
2007

German e-Science

Available online at http://www.ges2007.de
This document is under the terms of the

CC-BY-NC-ND Creative Commons Attribution

GRAIL – Grid Access and Instrumentation Tool

T. Jejkal1, R. Stotzka1, M. Sutter1 and H. Gemmeke1

Institute for Data Processing and Electronics, Forschungszentrum Karlsruhe GmbH,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

email: Thomas.Jejkal@ipe.fzk.de

phone: (+49 7247) 82 4042

Abstract

Since the release of Globus Toolkit 4 Web services enrich the world
of Grid Computing. They provide methods to develop modular Grid
applications which can be parallelized easily. The access to Web ser-
vices is mostly solved by complex command line tools which need a
good deal of knowledge of the underlaying Grid technologies. GRAIL
is intended to fill the gap between existing Grid access methods and
both the developer who wants to utilize the Grid for own developments
and the user who wants to access the Grid without much additional
knowledge. It simplifies the access and the testing of Web services for
the Globus Grid middleware. GRAIL provides an easy to use graph-
ical user interface for executing Web services and enables the user to
construct complex relationships between services to realize parallel ex-
ecution. The underlying framework allows an easy integration of any
Web service or other arbitrary task without much additional effort for
the developer. Existing technologies, shipped with the Globus Toolkit,
are seamlessly integrated into GRAIL.

1 Introduction

The development of WSRF–compliant Web services [1] for the Globus Toolkit
[2] is, even for experienced developers, a challenging and error–prone task. Sev-
eral tools exist simplifying the general development process to a minimum effort
eg. the Grid Development Tools for Eclipse [3] or Introduce [4]. The general
procedure of using these tools is nearly identical:

• Defining interfaces for accessing the resulting Web service,
• automatic generation of the Web service WSDL document, client– and

server–stubs and a simple command line client for testing purpose,
• implementing the functionalities of the Web service,
• packaging of the Web service and deployment into a Web service container

and
• testing the functionalities by using the generated command line client.
As well as for every software development project also for Web services the

testing is an important part of the development process, but for Web services
the iteration loops contain additional steps. At least the developer addition-
ally has to re–deploy the service followed by running different test cases for a



2 T. Jejkal, R. Stotzka, M. Sutter and H. Gemmeke

single service. The command line client might be feasible for simple tests after
extending it by implementing interactions or graphical reassessments. If there
are dependencies between the current and an other service the other service
client has to be integrated to allow testing their cooperation. In most cases the
developer writes scripts for automated testing, test classes or graphical user in-
terfaces in which parameters are adjusted dynamically. Nevertheless these steps
are highly recurring. Thus a tool which allows to realize complex testing and
intuitive access to Web services would ease the developers work and accelerate
the development process.

2 Objectives of GRAIL

The Grid Access and Instrumentation Tool (GRAIL) is a dedicated envi-
ronment to allow intuitive and easy access to the Globus middleware. GRAIL
is primarily intended to provide a uniform desktop–like interface to handle the
following functionalities:

• Easy execution and management of Web services eg. WS–GRAM [5] or
other, arbitrary Web services,

• seamless integration of default components (eg. security tasks like proxy–
init, GridFTP [6], MDS–4 [7],

• easy extensibility without requiring much knowledge about the Grid or
Web service development,

• task graphs for building up dependencies between eg. instances of different
Web services,

• support for offline–tasks which have to be done before, after or instead
using a Grid functionality eg. reading parameter files, building a job de-
scription for WS–GRAM, viewing result data in different formats or trans-
forming data.

By using these functionalities, recurring tasks can be integrated and accessed
easily at any time. Thus the development of Web services is considerably accel-
erated due to iteration loops are shortened.

This paper is structured as follows: Section 2 deals with the state of the art
concerning possible solutions for the described demands; section 3 describes the
architecture of GRAIL followed by conclusions and an outline concerning the
future work on GRAIL in section 4.

3 Related Work

Due to the fact that accessing Web services of the Globus middleware is
quite complicated. Thus a tool to simplify this access is needed. For traditional,
job–based Grid architectures there are a lot of projects trying to simplify the
access by graphical user interfaces, but none of them is partly or completely
dedicated to Web services or service oriented architectures as provided by the
Globus Toolkit. It has to be analyzed if any of the existing tools can be adopted
to access such architectures in a comfortable manner.



GES 2007 GRAIL – Grid Access and Instrumentation Tool 3

3.1 Grid Desktop

The Grid Desktop is part of the Commodity Grid Kits (Cog Kits) [8] devel-
oped within the Globus Alliance. It addresses the Grid novice with an easy–
to–use graphical interface. The Grid Desktop allows the user to execute simple
jobs and to use GridFTP; it provides a Grid file browser and an integration of a
tool to execute Karajan Workflows [9], which are also developed in the context
of the Cog Kits. The idea of the Karajan Workflow engine is to use every kind
of task e.g. Web services to orchestrate highly concurrent workflows. Currently
the software and the documentation of the Grid Desktop as well as the Karajan
Workflow engine are in early development state.

3.2 GridSphere

GridSphere [10] is developed by GridLab to provide a portlet based portal
framework. It offers a generic environment for developing just about any Web
application. It enables developers to plug in access methods to Grid technologies
as favored by their user communities. Thus GridSphere can be placed directly
on top of an existing Grid infrastructure or on top of Grid abstraction layers e.g.
the Grid Application Toolkit (GAT) [11]. For the user GridSphere portlets are
accessible via Web interface by any Web browser. The middleware or application
behind is completely hidden from the user. GridSphere provides a set of basic
portlets for security tasks, job submission and file management. All of these
portlets are integrated within the portal and visualized by a portlet engine using
a uniform graphical representation. GridSphere supports single sign–on autho-
rization, where the user accesses the functionality after logging in on the portal
Web page once. Due to the centralization of authentication, roles can be defined
for accessing the infrastructure inside. The advantage of this approach is that
the user does not have to deal with software installation. The Web front–end
and the functionality inside can be designed community specific. One disadvan-
tage is, that GridSphere provides a server sided access to the Grid. That means
that all functionalities must be wrapped by a portlet. Realizing a portlet which
dynamically accesses Web services and which allows communication in between,
seems to be very hard to realize.

3.3 g–Eclipse

G–Eclipse [12] is a running EU–project with the intention to integrate an
access–point to the Grid into the development environment Eclipse [13]. The
target audience are Grid users as well as Grid developers and operators with the
goal to hide complexity of the Grid [14]. The plug–in–based architecture allows
users familiar with Eclipse and Java programming to extend the framework by
own plug–ins. The concept of g–Eclipse is mainly based on conventional Grid
environments which are job–based and aims the integration of middleware ac-
cess into the programming environment. Service oriented approaches based on
Globus Toolkit 4 are at the moment not supported.



4 T. Jejkal, R. Stotzka, M. Sutter and H. Gemmeke

All audited tools have in common that they support the user accessing avail-
able functionalities of the Grid eg. to submit conventional Grid jobs. They are
not intended to support developers of integrated Grid functionalities like Web
services. Thus these tools seem to be too static for adapting them to support
developers working on service oriented approaches.

4 Architecture of GRAIL

GRAIL provides a uniform graphical interface which offers the user a consis-
tent view onto the Grid to enable intuitive access to the Globus middleware. It is
easily extensible by new functionalities to support service oriented architectures
based on WSRF–compliant Web services. To allow assembling complex task
graphs GRAIL also supports the local execution of tasks which are not enabled
or feasible for running on the Grid.

Figure 1: Graphical interface of GRAIL. Left: Component tree from which
components can be simply dragged to the main desktop. Right: Main desktop
which shows a task graph for loading a job description from a file (1), submitting
the job to the Grid (2) and monitoring its execution (3). Furthermore GRAIL
contains a large set of common helper components (4). Every component has a
number of data connectors (square connectors) and one trigger connector (round
connectors), in each case for triggering and being triggered. The two buttons
in the lower part of each component are responsible for showing the individual
parametrization (left) and to run the component manually (right).



GES 2007 GRAIL – Grid Access and Instrumentation Tool 5

4.1 Usability

GRAIL presents itself as a desktop–like user interface as shown in figure 1.
During GRAILs startup a comfortable feature is introduced by the single sign–
on functionality which allows the user to enter his certificates password during
the first startup. Thenceforward the user does not have to authorize himself
again unless he destroys his proxy–certificate. To allow an immediate utilization
of GRAIL there is a set of basic components included:

• Helper components eg. for file I/O, viewers for different data formats,
constants of different types, components for structuring task graphs,

• components for supporting the access to Web services provided by Globus
eg. a job description builder for WS–GRAM, components for job submis-
sion and monitoring,

• full integration of in–house developments eg. the Grid Services Toolkit for
Process Data Processing [15], which contains Web services for transparent
data access and utilization of arbitrary interpreters on the Grid.

Furthermore GRAIL offers different wizards eg. for creating a Web service
client from a WSDL [16], optionally directly followed by the creation of an ac-
cording GRAIL component for a selectable Web service method.
The assembling of task graphs happens by dragging components from the com-
ponent database tree to the desktop, connecting input–, output– and signal–
connectors and starting one or more components, depending on relationships
between graph branches.
Figure 1 shows an example of using GRAIL for job submission with WS–GRAM.
For describing a job the user needs a job description. This description is loaded
from a file by using the according component. Following the job description is
passed to the next component which is responsible for submitting WS–GRAM
jobs to a target URL. For obtaining the target URL a MDS–Browser is inte-
grated into GRAIL. It offers the user an easy way querying available resources.
After doing so the job can be submitted. For monitoring the job GRAIL pro-
vides a third component which can be used optionally in combination with the
job submission component. It requests the current status of the running job pe-
riodically from the server based on the job handle obtained from the submitting
component. If the job has completed the user is notified graphically or by an
according message. Finally the user has to obtain results of the job, eg. out-
put files. If there is no file–staging used for downloading results automatically
GRAIL offers the user an integrated GridFTP–Browser for accessing the Grid file
system for downloading the results. All these functionalities are integrated into
the comfortably operated user interface which supports features like drag&drop,
a component browser and the ability to store task graphs for later re–use.

4.2 Component architecture

Every component of GRAIL is defined as an independent piece of software
which provides a single functionality. One component has input– and output–
connectors to parameterize its execution and to access its results respectively.



6 T. Jejkal, R. Stotzka, M. Sutter and H. Gemmeke

The values of the connectors are obtained from or used as parameters by other
components. Furthermore a triggering mechanism is integrated for every com-
ponent to trigger the execution of other components for building up task graphs.

Figure 2: Architecture of a GRAIL component. It shows the general structure
on which every component is based. The outer block is responsible for graph-
ical representation and basic functionality like drag&drop. Trigger signals are
handled by each component without any effort for the developer. Providing ar-
bitrary data types is realized by defining the number of served connectors and
associating each connector with a unique identifier. The actual component code
is automatically generated. Finally the inner part, accessible by four interfaces
(IInit, IRun, IStop and IDestroy), is implemented by the component developer
using any favored development environment.

Figure 2 shows the architecture of a single GRAIL component. The graphical
representations and the core functionalities eg. processing of user interactions
and triggers are similar for every component. A component for solving a specific
problem is derived from this abstract component definition by implementing the
four interfaces. These interfaces are responsible for building a bridge between
user interaction and component execution:
IInit The implementation of IInit is responsible for initialization tasks which

are executed before calling IRun eg. connecting to a Web service.
IRun IRun contains the actual functionality of the component. It can contain

everything which may be implemented in Java eg. the execution of a Web
service client, locally running tasks or even the forking of a third–party
tool, written in any arbitrary programming language.



GES 2007 GRAIL – Grid Access and Instrumentation Tool 7

IStop The interface IStop is called if the execution of the component was
aborted by the user. By implementing this interface the developer can
realize eg. error handling or cleanup tasks.

IDestroy This interface is called if the user has removed the component from
the GRAIL desktop. It allows the developer to implement a sane destruc-
tion of instantiated objects.

In the domain of data handling there are no restrictions which data types or
how much input– or output–connectors can be used. Adequate access methods
are generated automatically during the creation of a new component by specify-
ing desired connectors.
Due to the fact that complex algorithms may need plenty of parameters an ad-
ditional way to setup a components execution is introduced by the ability to
define component–specific properties, as seen in figure 2. The representation of
these properties is defined very coarse to allow complex property dialogs as well
as simple parametrization by using a single file. Therefor GRAIL offers an inter-
face which allows to trigger loading and storing properties in a generic format as
well as in a format which can be chosen by the components developer to allow
the re–use of existing parameter files.

4.3 Portability

To allow easy publishing and distribution of components a XML format for
describing components is defined. This format allows a detailed description of
a component which is utilized for user documentation as well as for searching
within GRAILs component database. By using the component search feature
the user is able to find needed components easily, even if the component database
grows very large.
Independently accessible functionalities which provide complex and dedicated
user interfaces eg. the integrated MDS– or the GridFTP–Browser are realized as
plug–ins. These special software components are intended to be used to integrate
features, which can be utilized at any time, independent from the actual task
graph execution. As well as for components there is a description format for
plug–ins which allows easy portability.

5 Results and Conclusions

GRAIL offers intuitive and, also for a novice, comprehensible access to the
Grid. The clear desktop–like interface enables a fast access to all functionalities
of GRAIL and allows a familiar work with it. By offering basic functionalities eg.
the integration of basic components and features like the MDS– or GridFTP–
Browser GRAIL can be utilized immediately. In the scope of usability GRAIL
offers handy features eg. single sign–on, drag&drop and task graphs. Extending
GRAIL by new components is supported by wizards which generate either com-
ponent skeletons for implementing own functionalities or completely functional
components from a provided Web services WSDL. The Web service developer



8 T. Jejkal, R. Stotzka, M. Sutter and H. Gemmeke

benefits from GRAIL by getting a tools which allows to test Grid functionali-
ties eg. Web services easily. Dependencies between different functionalities can
be reflected by connecting components realizing according calls. Furthermore
the developer can easily automate and parallelize the testing of Web services by
creating and executing a task graph which contains different scenarios at once.
Thus development cycles can be shortened by rapid testing without implement-
ing a testing framework for a growing number of different functionalities.
For the future various extensions to GRAIL are planned. The probably most at-
tractive feature is to enable GRAIL to execute task graphs completely or partly
on the Grid. In this scope a headless mode of GRAIL is planned to execute task
graphs without showing the user interface. Also a component compiler generat-
ing one single component from an arbitrary task graph might be a convenient
feature. Furthermore additional components are planned to be provided within
the default component collection to enhance the usability of GRAIL. Altogether
with GRAIL a handy tool is available which allows its users to access not only
the Grid in an intuitive and comfortable manner, but also to bring Grid func-
tionalities in relation to each other and to locally running algorithms and tools.
At the moment the work on the completion of the first GRAIL release is nearly
finished and it will be available for public download under [17] at the second
quarter of 2007.

References

1. T. Banks, “Web Services Resource Framework (WSRF) – primer v1.2,” OASIS
Open, Tech. Rep., 2006. [Online]. Available: http://www.oasis-open.org

2. The Globus Alliance. The Globus Toolkit homepage. [Online]. Available:
http://globus.org/toolkit

3. The Distributed Systems Group - University of Marburg, Ger-
many. Grid Development Tools for Eclipse. [Online]. Available:
http://mage.uni-marburg.de/trac/gdt/

4. caGrid. Introduce - Grid Service Authoring Toolkit. [Online]. Available:
http://www.cagrid.org/mwiki/index.php?title=Introduce

5. Globus Toolkit Team. GT 4.0 WS GRAM. [Online]. Available:
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

6. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke,
“GridFTP: Protocol extensions to FTP for the Grid.” Internet Draft, August
2001.

7. J. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M. D’Arcy, and
A. Chervenak, “Monitoring the grid with the Globus Toolkit MDS4,” Journal
of Physics: Conference Series, vol. 46, pp. 521–525, 2006. [Online]. Available:
http://stacks.iop.org/1742-6596/46/521

8. Argonne National Laboratory. Java CoG Kit. [Online]. Available:
http://wiki.cogkit.org/index.php/Main Page

9. G. von Laszewski and M. Hategan. Java CoG Kit Workflow Guide. [Online].
Available: http://wiki.cogkit.org/index.php/Java CoG Kit Workflow Guide

10. J. Novotny, M. Russell and O. Wehrens. GridSphere Portal Framework. [Online].
Available: http://www.gridsphere.org/gridsphere/gridsphere



GES 2007 GRAIL – Grid Access and Instrumentation Tool 9

11. H. Kaiser, K. Davis, T. Goodale and A. Merzky. Grid(Lab) Application Toolkit.
[Online]. Available: http://www.gridlab.org/WorkPackages/wp-1/

12. H. Kornmayer. g–Eclipse. [Online]. Available: http://www.geclipse.org
13. The Eclipse Foundation. Eclipse – an open development platform. [Online].

Available: http://www.eclipse.org
14. H. Kornmayer. Deliverable 1.2 – Architecture. [Online]. Available:

http://www.geclipse.org/fileadmin/Documents/Deliverables/D1.2-Architecture-I.pdf
15. T. Müller, T. Jejkal, R. Stotzka, M. Sutter, V. Hartmann, and H. Gemmeke,“Grid

services toolkit for process data processing,” in Second IEEE International Con-
ference on E–Science and Grid Computing, 2006, Amsterdam, The Netherlands,
2006.

16. World Wide Web Consortium. Web services description language (wsdl) 1.1.
[Online]. Available: http://www.w3.org/TR/wsdl

17. T. Jejkal. GRAIL – Grid Access and Instrumentation Tool. [Online]. Available:
http://fuzzy.fzk.de/˜GRID/Grail/


