
2007

German e-Science

Available online at http://www.ges2007.de
This document is under the terms of the

CC-BY-NC-ND Creative Commons Attribution

User-Centric Monitoring and Steering of the

Execution of Large Job Sets

Ralph Müller-Pfefferkorn1, Reinhard Neumann1, Thomas William1, Stefan Borovac2,

Torsten Harenberg2, Matthias Hüsken2, Peter Mättig2, Markus Mechtel2, David

Meder-Marouelli2, Peer Ueberholz3, Peter Buchholz4, Daniel Lorenz4, Christian

Uebing4, Wolfgang Walkowiak4, Roland Wismüller4

1 Center for Information Services and High Performance Computing
Technische Universität Dresden, D-01062 Dresden, Germany

2 Bergische Universität Wuppertal, Gaußstraße 20
D-42119 Wuppertal, Germany

3 Hochschule Niederrhein, Reinarzstraße 49
D-47805 Krefeld, Germany

4 Universität Siegen, D-57068 Siegen, Germany

Abstract

Processing of large data sets with high through put is one of the major
focus of Grid computing today. If possible, data are split up into small
chunks that are processed independently. Thus, job sets of hundreds >

or even thousands of individual jobs are possible. For the job submitter
or the resource providers such a scenario is a nightmare currently, as
it is hard to keep track of such an amount of jobs or to identify failure
reasons.
We present a system that will support gLite users to track and monitor
their jobs and their resource usage, to find and identify failure reasons
and even to steer running applications.

1 Introduction

Today, one of the major challenges in science is the processing of large
datasets. Experiments or simulations can produce an enormous amount of re-
sults that are stored in databases or files. Processing these data is usually done
by splitting the analysis process into a large number of small jobs that read only
chunks of the data. By running these jobs in parallel on a Grid the processing
time can be decreased significantly. Examples of such a scenario are the pro-
cessing of images in medicine or the analysis of high energy physics data. The
Large Hadron Collider (LHC) at CERN will provide particle physicists with
several Petabytes of experiment data every year. Additionally, simulations of
the physics processes and the detector response are needed to understand the
experiment.

With the LHC Computing Grid (LCG) the High Energy Physics community
wants to provide a Grid environment to enable such data processing capabilities.
The gLite middleware stack is the base of this Grid effort.

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/


To monitor the hundreds or thousands of jobs a physicist usually submits
for an analysis intelligent tools are needed to support the user. The existing
monitoring tools of the LCG/gLite environment currently provide only limited
functionality. Either they focus on the underlying fabric, i.e. hardware, in-
frastructure (e.g. the LCG Real Time Monitor or GridIce) or are only simple
command line tools flooding the user with textual information.

The High Energy Particle Physics Community Grid project1 (HEPCG) [1]
of the German D-Grid Initiative [2] wants to contribute to the functionality
the LCG provides to the users. In this paper the user monitoring tools that
have been developed in HEPCG are presented. Section 2 describes the job and
resource usage monitoring system, that supports users in handling the large
number of jobs. Section 3 presents the job execution monitor to track down
problems in single steps of a job. Finally, a tool for online steering of jobs in
LCG is introduced in section 4.

2 User-centric monitoring of jobs and their resources

AMon, the user-centric monitoring tool delivers the user information about
the status and the resource usage of the submitted jobs. The information are
answers to questions like:

• Is the job still running, successfully done or did it fail?
• What is the CPU usage over time? What is the memory consumption

on the machine where the job is running? What about the I/O of my
program?

• Are there any critical usage parameters of my jobs like a directory filling
up or a job hanging ?

Such information can indicate a untroubled run or problems of the users applica-
tion. In this context, the term ”user” comprises both the submitters of the jobs,
who want to know what is going on with their jobs, and the resource providers
who want information about the usage of their resources.

Due to the large number of jobs and thus the large amount of monitoring
data there are several constraints for the monitoring to be beneficial for the
scientists:

1. Easy access and handling - only limited knowledge about monitoring should
be needed by the user

2. Support the users with graphical representations of the pre-analysed infor-
mation, that allow interaction to get further and detailed information

3. Authentication, authorisation and secure data transmission for data pri-
vacy reasons

The first constraint led to the decision to realise a web browser based inter-
face. Due to the usage of web browsers in daily work people know how to handle
and to work with them. A new tool would need new and additional knowledge.
Therefore, the monitoring is integrated into a Web portal using the GridSphere

1funded by the German Federal Ministry of Education and Research (BMBF) under Grant
No. 01AK802C

2



Figure 1: The monitoring is integrated into GridSphere. Here an example graph
of the temporal development of an information (the CPU usage of the jobs).
data is denoted by the scrollbars of the display.

portal technology [3]. It already provides features like user management and user
login (with password or credentials). After login the user obtains the monitoring
data by a click. Java applets - running inside the portlets - handle the visualisa-
tion of the data. The data are provided in a diversity of displays. Examples for
displays are statistical summaries (e.g. pie charts) that give a general overview.
Timelines (the temporal development of a information) inform about the dy-
namic behaviour of the jobs regarding a metric (a measurement, e.g. the used
CPU time). An example screenshot is given in figure 1. Clicking into the charts
will display more detailed information or allow the user to zoom into the data.

The distributed monitoring data are gathered and pre-analysed by a Web
Service that the GridSphere portlet is contacting. Currently, it collects infor-
mation from tables in R-GMA, the Relational Grid Monitoring Architecture [4].
R-GMA is a kind of a distributed relational data base that is used in LCG to
store monitoring data. As the Web Service provides a generic interface access
to any monitoring system could be plugged in.

The job monitoring information are measured and collected on the worker
nodes (computers) where the jobs are running. The existing LCG worker node
monitoring [5] was extended to collect a variety of useful information (see ta-
ble 1). These data are stored in variable and configurable time intervals into
R-GMA. The default, e.g. collects information every 3 minutes for the first 20
minutes of the runtime of the job, every 10 minutes for the next 40 minutes and
then every half an our for the rest of the runtime.

The overall architecture with the described four components - information
collection on the nodes where the jobs run, information storage, information
analysis and the user interface - is sketched in figure 2.

3



Figure 2: Architecture of the Job and Resource Usage Monitoring System

Future versions will extend the user interface with an authorisation frame-
work using VOMS [6]. This will allow different levels of access rights to the
monitoring data (a user, a site administrator, a VO manager). Furthermore,
filters will pre-analyse the data to give the users direct hints and help in finding
problems.

Category Metrics

General job ID; user name; the names of the resource broker, the com-
puting element and the worker node (WN); job ID on the WN

CPU WallClockTime; UsedCPUTime; load averages

Memory real, virtual, total, and free memory; free and total swap space
Storage free space on home, temporary and work directory; summary of

file system properties

File I/O I/O rates for every file access by the application

Network received and transmitted network

Table 1: Available metrics of the extended LCG worker node monitoring

3 Monitoring the execution of jobs

In contrast to the existing monitoring concepts in gLite/LCG which focus
on infrastructure, we developed the ”Job Execution Monitor” (JEM), a Python

4



based software which monitors the execution of script files within the user jobs.
Its purpose is to watch the execution of every command the user job wants

to execute on a compute node and to provide information about its success or
failure to the user on the user interface.

3.1 Structure of the Job Execution Monitor

Figure 3: Job Execution Monitor,
global principle

There are two main components of
the JEM, which both run on the com-
pute node: the Job Wrapper and the
Watchdog. Furthermore, the Wrap-
per makes use of the script parser,
which is a third independent module.

The Script Wrapper can be
thought of as an interpreter for the
supported script languages. Cur-
rently, shell scripts for the sh and
bash shell and the python program-
ming language are supported, but it
is planed to provide a generic frame-
work for other languages. With this it
will be possible to write separate mod-
ules/plugins, so that more languages
may be interpreted as well.

With this kind of generic interpreter for script files, it is possible to do other
things in between the execution of the actual commands. Especially, the success-
ful execution of every command can be checked, monitored and logged, so that
the user is informed about the current state of his program, at all time. But as
the most important (and most difficult) requirement, such a system must handle
a given script file as if it were executed without this monitoring framework.

3.2 Script Wrapper

The Script Wrapper is the main component for monitoring the execution and
the current state of the user job. It has a modular structure, which makes it
easy to add support for other script languages.

3.2.1 Bash Wrapper

Stepwise execution of bash scripts takes place in two steps. First, a given
bash script is parsed and a modified script file is then written to disk.

As a second step, the Bash Wrapper launches the modified script file created
by the Bash Parser, which then runs in parallel to the wrapper. With this
concept it is possible to track all input and output of all commands and the
success of every single command can be checked. This mechanism is described
in more detail below. Even more detailed information can be found in [7] and [8].

5



Bash Parser The purpose of this component is to analyse a given shell script,
find every single command and put an escape sequence in front of it. This
escape sequence is a call to a python module, which gets the actual command
as a shell parameter. This intermediate python program can then do anything

Figure 4: Bash Wrapper

it likes with the command
string. Of course, in the end,
the command should be exe-
cuted. But with this technique,
it is possible to do other things
between the call of a command
and its execution.

The bash parser does his
work in three steps: it starts
with a lexical analysis of the
script, then parses the script to
identify where the commands
are and finally it inserts the
escape sequences to insert the
monitoring code into the script.

Execution Shell The execu-
tion shell is the place, where
all commands are actually pro-
cessed. After the script wrap-
per has gotten the information, it writes an entry to R-GMA, that it is going to
start the next command. After that, the wrapper executes the command in the
execution shell and waits for its completion.

It is not possible to execute each command in an independent shell, that is
closed after the command has finished. There has to be a shell kept open and
running as long as the modified script is running. All commands have to be
executed in the same shell. This is necessary, because the script may modify the
environment, on which subsequent commands depend. If the shell is closed, the
values of these variables are lost.

3.2.2 Python Wrapper

Supporting the Python programming language is quite important for users
in high energy physics, as most software environments of the LHC experiments
are Python based.

The Python Wrapper offers the same functionality as the bash wrapper.
However, its implementation is much easier, as Python already offers debug
methods, which are used by the Python Wrapper to examine the result of every
command line. The success or failure of each command line is determined like
in the bash and sh case.

6



3.3 Watchdogs and Pre-execution Tests

The watchdog component is responsible for monitoring the system resources,
while the user script is being executed by the script wrapper. In a configurable
regular time interval the watchdog publishes the current values of these resources
to a table in R-GMA. Currently, the status of the file systems and the current
memory usage as well as network statistics are monitored.

Before the script wrapper is started, several tests are performed on the com-
pute node to check whether some needed services are available. Among these are
tests of the R-GMA interface or accessability of some directories. Furthermore,
several tests on the numerical quality [9, 10] of the results are performed.

4 Interactive steering of jobs

While the job monitoring supports the user with information about the en-
vironment of the job, this section describes the support given to the user for
interactive monitoring and steering of the running job itself.

Once the job has started, it may produce useless results due to configuration
faults of the job, or because the software installation has bugs. In other cases,
the user may want to change parameters in order to improve performance or to
explore a parameter realm. Without interactive steering, the user has to wait
until the job has finished and then evaluate the results. Interactive steering
can accelerate the research process, by providing earlier access to intermediate
results and the possibility to modify parameters of running jobs.

The Result Monitoring and Online Steering Tool (RMOST) [11, 12] is build
upon a model of distributed shared memory, to reduce modification requirements
of existing applications and visualisation software. The goal is to provide a
middleware which connects a local visualisation tool to remote Grid jobs. A
general solution requires that the steering system does not need to know the
type of the data it transports and synchronises. The marshaling problem is
exported from the steering system to the application, or to a special data access
layer. Most applications have already a serialisation method for their data for
storing them on disk.

4.1 The Functionality

The functionality of RMOST is demonstrated by steering Grid jobs of the
High Energy Physics (HEP) experiment ATLAS. In the ATLAS experiment a
huge amount of data has to be evaluated and computed, which requires the
use of a Grid. There exists an experiment software framework Athena [13] for
computing the results. Athena is a modular framework which contains different
kinds of components. The user creates a job description file (job options) for his
job, where he specifies the components and parameters.

Numerous scientists around the world developed Athena components, thus
modifications of core components for steering are hardly accepted by the HEP

7



community. A solution for the integration of steering into the Athena framework
is to add additional components to the framework, that are sent with the job.

The intermediate results for visualisation are stored in so called ROOT files,
which can reach a size of some GB. For the steering, these files must be accessed
remotely. The user adjustable parameters are contained in the job options file.
Thus, RMOST allows the modification of the job options file.

The ROOT toolkit [14] is used for visualisation of the physics results. Many
scientists create own tools and components with ROOT, again changes to core
components will be hardly accepted by the HEP community. To integrate steer-
ing into ROOT, the possibility of ROOT to extend its functionality with dy-
namically loaded libraries, was used.

For the steering the user must be able to create an interactive communication
channel to the remote Grid job. This means firstly to find the job in the Grid.
Then an interactive connection to the job has to be established, and finally, this
connection must be secured. Hereby, some problems may occur:

After job submission the user retrieves a string, which identifies his job, but
he does not know the target host, where the job runs. The host that executes
the job, may be protected by firewalls or may be located in a private IP network,
which inhibits a direct connection to the job. In addition the communication
system must not compromise the target site’s security nor allow unauthorised
persons access to the site, and must ensure that only the submitter of the job
can steer it.

In the ATLAS experiment the user typically submits hundreds of jobs in
parallel. With this large number of jobs it is impossible to inspect each single job
to control the execution of all jobs. Thus, a notification mechanism is provided,
which automatically evaluates a condition and informs the user about suspicious
jobs or on remarkable events. Furthermore, when a failure occurs and Athena
terminates smoothly, the termination can be suspended for some time, the user
is notified, and has the chance to inspect intermediate results or restart the
computation with modified parameters.

4.2 RMOST Components

RMOST connects the user interface and the Grid job at runtime. Thus,
RMOST provides functionality to access the data from the Athena framework
and synchronises it with local data copies used by the user interface. To fulfil
this task, a set of libraries and services are provided. In Fig. 5 an overview of
the different components is shown.

On the side of the remote Grid job, the integration is realized by additional
Athena components. The first component is called RM Spy, which is applied by
modifying the job options. With RM Spy the following functionality is provided:

• Intermediate results stored in ROOT files can be accessed for visualisation.
• Online access to the log files.
• The number of executed events can be monitored.
• The job options file can be modified or replaced. The changes in the job

options are applied by a restart of the job without resubmission.

8



Figure 5: The components of RMOST

• The execution of the job can be suspended, terminated, or continued.
• The job can be executed stepwise.
• The job can be restarted without changing the job options.
• Optional notification of start and end of the execution.
• Optional notification on failure with delayed termination of the job for user

interaction during the waiting period, enabling in-situ inspection.

The second component is RM SteeringSvc, which supports steering func-
tionality for customised components, including modification and monitoring of
internal data, and setting of custom notification conditions.

Two additional components exist on both sides: the steering library and
the file access library. The steering library manages the data exchange and
the data consistency on user interface’s and on the job’s side. The data access
library allows the synchronisation of data files on both sides, which the user
interface and the remote job access like local files. The library catches local file
accesses transparently to the applications and the data is accessed through the
steering system. To use the file access utility, a shared library must be preloaded.
Furthermore, the names of the files, of which the access should be caught, must
be given to the file access library.

For the integration into ROOT, a graphical user interface is provided, which
allows to connect to the job using the job identifier as address. A list of available
data is presented along with the type of the data. For basic data types, also the
values are shown and can be modified. Furthermore, the job execution can be
controlled via the steering mechanism. Secondly, a command line API for ROOT
has been developed, which allows steering from CINT, the C++ interpreter of
ROOT, or from ROOT scripts or ROOT applications. A plugin of RMOST for
the Grid interface GANGA is in preparation.

For establishing the communication channel between the user interface and
the remote Grid job via the Grid, two additional Grid services are necessary.
Firstly, a naming service, which maps a job identifier to its network contact
information. For the naming service RMOST uses R-GMA [4]. Secondly, the

9



connection service, which is needed to connect to Grid jobs in spite of firewalls
and private IP networks [11, 15].

5 Summary

With the tools presented we hope to give the scientists in LCG and - as gLite
gets more and more widespread - also in other communities helpful and valuable
support in their daily use of the Grid.

References

1. HEPCG. High Energy Physics Community Grid, 2005. http://www.hepcg.org.
2. D-Grid. The D-Grid Initiative, 2005. http://www.dgrid.de.
3. J. Novotny, M. Russell, and O. Wehrens. Gridsphere:

A portal framework for building collaborations, 2005.
http://www.gridsphere.org:80/gridsphere/gridsphere?cid=publications.

4. A. J. Wilson et al. Information and monitoring services within a Grid environ-
ment. In CHEP 2004, September 2004.

5. L. Field, F. Naz, et al. User level tools documentation, 2006.
http://goc.grid.sinica.edu.tw/gocwiki/User tools.

6. R. Alfieri, R. Cecchini, V. Ciaschini, Luca dell’Agnello, A. Frohner, K. Lörentey,
and F. Spataro. From gridmap-file to voms: managing authorization in a grid
environment. In Future Generation Computer Systems, volume 21-4, pages 549–
558, April 2005.

7. JEM Project Webpage. http://www.grid.uni-wuppertal.de/jms.
8. A. Hammad, T. Harenberg, D. Igdalov, P. Mättig, D. Meder-Marouelli, and P. Ue-

berholz. A job monitoring system for the lcg computing grid. In Proceedings of the
2006 20th IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), 2006.

9. A. Frommer and M. Hüsken. Ensuring numerical quality in grid computing.
In Proceedings of the 15th IEEE International Symposium on High Performance
Distributed Computing, Paris, June 2006.

10. M. Hüsken. Ensuring numerical quality in grid computing. In 12th GAMM -
IMACS International Symposion on Scientific Computing, Computer Arithmetic
and Validated Numerics, Duisburg, September 2006.

11. D. Lorenz, P. Buchholz, Chr. Uebing, W. Walkowiak, and R. Wismüller. Online
steering of HEP Grid applications. In Proceedings of the Cracow Grid Workshop
’06, Cracow, Poland, October 2006.

12. http://www.hep.physik.uni-siegen.de/grid/rmost.
13. European Laboratory for Particle Physics. Athena Developer Guide.

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/
General/Tech.Doc/Manual/2.0.0-DRAFT/AthenaDeveloperGuide.pdf.

14. R. Brun and F. Rademakers. ROOT - an object oriented data analysis framework.
In Proceedings of AIHENP’96 Workshop, number A 389 in Nuclear Instruments
and Methods in Physics research (1997), pages 81–86, September 1996.

15. D. Lorenz, R. Wismüller, P. Buchholz, Chr. Uebing, and W. Walkowiak. Se-
cure connections for computational steering of Grid jobs. Submitted to the 8th
IEEE/ACM International Conference on Grid Computing, September 2007.

10


	Introduction 
	User-centric monitoring of jobs and their resources 
	Monitoring the execution of jobs 
	Structure of the Job Execution Monitor
	Script Wrapper
	Bash Wrapper
	Python Wrapper

	Watchdogs and Pre-execution Tests

	Interactive steering of jobs 
	The Functionality
	RMOST Components

	Summary

