers and possibly additional explanations, see figure [2l Since both
the selection of questions from a pool of questions and the selection of possible
answers can be randomized, the instructor may also allow that the test may be
taken repeatedly.

°0

view

actions v| state: graded

@ Your answers have been saved.

NatSys 2 =@ e
Up cne level

Your results:

Directions: What types of word formation (derivation, inflection or composition) can be found in
the following word forms?

1. transmission (1.00/1) (Time Spent: 00:00:23)
v a) {+ derivation [true]

b) {7 composition [false]

c) " inflection [false]

d) {7 I don't know. (The question will be evaluated as if you had given no answer.) [false]

2. books (0.00/1) (Time Spent: 00:00:23)
a) " derivation [false]
X b) & composition — No, "books” is not a compound word made up of several other words.
[false]

——— =) ¢ inflection [true]
d) " I don't know. (The question will be evaluated as if you had given no answer.) [false]

Directions: The word misidentified can be divided into following morphemes: mis-, ident-, -ify, and -ed.
For each of the morphemes, determine it is free, bound, grammatical, lexical, inflectional, etc.

1. The morpheme -ify is: {0.00/4) (Time Spent: 00:00:00)
a) [~ prefix [false]
b) [~ free [false]
=% ¢) [derivational [true]

Figure 2: Example of the ECQuiz instant feedback option for self-assessment
tests. @ is a correct answer, @ is an incorrect answer with additional feedback

provi

ded by the test author, and the arrow ® indicates the correct answer that

the candidate should have selected.

GES 2007 A Sustainable Learning Environment 5

2.3 ECAssignmentBox and ECAutoAssessmentBox

ECAssignmentBox supports creation, submission, and grading of essay-like
assignments. The assessment of essay-like student submissions offered by ECAs-
signmentBox is semi-automated, meaning that the teacher does the assessing
and is aided by the tool during the entire process of grading students’ work and
giving feedback. ECAssignmentBox leverages the workflow capabilities of Plone
to define a specialized workflow for student submissions. Modeling the grading
process as a workflow structures it and makes it more transparent, but, as in
typical content management workflows, it also enables the division of labor and
online collaboration. For example, the detailed reviewing of submissions may be
assigned to teaching assistants, while the decision about the eventual grades is
reserved to instructors.

ECAutoAssessmentBox is derived from ECAssignmentBox and was originally
developed to allow students to submit their solutions for programming assignments
via the Web at any time during the submission period and get immediate feedback
(see figure . Automatic testing and assessment of assignments is handled by
a Web-based service which manages a submission queue and several backends.
Backends are also Web-based services, which encapsulate the testing functions
for a specific type of assignments.

The exact testing strategy implemented by a backend depends on the appli-
cation: For example, when testing programming assignments, the output of a
student solution can be compared to that of a model solution for a set of test
data, or the assignment can be tested for properties which must be fulfilled by
correct programs. Currently implemented are backends for Haskell, Scheme,
Erlang, Prolog, Python, and Java. However, with the appropriate backends,
the system can also be used to test submissions in other formal notations or to
analyze natural-language assignments (we have already experimented with style
checking and keyword spotting [4]).

Both ECAssignmentBox and ECAutoAssessmentBox objects represent single
assignments. Online exercise sheets, as shown in figure [4] are simply created by
placing the desired assignments in a special folder, which handles the presentation
and provides statistics and analysis features for the student submissions for the
contained assignments.

3 Experiences

Since winter semester 2003/2004 we have been gathering experiences with
eduComponents for online multiple-choice tests, electronic submission of assign-
ments and automatic testing of programs in our exercise courses. During winter
semester 2006/2007 our learning environment was used by over 200 students at
our institution.

At the end of each semester we ask our students to complete a questionnaire
on their experience with the new e-learning environment. The questions cover
three areas: The use of electronic submissions in general, their effect on the

6 Dietmar Rosner, Michael Piotrowski, Mario Amelung

view
| actions v| state: submitted ~
Haskell: fib = &

Up one lavel

Go to the submission of Milliken, Kate
=l Assignment text

Fibonacci numbers

e__ The Fibonacci numbers fq, f1,... are defined by the rule that fo = 0, f1 = 1 and fa2z = fo + fre1 for all
n = 0. Give a definition of the function fib in Haskell that takes an integer n and returns f,.

Assignment of Milliken, Kate

submitted at 2006-03-23 14:51, state: Submitted

Back to the assignment text

Answer:

fib :: Integer -> Integer
| £fib n

I 0=20
I 1=1
I 2 = fib(n-1) + fib{n-1)

S
vl

M| kate.20060323.145115 (Plain Text OKb)

Auto feedback:

e_ Your submission failed. Test case was: "fib 8" (simpleTest)

Expected result: 21
Received result: 128

by Kate Milliken — last modified 2006-03-23 14:57

Figure 3: ECAutoAssessmentBox automatically tests submissions to programming
exercises and immediately offers feedback. This figure shows the view a student
gets after the automatic testing of a programming assignment. @ is the assignment;
@ is the student’s submitted program, in this case an incorrect solution; ® is the
automatic feedback, reporting an error, since the submitted solution does not
yield the expected results.

students’ working habits, and the usability of eduComponents. The results in all
three areas are consistently very positive.

On the technical side, the integration into the CMS has proven to be a good
decision, resulting in a robust system. The CMS provides a uniform look and
feel, which makes the learning environment easy-to-use. Students’ comments on
the usability confirm this, and instructors report that they have a much better
overview of students and assignments, helping them to improve their teaching.
Students especially value the reporting and statistics features (in fact, a subset
of the tools available to instructors), which help them to track their learning
progress. Furthermore students find it helpful that their assignments are stored
centrally, and can quickly be accessed for discussion in the course. Students

GES 2007 A Sustainable Learning Environment 7

J wiew | | assignments | [statistics |

| actions v| state: published

Functional Programming S

Up ane level

Haskell and Erlang

JHaskell: fib
The Fibonacci numbers fg, f1,... are defined by the rule that

= fg=0,
= f1 =1 and

= frtz =fr + frds
for all n = 0, Give a definition of the function fib in Haskelf that takes an integer n
and returns .

» Work on this assignment

JErlang: fac
Define a function fac in Efang which computes the factorial of an integer.
» Work on this assignment

JErlang: reverse
Define a function reversef 1 which reverses the order of the elements of a list,

reversef 1 should be the only function which can be called from outside the
module, Therefore check your export declaration for the module twice.,

» Work on this assignment

Figure 4: View of a typical online exercise sheet, consisting of several assignment
boxes.

also report that they now work more diligently on their assignments because
instructors can now easily access and review all assignments.

On the pedagogical side, the processes within the exercise courses have changed
much more radically than initially envisaged, especially by the use of ECAssign-
mentBox and ECAutoAssessmentBox. The traditional learning environment in
computer science (and in related subjects) is based on paper and blackboard.
Students brought their hand-written notes to the exercise courses and presented
their solutions at the board, with their classmates taking notes. This mode
of writing and copying was time-consuming and error-prone. Given the time
constraints, only a limited number of solutions could be presented and discussed.

8 Dietmar Rosner, Michael Piotrowski, Mario Amelung

In contrast, learning environments realized with eduComponents are based
on electronic documents stored and managed in a CMS. Assignments and stu-
dent submissions can quickly be retrieved, analyzed, annotated, and presented.
Previously, student submissions were effectively ephemeral, since they were only
presented orally or because the graded submission was returned to the stu-
dent. Now, submissions are archived electronically and are thus available for
consultation, comparison, and various types of analyses previously impossible.

The paper-based system also allowed students to get points for assignments
they had not actually completed, whereas they now have to submit written
solutions for the assignments electronically before the classroom session. For
programming assignments, students are now required to submit working programs
through ECAutoAssessmentBox. While it would have theoretically been possible
to enforce these requirement in the paper-based system, it would have resulted
in an unmanageable workload for instructors.

On one hand, the demands for students’ solutions are now much more explicit
and rigid with respect to correctness, quality, and clarity. On the other hand,
students can gain access to a larger number of alternative solutions and to typical
error cases. Students also report that they feel much more motivated, since they
get immediate feedback for their solutions. The motivation is also due to the fact
that students know that their submissions are actually reviewed, while previously
only a small number of solutions could be discussed.

For both programming and essay-like assignments, reviewing larger numbers
of student submissions is now possible because the submissions are collected at
a central location. Instructors can easily browse and inspect them before the
exercise course, so that specific problems observed in the submissions can be
addressed in the course. Since all submissions are now available online in the
exercise course, solutions can easily be presented and compared; faulty solutions
to programming assignments can be corrected and immediately tested. The time
spent formerly to write sketchy solutions onto the blackboard is now free for
discussion.

Our motivation for automatic testing is twofold. On one hand, automatic
testing reduces the workload of instructors, which on the other hand, allows
instructors to assign more programming exercises to students, helping students to
gain more programming practice. Our experience has shown that quite a number
of students tries to avoid writing and testing programs and content themselves
with non-working sketches. The automatic testing of programs enforces the
requirement that programming submissions must be running programs.

Automatic testing is not intended to replace the testing of programs by
students with the appropriate compiler or interpreter. To the contrary, when the
number of tries is limited, students must test their programs thoroughly before
submitting them, which also encourages them to think about design and testing
issues. As Douce et al. [3] point out, automatic testing, together with a grading
system that awards no points for incomplete solutions, increases the importance
of writing completely working solutions in the eyes of the students.

GES 2007 A Sustainable Learning Environment 9

The instant feedback provided by automatic testing is also a motivational
factor. It is known that feedback is crucial for learning: “Knowing what you
know and don’t know focuses learning. Students need appropriate feedback
on performance to benefit from courses.” [2]. Gibbs and Simpson [5] identify
a number of conditions under which formative assessment, supports students’
learning: Feedback plays an important role. However, a decisive factor for
feedback to be useful is timeliness: If students receive it too late, they will already
be working on a different assignment and it will be very unlikely to have any
effect. Thus, as Gibbs and Simpson point out, “imperfect feedback from a fellow
student provided almost immediately may have much more impact than more
perfect feedback from a tutor four weeks later.”

While the feedback provided by the automatic tests is very rudimentary (this
is in part intentional, since they are not designed as a tutoring system), the
immediate feedback is mentioned surprisingly often as very helpful by students
in their responses to the questionnaire. This positive reaction to the automatic
feedback may be caused by the fact that previously students received feedback for
their programming assignments only very rarely, namely when they were called
up to present their solution. Thus, even though the automatic feedback may not
yet be perfect, it represents a notable improvement for the students’ learning
experience.

4 Conclusions

While computer support in the areas of instruction, feedback, and student
tracking is not new, the eduComponents are distinguished by their component-
based, document-oriented architecture on the basis of a general-purpose CMS. The
eduComponents are extension modules for the Plone open-source CMS. Building
on portable open-source software avoids license fees and vendor lock-in, and has
benefits like complete control over the software and the data. Consequently, we
have also released the eduComponents modules as open-source Softwardﬂ so that
others can use them as well, and all users benefit from a larger communityﬁ
This ensures the continued maintenance of the eduComponents and increases the
sustainability of eduComponents-based learning environments.

For users already familiar with Plone, the eduComponents are especially
easy to use because the content types provided by the eduComponents (tests,
assignments, submissions, etc.) behave like all other content types in Plone (texts,
pictures, events, folders, etc.); for other users, the file-system-like organization of
content makes it easy to learn. The modular approach of eduComponents, which
makes it possible to start with just a single module, reduces the entry hurdle for
the deployment of e-learning. Since Plone is a general-purpose CMS, it can be
used to manage any Web content, thus offering uniform usage and administration
for all types of content. The CMS also serves as item bank, a central repository

2 Available from http://wwwai.cs.uni-magdeburg.de/software/
3For other users see http://www.uni-magdeburg.de/PM_162_2006-highlight-162.html

http://wwwai.cs.uni-magdeburg.de/software/
http://www.uni-magdeburg.de/PM_162_2006-highlight-162.html

10 Dietmar Rosner, Michael Piotrowski, Mario Amelung

of tests, assignments, and solutions, enabling the reuse of teaching and learning
materials.

The digital storage of assignments and solutions opens up many new learning
and teaching possibilities. Online access to solutions helps instructors in detecting
whether students have problems with an assignment; instant availability of
complete solutions during face-to-face courses results in better motivation and
stimulates discussion. Other possible uses include the distribution of anonymized
submissions for peer review by other students. In computer science education,
Zeller [9] and Sitthiworachart and Joy [8] report noticeable benefits for the
learning of programming, and we are currently developing a peer review module
for the eduComponents.

The ongoing evaluation of our eduComponents-based learning environment
shows broad acceptence of the new system and the new procedures; in fact, most
of our students have indicated that they would like to see it used in more courses.

References

1. M. Amelung, M. Piotrowski, and D. Rosner. EduComponents: Experiences in
e-assessment in computer science education. In ITiCSE ’06: Proceedings of the
11th annual conference on Innovation and technology in computer science education,
pages 88-92, New York, 2006. ACM Press.

2. A. W. Chickering and Z. F. Gamson. Seven principles for good practice in under-
graduate education. AAHE Bulletin, 39(7):3-7, March 1987.

3. C. Douce, D. Livingstone, and J. Orwell. Automatic test-based assessment of
programming: A review. J. Educ. Resour. Comput., 5(3):4, 2005.

4. T. Feustel. Analyse von Texteingaben in einem CAA-Werkzeug zur elektronis-
chen Einreichung und Auswertung von Aufgaben. Master’s thesis, Fakultét fiir
Informatik, Otto-von-Guericke-Universitiat, Magdeburg, 2006.

5. G. Gibbs and C. Simpson. Conditions under which assessment supports students’
learning. Learning and Teaching in Higher Education, 5(1), 2004.

6. M. Piotrowski and D. Rosner. Integration von E-Assessment und Content-
Management. In J. M. Haake, U. Lucke, and D. Tavangarian, editors, DeLFI2005:
3. Deutsche e-Learning Fachtagung Informatik der Gesellschaft fiir Informatik e. V.,
volume P-66 of Lecture Notes in Informatics (LNI), pages 129-140, Bonn, 2005.
GI-Verlag.

7. D. Rosner, M. Amelung, and M. Piotrowski. E-Learning-Komponenten zur In-
tensivierung der Ubungen in der Informatik-Lehre — ein Erfahrungsbericht. In
P. Forbrig, G. Siegel, and M. Schneider, editors, 2. GI-Fachtagung Hochschuldidaktik
der Informatik, volume P-100 of Lecture Notes in Informatics (LNI) — Proceedings,
pages 89-102, Bonn, 2006. GI-Verlag.

8. J. Sitthiworachart and M. Joy. Effective peer assessment for learning computer
programming. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference
on Innovation and technology in computer science education, pages 122-126, New
York, NY, USA, 2004. ACM Press.

9. A. Zeller. Making students read and review code. In ITiCSE ’00: Proceedings of
the 5th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and technology
in computer science education, pages 89-92, New York, NY, USA, July 2000. ACM
Press.

	Motivation
	The eduComponents learning environment
	ECLecture
	ECQuiz
	ECAssignmentBox and ECAutoAssessmentBox

	Experiences
	Conclusions

