G S Available online at http://www.ges2007 .de
German e-Science COBY.NGND Creative Gommont Atiribution SOME RIGHTS RESERVED

Distributed Analysis within the LHC computing
Grid

J. Elmsheuser, G. Duckeck and D. Schaile

Ludwig-Maximilians-Universitat Miinchen, Department fiir Physik,
Am Coulombwall 1, 85748 Garching, Germany
email: johannes.elmsheuser@physik.uni-muenchen.de

phone: +49 (0)89 289 14149, fax: +49 (0)89 289 14103

Abstract
The distributed data analysis using Grid resources is one of the funda-
mental applications in high energy physics to be addressed and realized
before the start of LHC data taking. The needs to manage the resources
are very high. In every experiment up to a thousand physicist will be
submitting analysis jobs into the Grid. Appropriate user interfaces and
helper applications have to be made available to assure that all users
can use the Grid without too much expertise in Grid technology. These
tools enlarge the number of Grid users from a few production adminis-
trators to potentially all participating physicists.
The GANGA job management system (http://cern.ch/ganga), devel-
oped as a common project between the ATLAS and LHCb experiments
provides and integrates these kind of tools. GANGA provides a sim-
ple and consistent way of preparing, organizing and executing analysis
tasks within the experiment analysis framework, implemented through
a plug-in system. It allows trivial switching between running test jobs
on a local batch system and running large-scale analyzes on the Grid,
hiding Grid technicalities.
We will be reporting on the plug-ins and our experiences of distributed
data analysis using GANGA within the ATLAS experiment and the
EGEE/LCG infrastructure. The integration and interaction with the
ATLAS data management system DQ2/DDM into GANGA is a key
functionality. In combination with the job splitting mechanism large
amounts of analysis jobs can be sent to the locations of data following
the ATLAS computing model. GANGA supports tasks of user analysis
with reconstructed data and small scale production of Monte Carlo
data.

1 Introduction

The distributed data analysis using Grid resources is one of the fundamental
applications in high energy physics to be addressed and realized in the near
future [1]. An efficient analysis environment and the know how to use and
enhance it are key goals for the community to achieve, if we are to profit from
the high investments made into the accelerator and detectors at the LHC.

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

2 J. Elmsheuser, G. Duckeck, D. Schaile

The needs to manage the resources are very high. In every experiment up
to a thousand physicist will be submitting analysis jobs into the Grid, namely
LCG [2], the Grid flavor developed especially for the large hadron collider LHC.
Appropriate user interfaces and helper applications have to be made available
to assure that all users can use the Grid without too much expertise in Grid
technology. These tools enlarge the number of Grid users from a few production
administrators to potentially all participating physicists.

2 Job Scheduler and Gap Analysis

Within the D-Grid High Energy Physics Computing Grid Working Package
3 [3] we are working on distributed and interactive data analysis on the Grid.
In this context a gap analysis has been pursued to identify missing features and
components of distributed analysis tools. All this was done with a closer look
into the computing environment, Athena, of the ATLAS experiment [4].

An analysis job at the ATLAS experiment will typically consist of a Python
or shell script that configures and runs a user algorithm in the Athena frame-
work, reading and writing event files and/or filling histograms /n-tuples. More
interactive analysis may be performed on large datasets stored as n-tuples. The
distributed analysis system must be flexible enough to support all work models
depending on the needs of a single user or an analysis team. A distributed anal-
ysis system should be robust and easy to use by all collaboration members. The
look and feel of the system should be the same whether one sends a job to one’s
own machine, a local interactive cluster, the local batch system, or the Grid.

There are several scenarios relevant for a user analysis:

e analysis with fast response time and a high level of user interaction,

e analysis with intermediate response time and interaction,

e analysis with long response times and a low level of user interaction.

The first point is well matched by the parallel ROOT facility PROOF [5]
for interactive usage and fast turn around times on a local computing cluster.
For the second and third point an automatic job manager and scheduler in an
distributed analysis environment is the key feature for a robust system.

The job and scheduling manager GANGA [6] proved to be a very good can-
didate and was closely examined. GANGA (Gaudi / Athena and Grid Alliance)
is an interface to the Grid that is being developed jointly by the ATLAS and
LHCb experiments. GANGA is a front end for job definition and management
of analysis jobs to run in a distributed environment. It helps in the creation and
configuration of user analysis jobs, submission of the jobs, monitors job status
and helps in saving any output. In particular GANGA aims to help with setting
up jobs that run the standard ATLAS and LHCb applications. It can be run on
the command line, with Python scripts or via a graphical user interface. Many
of the required features are already included in GANGA, but some are missing
or some need further refinement. GANGA has been used in tests and real user
interaction. It performs well in configuring, submitting, monitoring and output
retrieval of a few hundred to thousand jobs.

GES 2007 Distributed Analysis within the LHC computing Grid 3

An automatic job manager and scheduler should fulfill the following specifi-
cations or functionalities:

Interface for job configuration: There is a common interface to set the con-
figuration of programs used, e.g. software version, configuration of pro-
gram components, datasets, etc. On the one hand this interface has to be
adapted to the specific needs of the user application, but must also prove
to be flexible enough to interface to different applications.

Job submission interface for Grid and Batch systems: User analysis pro-
grams can be sent to different local and remote computing sites. One can
choose both between different batch systems and Grid flavor or even ex-
periment dependent production systems. Job splitting and parallel-/bulk
submission of analysis jobs is supported.

Integration of data management: The analysis jobs use a data management
system specific to the experiments. Based on this jobs are sent to the data
location, to prevent the transfer of large data volumes. In addition datasets
are divided and allocated to the sub jobs in a job-splitting mode.

Resource estimation: The resources required for a job are estimated, e.g.
memory requirements or CPU time. In addition, available resource in-
formations about the Grid are gathered.

Job monitoring: During execution of the user job there is a continuous mon-
itoring of the job status. Information about the remote execution site,
queue status and successful termination are collected.

Job error checking: It is verified that a job has been successfully terminated.
Informations about possible errors are gathered and categorized. The job
scheduler should offer an automatic job resubmission function for failed
jobs.

Collecting and merging of the results: After a job finishes, logging and er-
ror messages should be automatically transfered to the submission site. It
is possible to merge job results if there have been executed in parallel sub
jobs.

Job archive: There exists a job archive, to offer informations about terminated
user jobs and to provide templates for new user jobs. It would be desirable
to connect this archive to a meta data storage system.

The basic functionality of the features mentioned above are already existing
in several areas:

o Within GANGA the start parameters of generic programs or Athena pro-
grams can be configured interactively from the shell command line, by a
graphical user interface or with Python scripts. Jobs can be sent to the
following backends for execution: local desktop computer, LSF-, PBS- and
SGE-batch systems and the LCG/gLite [7] Grid environment. Furthermore
Grid backends for OSG [8] and NorduGrid [9] are under development.

e The data management was at the time of the gap analysis only imple-
mented at a basic level. Data to be processed was either sent with the job
or downloaded to the worker node during Grid execution. There was no
option to split jobs into sub-jobs to analyze subsets of a large dataset in

4 J. Elmsheuser, G. Duckeck, D. Schaile

parallel jobs.

e Main features of the job monitoring existed. More detailed status infor-
mation of scheduled and running jobs are necessary and a web monitoring
interface is desirable.

e Error checking only exists on the Grid- and batch-system level. A system
to gather and categorize problems and errors during job execution was
missing. There is no automatic resubmit mechanism for failed jobs.

e After job termination the job output and log-files are automatically re-

trieved and stored.

A job archive exists in a simple matter.

Figure[1 shows the work-flow of a job scheduler. A user provides an appli-
cation and its configuration before job execution. The dataset to be processed
is queried for its location and contents in the DQ2/DDM data management
database [10]. Depending on the size of the dataset the Grid job is divided into
several sub-jobs that are executed in parallel and are only processing a subset of
the input dataset. During execution jobs are monitored. During job completion
the results and output files are stored as a output dataset with a reference in
the DQ2/DDM data management system database. Afterwards the user can
retrieve the output by simple matters.

| it

Dtaset o Job scheduler
catalog X -0

Job 1 on Site A o</£
2

~(\/

Job x on Site Z

e _GRID
pe! execution

dataset

Figure 1: Outline of a job scheduler work-flow. A detailed explanation is given
in the text.

GES 2007 Distributed Analysis within the LHC computing Grid 5

3 Job Scheduler GANGA and Extensions

We have successfully extended the functionality of GANGA in numerous
areas. The most important are the extension of job splitting for ATLAS jobs
and the integration of the ATLAS data management system DQ2/DDM with
direct access to the input data files via POSIX I/O [11]. These items are of great
importance, since only with an intelligent job splitting and parallelization and a
robust data management system a successful distributed analysis system can be

built.

A more detailed description of these extentions is given in following para-
graphs:

The mechanism of job parallelizing and job splitting in ATLAS analysis
jobs has been introduced to GANGA. The job parallelization function-
ality provides a splitting based on input files or input parameters. The
number of input files of a dataset are evenly distributed among the par-
allel jobs and executed independently at the same time. Similarly jobs
can be started in parallel with different parameter sets. Since high energy
physics applications in general are easily dividable into independent tasks,
the performance increases linearly with the number of jobs. This proce-
dure greatly reduces the overall processing time of large datasets and is an
integral part of the distributed analysis functionality.

The access to the new ATLAS data management system DQ2/DDM has
been integrated within GANGA and within the particular Grid jobs. Users
only need to provide an input dataset name to process all corresponding
data files on the Grid. The Grid jobs are sent to the site where the data
is located. All additional input data staging and preparation is done au-
tomatically for the user.

The domain detection for LCG Grid jobs is an important part of the AT-
LAS data management system DQ2/DDM integration. Four different de-
tection mechanisms have been implemented.

The direct access to the input dataset files on the Grid worker node via
POSIX I/O protocols on dCache [12] or Castor [13] storage elements has
been enabled with ROOT. Large datasets can be processed, without previ-
ous download to temporary areas. This reduces the load on the computing
and storage elements on a Grid site.

There are several further GANGA extensions:

A new plug-in has been created to configure and run scripts and transfor-
mations of the official ATLAS Monte Carlo production system. These can
be used for a small scale MC production of a single user on the Grid.

Grid jobs can be started with the Condor-G [14] interface. This offers the
possibility to very efficiently submit jobs in large bulks in a short time.
Generic programs and ATLAS Athena analysis jobs can be submitted not
only to the LCG Grid but also other Grid flavors like OSG. The job submis-
sion time greatly decreases via the bulk submission mode. The submission
time of one hundred jobs can be reduced from several minutes using the

6

J. Elmsheuser, G. Duckeck, D. Schaile

default LCG resource broker to a few seconds using Condor-G. Using the
new gLite resource broker also results in a similar gain in submission speed
as the Condor-G submission mode.

e A further plug-in for input datasets on local files systems has been inte-
grated. This enables the simple testing of program code on a local desktop
computer before sending it to the Grid for a larger exercise.

e An improved mechanism to manage output datasets in the GANGA job
repository has been introduced. Jobs are automatically tested for their
integrity in the completing phase. Storage locations and Grid identifiers
are saved in the DQ2/DDM database.

e A mechanism for output data merging of several sub-jobs has been intro-
duced. ROOT files or text log files can be merged after they have been
downloaded in background threads from the remote storage elements to
the local desktop computer.

e A better mechanism to report errors of the Grid job execution has been
implemented. The exit and error codes of all execution steps during a Grid
job have been classified and are reported back to GANGA and saved in
the job repository.

e Numerous tests of all these new functionalities in GANGA have been tested
locally in Munich and CERN. Tests in the LCG Grid have been pursued
especially at the Tierl sites at Karlsruhe and Lyon. Several input datasets
have been replicated to Karlsruhe and Lyon to test the DQ2/DDM inte-
gration of GANGA.

Most of the points mentioned in the job scheduler gap analysis of Section [2

have been improved. The following parts offer the necessary basic functionality,
but have to improved in some details, or need to be better integrated or made
more robust:

e Job configuration interface

Job submission interface for Grid or batch systems with parallel jobs
Integration of the DQ2/DDM data management system

Collecting and merging of the results

Job archive

Job Monitoring

But firstly a new intensive testing phase with the a larger user community will

happen. The following parts are partially available or need larger improvements
or extensions within GANGA:

e Resource estimation
e Job progress monitoring
e Job Error Checking

4 Job scheduler usage

GANGA offers three different ways to configure a job:
e on the shell command line by specifying the job configuration as command
line input parameters

GES 2007 Distributed Analysis within the LHC computing Grid 7

e in an interactive IPython shell [15] of GANGA by configuring the param-

eters of the GANGA plug-in objects

e in a graphical user interface (GUI) which similarly configures the parame-

ters of the objects.

Figure [2/shows an example job configuration of an Athena job for command
line submission to the Grid. The user specifies the input dataset, the output
dataset file name, the number of sub-jobs for parallel processing, the backend and
computing element the job should be sent to and the job executable configuration
file. The name of the computing element can also be omitted. If it is omitted
the job follows the ATLAS computing model and is automatically sent to the
location of the data.

ganga Athena
--inDS ¢sc11.005320.PythiaH170wwll.recon.AOD.v11004107
--outputdata AnalysisSkeleton.aan.root
--split 3
--lcg
--ce ce-fzk.Gridka.de:2119/jobmanager-pbspro-atlasS
AnalysisSkeleton_topOptions.py

Figure 2: Example Athena job configuration of a shell command line job sub-
mission with GANGA.

The monitoring of running jobs is happening in the interactive IPython shell
or GUI. A monitoring loop is querying the status of all running jobs and controls
the output retrieval of finished jobs. Similarly to the shell command line jobs can
be configured with the IPython shell or GUI. Figure[3] shows an screen shot of
the GANGA GUI. On the left side of the window a panel with the job repository
with several finished and running jobs is show. A detailed job configuration of
the GANGA plug-in objects for a single jobs is shown on the right panel.

A typical example for a user task is a small scale Monte Carlo production of
a few ten thousand events. This was exercised using GANGA and the ATLAS
experiment components for generation, simulation and reconstruction. This sce-
nario mimics the analysis patterns mentioned before of intermediate to low user
interaction and intermediate to long response times.

The Monte Carlo event production was done in several steps: event gener-
ation, simulation, digitization and reconstruction. For each step jobs were sent
to 3 different German Tierl/2 sites in separate Grid jobs with input and out-
put files and results stored on the Grid storage element at Gridka in Karlsruhe.
Every job consisted of a start and wrapper script that configured the different
Athena settings and input and output datasets. The processing of the datasets,
that consisted of a few thousand events, had all been parallelized into sub jobs
of 50 events each. One production of 10000 Monte Carlo events was done with
603 jobs and only 2 failed jobs because of worker node failure at one Grid site.

8 J. Elmsheuser, G. Duckeck, D. Schaile

" GANGA <@ixplus014.cem.ch> =B %
Folders View Help

20O WT R T Seipor @ Log I Job Buider

Jo

Job Details

Job (ry
i status - subritted,
Executable closesesh name - '5320_cern’,
1

Executable___closesesh inputdir - ocal/3afinput
o h outputdir = w/34/outp
autputsandbox = [,
id =34

inputdata - DODataset (
tagaataset -,
type = DAz_LOCAL",
nares - [,
match_ce - False,
detaset - ‘csc11.00520 Pythia170wullrecon AOD Y1 1004107
)

merger = None,

inputsandbox = [],

appiication = Athena (
atias_release = 1105,
ma_events - None ,
options - None,,
user_setupfle - File (

=",

subdir =,

),
‘option_file = File (

subdr = .
%
user_area = Flle (

aine = ! VUserar
subdir =
)

)
outputdata = DOZOutpUIDataset
al | | output =],

_] _I 1__ datasetname = ", f
L] #|/o || |L— 5

Figure 3: Screen shot of the GANGA GUI. On the left side the job repository
panel with several finished and running jobs is show. A detailed job configuration
of the GANGA plug-in objects for a single jobs is shown on the right panel.

GANGA performs well in this test of configuring, submitting, monitoring
and output retrieving of these few hundred jobs. The submission time of a
single job to the LCG is about 10-20 seconds, ie. submission of a few hundred
jobs need a bulk submission feature like in glLite. Furthermore the error handling
and recovery of failed jobs in the user analysis code needs to be improved by an
automatic resubmission or error parsing. This could be assisted by a bookkeeping
mechanism of the processed datasets.

5 Conclusions

It has been discussed that the distributed data analysis using Grid resources
is one of the fundamental applications in high energy physics that is being used
in the upcoming phase of LHC experiment data taking. Several different user
analysis scenarios require different response times and levels of user influence.
User analysis with intermediate to long response time and low influence need a
robust and easy to use interface and job scheduler to make use of all available
resources. The job scheduler GANGA is a very good candidate for these type of
jobs. We have extended GANGA in various area to improve its core functionality.
Numerous tests using GANGA have been carried out at different Grid sites like
the Tier 1 computing centers at Karlsruhe and Lyon. All these tests show a
good performance and stable behavior of the GANGA components.

GES 2007 Distributed Analysis within the LHC computing Grid

9

Acknowledgements

This work was supported by the BMBF, Germany.

References

1. D. Baberis et. al, Common Use Cases for a HEP Common Application Layer for

—_

12.
13.
14.
15.

COXND O WD

Analysis, LHC-SC2-2003-032

LCG project web page: http://lcg.web.cern.ch/LCG/

D-Grid HEPCG project web page: https://www.d-Grid.de/
ATLAS Computing TDR, CERN-LHCC-2005-022

ROOT and PROOF project web page: http://root.cern.ch/
GANGA project web page: http://ganga.web.cern.ch/ganga/
gLlite project web page: http://glite.web.cern.ch/glite/
OSG project web page: http://www.opensciencegrid.org/
Nordugrid project web page: http://www.nordugrid.org/
ATLAS DQ2/DDM project wiki page:
https://twiki.cern.ch/twiki/bin/view/Atlas/DistributedDataManagement

. Portable Application Standards Committee project web page:

http://wuw.pasc.org/plato/

dCache project web page: http://www.dcache.org/

Castor project web page: http://castor.web.cern.ch/castor/
Condor project web page: http://www.cs.wisc.edu/condor/
IPython project web page: http://ipython.scipy.org

	Introduction
	Job Scheduler and Gap Analysis
	Job Scheduler GANGA and Extensions
	Job scheduler usage
	Conclusions

