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Abstract

Large-scale scientific research often relies on the collaborative use of
Grid and e-Science infrastructures that offer a wide variety of Grid
resources for scientists. While many production Grid projects and e-
Science infrastructures have begun to offer services for the usage of
computational resources to end-users during the past several years, the
absence of a widely accepted standard for tracing resource usage of
Grid users has lead to different technologies among the infrastructures.
Recently, the Open Grid Forum developed a set of emerging standard
specifications, namely the Usage Record Format (URF) and the Re-
source Usage Service (RUS) that aim to manage and expose user trac-
ings. In this paper, we present the integration of these standards into
the UNICORE Grid middleware that lays the foundation for valuable
tools in the area of accounting and monitoring. We present the devel-
opment of Grid extensions for the LLview application, which allows to
monitor the utilization (e.g. usage of cluster nodes per users) of Grid
resources controlled by Grid middleware systems such as UNICORE.

1 Introduction

Over the last years many production Grid projects and e-Science infrastruc-
tures such as DEISA, D-Grid, EGEE, TeraGrid and OSG have begun to offer
services for the usage of computational resources to end-users. These infrastruc-
tures indicate an increasing number of application projects that require access
to computational resources such as supercomputer, desktop Grids or clusters.
The access to resources within these infrastructures is usually provided by Grid
systems such as UNICORE [2], gLite [3], or Globus Toolkit-based services [29].
Projects such as OMII-Europe [26] or the Grid Interoperation Now (GIN) com-
munity group of the Open Grid Forum (OGF) have begun to work towards
interoperability between these different Grid middleware systems.
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With regard to the on-demand provisioning and usage of resources within
these Grids members of a Virtual Organization (VO) [23] are very interested to
examine the utilization across these resources that can be realizing by tracing
the usage of Grid resources for each users. This in turn lays the foundation
to charge users for the use of the consumed resources. Furthermore, VOs are
typically interested to monitor resource activity within their Grid and e-Science
infrastructures. The absense of a widely accepted standard for tracing resource
usage within these e-Science infrastructures via the Grid middleware led to dif-
ferent technologies related to accounting, billing and monitoring in the past.
For example, Distributed Grid Accounting (DGAS) [15] in gLite (EGEE), or
SweGrid Accounting System (SGAS) [17] in SweGrid and Globus Toolkit-based
Grids. Both use proprietary interfaces to exchange and trace resource usage
records that lay the foundation for accounting and billing. Furthermore, several
monitoring technologies evolved that provide an overview of the current resource
usage on systems, for instance Ganglia [21], or Inca [25].

In order to provide interoperability for resource accounting, billing, and mon-
itoring across different Grid and e-Science infrastructures (e.g. DEISA, EGEE,
or TeraGrid) the Usage Record Format (URF) [10] work performed within the
OGF introduced a common standardized format for tracing the usage of Grid
users. Such records lay the foundation for sharing of usage information among
Grid sites and a wide variety of technologies. This includes information about
resource consumption such as the usage of nodes and processors per end-users.
In addition, the Resource Usage Service (RUS) [5] working group of the OGF
define standard interfaces for inserting and retrieving such URF specific pieces
of information. Currently, the OMII - Europe project augments the Grid mid-
dleware systems UNICORE, gLite (via DGAS) and Globus Toolkit (via SGAS)
with these set of interfaces that will lead to the mentioned interoperability across
Grid borders in the future.

This interoperability lead to several thousands of processors and it is not
feasible to monitor the usage of system and batch load with command line tools,
because the lists or tables in their output are becoming too large and complex.
Therefore, the LLview [24] monitoring application was developed and extended
to monitor the utilization of these resources, e.g. within the DEISA infrastruc-
ture. In this paper we present the development of generators that are able to
store OGF URF-compliant usage records for each Grid user that utilizes a com-
putational resource. Furthermore, we introduce the integration of a Web Ser-
vices Resource Framework (WS-RF) [18] compliant RUS service into the Grid
middleware UNICORE in order to expose these usage records through a stan-
dard interface. In order to provide an example use case scenario, we describe
the LLview monitoring application that gives a quick and compact summary of
usage records, including several statistics and graphical information.

The remainder of this paper is structured as follows. In Section 2 we introduce
the integration of RUS interfaces and URFs into UNICORE. Section 3 presents
the LLview monitoring application that use these standardized interfaces and
formats. The paper ends with related work in Section 4 and concluding remarks.
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2 Dynamic Resource Usage Architecture of UNICORE

In recent years, the UNICORE 5 [2] evolved to a full-grown and well tested
Grid middleware system that is used in daily production at supercomputing
centers and research facilities worldwide. Furthermore, it serves as a solid basis
in many European and International research projects (e.g. OMII - Europe,
Chemomentum [22], and A-WARE [12]) that use existing UNICORE compo-
nents to implement advanced features and support scientific applications from a
growing range of domains [2]. UNICORE is open source under BSD license and
available at sourceforge [16] and represents the major middleware of the DEISA
supercomputing Grid infrastructure.

More recently, the first prototype of the Web service-based UNICORE 6
evolved that is based on emerging standard technologies such as the WS-RF,
proclaimed as an official standard by OASIS at April 2006. The adoption of
standards into Grid middleware such as UNICORE provides basic interoperabil-
ity among the different systems and thus make the change from one middleware
to another easier and more transparent to the scientists so that they can con-
centrate on their scientific workflows. The dynamic resource usage architecture
described here is based on UNICORE 6 and relies on recent work performed
within the RUS and UR working groups of OGF.

2.1 Augmenting UNICORE with a RUS-compliant Interface

UNICORE provides seamless, secure and intuitive access to distributed Grid
resources (e.g. supercomputer, clusters) by interacting with the underlying lo-
cal batch subsystem or Resource Management System (RMS). Therefore, RMSs
such as Torque, PBSPro, LSF or LoadLeveler are connected via the UNICORE
Target System Interface (TSI). The fundamental idea of the dynamic resource
usage architecture of UNICORE is to record Usage Record Format (URF) com-
pliant documents securely for a site running a UNICORE TSI and to allow the
distribution of them to interested parties, in a manner that meets to confiden-
tiality requirements of sites and users. This is achieved by the integration of
a Resource Usage Service (RUS) specification [5] compliant interface into UNI-
CORE as shown in Figure 1. In more detail, it represents a higher-level service
on top of the UNICORE Atomic Services (UAS) described by Riedel et al. in
[6]. The UAS consist of a Target System Factory (TSF) that is used to create an
instance of the Target System Service (TSS) and thus implements the WS-RF
factory pattern [18]. By traversing the enhanced UNICORE gateway [4], end-
users can use the TSS to submit jobs which descriptions are compliant with the
emerging standard Job Submission and Description Language (JSDL) [1]. After-
wards, the Job Management Service (JMS) can be used to control the job, while
the Storage Management Service (SMS) and the File Transfer Service (FTS) are
used for staging job related files in and out of the UNICORE environment. The
JSDL based job description is parsed and interpreted by the enhanced Network
Job Supervisor (NJS) [7] at the backend that also performs the authorization of
users by using the enhanced UNICORE User Database (UUDB).
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The RUS interface uses the functionality of the UAS underlying NJS backend
to execute an extension within the TSI that is capable of providing up-to-date
URFs as shown in Figure 1. Hence, the invocation of a RUS operation (e.g.
ExtractUsageRecords()) leads to the definition and submission of an internal job
to the NJS. After successful authorization, the rather abstract job definition
for the extension execution is translated into non-abstract job descriptions, a
process named as incarnation, by using the Incarnation Database (IDB) at the
NJS. Finally, the execution request is forwarded via the TSI to its extension
without using the RMS for scheduling on the HPC resource. The execution
of the extension represents a URF generator that will be described in more
detail in the next section. However, the execution outcome is a XML document
with URFs that are transfered back to the NJS and then exposed via the RUS
interface to service consumers.

Figure 1: The UNICORE RUS interface provides up-to-date URF-compliant
information about the resource usage and used by the LLview monitoring tool.
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2.2 Extending UNICORE with URF Generators

As shown in Figure 1, the TSI is the component of UNICORE that is in-
terfacing with the RMS system which is installed on a target system. Hence,
computational jobs that are submitted via the TSS of UNICORE will be for-
warded via the enhanced NJS to the TSI to submit it finally to the underlying
RMS for scheduling and execution on the High Performance Computing (HPC)
resource. In more detail, UNICORE provides a dedicated TSI component for
each available RMS such as Torque, LoadLeveler, PBSPro, LSF and others as
shown in Figure 2.

Since UNICORE typically interacts with the underlying RMS for the control
of computational jobs, such RMSs must be adapted in order to get accurate up-to
date usage records. In this context, the gathering of information about resource
usage and thus the URF generator is also dependent from the installed RMS
system. To provide an example, we describe briefly how pieces of information are
gathered from the LoadLeveler RMS that is installed on supercomputer JUMP
within DEISA. As shown in Figure 2 a small C-program uses the data access
C-API of LoadLeveler to get precise information about node usage, including
running and waiting jobs. This c-program is integrated into UNICORE via an
extension at the TSI that is called via the NJS by the RUS service. The retrieved
information is a URF-compliant XML document with up-to-date information
from computing resource. Of course, there have been also activities started
developing other URF generators for different RMSs such as Torque/PBRPro
and LSF.

Figure 2: UNICORE architecture with new resource usage tracing capabilities.
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3 Monitoring Grid Resource Usage with LLview

Today large scale scientific research relies on the collaborative usage of Grid
resources such as supercomputers or clusters provided within Grid and e-Science
infrastructures. Hence, the Grid resource is shared among a wide variety of end-
users such as single individuals or user groups that represent the members of a
VO. To provide a sophisticating infrastructure for such end-users the availabil-
ity and reliability of the Grid resources is of major importance. In this context,
monitoring is absolutely necessary for resource providers as well as for the man-
agement of VOs. Monitoring refers to the process of observing Grid resources to
track their status for purposes such as problem solving or load evaluations. The
work described within this paper emphasize monitoring that provides a view on
the real existing physical resources (nodes and cpus) that include the monitoring
of Grid jobs submitted via a Grid middleware. Hence, it rather focuses on Grid
cluster monitoring instead of Grid services monitoring.

Beside billing and accounting, a RUS interface of a Grid middleware such as
UNICORE lays the foundation for resource level monitoring. In this context, the
retrieved usage records in the standardized URF represent the up-to-date status
of the VO resources. It is important that this up-to-date status is well presented
to end-users and thus it is feasible to create visual images within a Graphical
User Interface (GUI) from complex datasets with URFs instead of pure tables.
This is necessary because the human mind is used to make inferences from this
imagery in order to get a better insight of the usage records or to get an overall
picture of the current load situation. One example of such a GUI for monitoring
resource usage within Grids is the following LLview application that is able to
act as a service consumer of a RUS service.

3.1 LLview Monitoring Application GUI

The LLview monitoring application [24] is a known tool in the area of system
management and used by scientists for resource reservation estimations as well
as support people at user help desks to resolve problems. In addition, adminis-
trators use LLview to get an load status overview of the computational resource
they administrate. It represents a visualization of the mapping between running
jobs and nodes of clusters controlled by a batch system. It offers a wide variety
of illustrations in only one window, including efficient supervision node usage,
running and waiting jobs, several statistics, a history of jobs as well as reser-
vations. This fully configurable application provides interactive mouse sensitive
information about resource usage as shown in Figure 3 via the red line. Note
that in this figure the userids are just named with numbers for confidentiality
reasons, but it can be also configured to show the login names of end-users that
submitted jobs on the Grid resource.

LLview was initially designed to work without a Grid service provided by a
Grid middleware. Therefore, there are four different modes in which the LLview
client GUI can access data from the server part of LLview named as llqxml. The
different modes for data access can be selected in the Option panel of LLview
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and the currently used mode will be displayed in the status bar of the LLview
GUI (see upper right corner in Figure 3). The four different modes are as follows.

First, the LLview GUI can access the data directly if the client runs on the
same machine or the LLview is configured to use a ssh-connection to the corre-
sponding machine. Therefore, LLview is implemented in perl that is accepted
on the most supercomputer and clusters today. However, in this mode LLview
executes the llqxml server part at every update step. Second, the usual way is to
distribute the data by a Web server to support clients running on local desktops.
In this case, LLview accesses the data from the Web server with a pre-configured
username/password authentication method. A perl script named as getllqxml.pl
can be used as a crontab script for regular update of the XML file on the Web
server. This script is available in the util directory of the LLview distribution.

Furthermore, LLview provides a mechanism to record data and replay recent
usage statistics. Therefore LLview is able to read a tar file which contains XML
files in a proprietary format. Such tar files can be recorded by a separate perl
script getwwwdata.pl that is also available in util directory. In addition, LLview
can read XML files from a directory. Finally, the fourth recently developed mode
is an interface to a RUS compliant Grid service that will be described in more
detail in the next paragraph. This mode can be used to seamlessly integrate the
LLview application into Grid and e-Science infrastructures.

Figure 3: LLview displays resource usage statistics, nodes and job status.
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3.2 Interactions between LLview and RUS services

The augmentation of LLview with a RUS client as shown in Figure 4 allows
for the extraction of up-to-date information about the current load situation
at a Grid site. In particular, the XML-based documents with URFs from the
generator at a Grid site can be queried via the emerging standard RUS interface
and in turn visualized within the GUI. Therefore, the document with URFs must
be parsed and should provide all necessary information to visualize the resource
usage like within Figure 3. This is possible by using the schemas of the URFs
and map the different tags to the particular parts within the GUI. To provide a
small example, Figure 4 shows a small piece of a document with usage records
that are compliant with the OGF URFs and used in LLview.

The RUS client within the perl-based LLview is based on the SOAP:Lite
[19] package that represents a perl implementation for the Simple Object Ac-
cess Protocol (SOAP) [11] and is capable of invoking Web service operations
at a Grid site that offers a RUS interface. In this context it seems reasonable
to consider the lifetime of the information as well as performance implications.
The RUS interface itself is standardized within the specification [5] however the
implementation itself is Grid-specific. For instance, the RUS interface for UNI-
CORE described within this paper supports two modes. One mode is to query
the URF generator at the TSI for each request in the RUS interface while an-
other mode remains a cached copy for a defined period (e.g. 1 minute) using the
lifetime management mechanisms in UNICORE 6. To conclude, the informa-
tion displayed within LLview is either the up-to-date situation or older with a
maximum of the defined time period. Furthermore, the time period for updates
can be configured within LLview in order to control the amount of Web service
requests.

Finally, the LLview application must be seamlessly integrated into Grids by
using the same certificates that are also used within usual Grid clients (e.g.
UNICORE GPE clients [13]) that are used for job submit. That means the
secure access to the RUS interface within a Grid middleware is handled via
standardized X.509 certificates. To provide an example in UNICORE, end-users
can only invoke RUS operations if the UNICORE gateway authenticated them
based on their certificates. Furthermore, an end-user must be authorized via the
UUDB in order to retrieve usage records.

Figure 4: LLView monitoring application with the recently developed RUS client.
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4 Related Work

The approach described in this paper is similar to others used in the field. Its
primary advantage is the use of standard interfaces (e.g. WS-RF and RUS) as
well as standardized content information (URF). This includes flexibility of the
URF information and a robust higher-level service implementation that provides
basic security (SSL and UUDB). A slightly different approach to monitoring rep-
resents the cluster monitor system Ganglia described by M.L. Massie in [21]. A.
Coooke et al. describe in [9] the monitoring framework of the EGEE infrastruc-
ture that is named as R-GMA wherein all data appear if it is centrally available
within one relational database. Another monitoring tool is the Inca Reporting
Framework described by S. Smallen et al. in [25]. Its main difference to our
approach is that it does not gather cluster or queuing data and rather focuses
on software stack validation and site certification. There are many other tools
that provide functionality within Grids in the context of monitoring and all have
their special characteristics such as the network monitoring in Nagios [28] or the
automatic emailing system within Hawkeye [20]. However, other systems are
Clumon [14] and MonaLisa [30]. Finally, the Monitoring and Discovery System
(MDS) 4 of the Globus Toolkit is described by J. Schopf et al. in [27] and fo-
cuses on Grid service monitoring instead of resource monitoring. It relies on
standard schemas for information representation such as the GLUE schema [8]
and provides a Web-based user interface called WebMDS. The integration of
other cluster monitoring systems is possible via information providers.

5 Conclusion and Future Work

The integration of a RUS interface into UNICORE and the usage of these
services by the LLview monitoring application provides a true benefit for Grid
administrators and customer service management as well as end-users to plan
job submits. Also, the standardized exposure of URF-compliant usage records
via a standardized interface lays the foundation for accounting and billing across
borders of the wide variety of interoperable Grids that exists today. The devel-
oped LLview RUS client presented here is able to extract usage records in URF
from UNICORE 6 and thus allows for monitoring the load within UNICORE
Grids. Use case scenarios of this new LLview application include resource level
monitoring within D-Grid and DEISA when UNICORE 6 becomes the produc-
tion middleware for these infrastructures in the future. Finally LLView runs
at the John von Neumanns Institute for Computing (NIC) continously to show
visitors the current load on the systems. Future work exists in the context of
extending LLview to show the status of multiple Grid clusters in one GUI.
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