GeS Available online at http://www.ges2007.de
German e-Science CO-BY-NCIND Creative Commons Atribution SOME RIGHTS RESERVED

dCache, scalable managed storage

P. Fuhrmann', T. Mkrtchyan!, M. Radicke', O. Synge!

DESY, Notkestrasse 85, 22607 Hamburg, Germany
email: {patrick.fuhrmann, tigran.mkrtchyan, martin.radicke,
owen.synge}@desy.de
phone: (+49 40) 8998 0

Abstract

End of 2007, the most challenging high energy physics experiment ever,
the Large Hadron Collider(LHC)[9], at CERN, will start to produce a
sustained stream of data in the order of 300MB/sec, equivalent to a
stack of CDs as high as the Eiffel Tower once per week. This data is,
while produced, distributed and persistently stored at several dozens
of sites around the world, building the LHC[9] data grid. The destina-
tion sites are expected to provide the necessary middle-ware, so called
Storage Elements, offering standard protocols to receive the data and
optionally store it at the site specific Tertiary Storage Systems. Beside
its actual functionality, discussed subsequently, the Storage Element
software has to be able to fit into a large variety of environments. They
are known to range from sites providing a single storage box of some
Tera Bytes of data and nearly no maintenance personnel up to Tier I
sites with estimated disk storage capacities reaching into the Peta Byte
area. Moreover, sites expected to store data permanently may want
to use their already existing Hierarchical Storage Management (HSM)
System to drive the robotics. This requires the Storage Element to be
aware of HSM Systems and to be able to manage external file copies.
The wide range of scalability, from the very small to the limits of afford-
able storage, is one of the primary goals of dCache, the Storage Element
introduced in this presentation. By being strictly compliant to standard
data transfer and control protocols, like gsiFtp[17], xRootd[20] and the
Storage Resource Manager protocol SRM[29], we are focusing on our
second goal which is to make dCache available and useful beyond the
borders of the High Energy Physics Community. Beside storing and
preparing data for transfer, dCache provides a rich palette of functions
to manage the available storage, as will be described subsequently. This
includes replication of datasets on automated detection of busy stor-
age components as well as optimization of access to tertiary storage
systems.

1 Contributors

dCache is a joined effort between the German Elektronen-Synchrotron, DESY/1]
in Hamburg and the Fermi National Accelerator Laboratory[2] near Chicago with
significant distributions and support by the US Open Science Grid[8], the UK
GridPP[7] organization, the Nordic Data Grid Facility[6] and CERN3].

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

2 P. Fuhrmann, T. Mkrtchyan, M. Radicke, O. Synge

2 Introduction

As the abstract of this document implies, dCache is mass storage middle-
ware, currently mainly utilized by the WLCG data handling community. This
is basically for historical reasons and not due to any technical dependencies.
The system has very little requirements to the underlying storage hardware.
The actual storage nodes can be deployed on a variety of platforms, starting
with redundant high end systems down to inexpensive mass production boxes.
dCache focuses on standard protocols, which is especially true for the storage
control protocol and the local and wide area transfer protocols. Those facts make
dCache a community independent and generic data management tool. Therefore,
this presentation is intended to encourage other communities to evaluate the
possibilities of integrating the dCache technology into their mass data chain.

While developing dCache, we closely watch other products offing similar or
complementary functionality. They range from systems simply providing fast
access to disk storage up to technologies concentrating on driving tape robotics
directly. We intentionally avoid comparing dCache which such systems in this
presentation because, due the amount of systems out there, this is certainly out
of the scope of this document.

The document is split into a section, disclosing a subsample of the dCache
technical specification followed by a section, elaborating on upcoming important
improvements and extensions.

3 Technical Specification

dCache Controller

’h Protocol Engines

Infi jon Prot.
Backend Tape Managed Disk nformation Prot.
Storage Storage
Storage Control
SRM
;W s
&
‘g Streaming Data
s - - (gsHFTP
T http(g)
W 0
xRoot
dCap

Figure 1: The big picture

GES 2007 dCache, scalable managed storage 3

Picture [l provides a brief insight into the major dCache functional blocks.
e dCache offers common grid standard protocols
— gsiFtp for wide area data transport.
— dCap and xrootd for local area random data access.
— SRM][14] for storage control
— LDAP to publish status and storage attributes embedded in the GLUE
schema.
e dCache provides an interface to various tertiary mass storage systems, e.g.
TSM, enstore, OSM, dmf and HPSS.
e dCache utilizes regular filesystems (preferable xfs and zfs) on highly dis-
tributed, so called, pool nodes to store its data.
e The dCache core makes sure all transfers are scheduled correctly according
to the rules provided to the dCache setup.

Subsequently we will discuss some of the features dCache already provides in
more detail.

3.1 File name space and dataset location

dCache strictly separates the filename space[35][26] of its data repository
from the actual physical location of the datasets. The filename space is inter-
nally managed by a database and interfaced to the user resp. to the application
process by the nfs2/3[19] protocol and through the various ftp filename oper-
ations. The location of a particular file may be on one or more dCache data
servers as well as within the repository of an external Tertiary Storage Man-
ager. dCache transparently handles all necessary data transfers between nodes
and optionally between the external Storage Manager and the cache itself. Inter
dCache transfers may be caused by configuration or load balancing constrains.
As long as a file is transient, all dCache client operations to the dataset are
suspended and resumed as soon as the file is fully available. See the section on
Chimera, later in this document, on an update of the file system engine.

3.2 Maintenance and fault tolerance

As a result of the name space and data separation, dCache data server nodes,
subsequently denoted as pools, can be added at any time without interfering
with system operation. Having a Tertiary Storage System attached, or having
the system configured to hold multiple copies of each dataset, data nodes can
even be shut down at any time. In both setups, the dCache system is extremely
tolerant against failures of its data server nodes.

3.3 Data access methods

In order to access dataset contents, dCache provides a native protocol (dCap),
supporting regular file access functionality. The software package includes a c-
language client implementation of this protocol offering the posix open, read,
write, seek, stat, close as well as the standard filesystem name space operations.

4 P. Fuhrmann, T. Mkrtchyan, M. Radicke, O. Synge

This library may be linked against the client application or may be pre-loaded
to overwrite the file system I/O. The library supports pluggable security mech-
anisms where the GssApi (Kerberos) and ssl security protocols are already im-
plemented. Additionally, it performs all necessary actions to survive a network
or pool node failure. It is available for Solaris, Linux, Irix64 and windows. Fur-
thermore, it allows to open files using an URL like syntax without having the
dCache nfs file system mounted. A second posix like protocol, we support, is
xRoot which is currently evaluated at various sites. In addition to this random
access, various FTP dialects[29] are supported, e.g. GssFtp (kerberos)[18] and
GsiFtp (GridFtp)[17]. An interface definition to dCache is provided, allowing
other protocols to be easily implemented.

3.4 Tertiary Storage Manager connection

Although dCache may be operated stand alone, it can also be connected to
one or more Tertiary Storage Systems. In order to interact with such a system,
a dCache external procedure must be provided to store data into and retrieve
data from the corresponding store. A single dCache instance may talk to as
many storage systems as required. The cache provides standard methods to
optimize access to those systems. Whenever a dataset is requested and cannot
be found on one of the dCache pools, the cache sends a request to the connected
Tape Storage Systems and retrieves the file from there. If done so, the file is
made available to the requesting client. To select a pool for staging a file, the
cache considers configuration information as well as pool load, available space
and a Least Recently Used algorithms to free space for the incoming data. Data,
written into the cache by clients, is collected and, depending on configuration,
flushed into the connected tape system based on a timer or on the maximum
number of bytes stored, or both. The incoming data is sorted, so that only data
is flushed which will go to the same tape or tape set. Mechanisms are provided
that allow giving hints to the cache system about which file will be needed in
the near future. The cache will do its best to stage the particular file before it’s
requested for transfer. Space management is internally handled by the dCache
itself. Files which have their origin on a connected tape storage system will
be removed from cache, based on a Least Recently Used algorithm, if space is
running short. Less frequently used files are removed only when new space is
needed. In order to allow site administrators to tune dCache according to their
local tape storage system or their migration and retrieval rules, dCache provides
an open API to centrally steer all interactions with Tertiary Storage Systems.

3.5 Pool Attraction Model

Though dCache distributes datasets autonomously among its data nodes,
preferences may be configured. As input, those rules can take the data flow
direction, the subdirectory location within the dCache file system, storage in-
formation of the connected Storage Systems as well as the IP number of the
requesting client and the data transfer protocol, the client is able to support.

GES 2007 dCache, scalable managed storage 5

Data flow direction are defined as

e getting the file from a client

e delivering a file to a client

e fetching a file from the Tertiary Storage System

e and transferring data between internal dCache pools.

The simplest setup would direct incoming data to data pools with highly
reliable disk systems, collect it and flush it to the Tape Storage System when
needed. Those pools could e.g. not be allowed to retrieve data from the Tertiary
Storage System as well as deliver data to the clients. The commodity pools on
the other hand would only handle data fetched from the Storage System and
delivered to the clients because they would never hold the original copy and
therefore a disk resp. node failure wouldn’t do any harm to the cache. Extended
setups may include the network topology to select an appropriate pool node.
Those rules result in a matrix of pools from which the load balancing module,
described below, may choose the most appropriate candidate. The final decision,
which pool to select out of this set, is based on free space, age of file and node
load considerations.

3.6 Load Balancing and pool to pool transfers

The load balancing module is, as described above, the second step in the
pool selection process. This module keeps itself updated on the number of active
data transfers and the age of the least recently used file for each pool. Based on
this set of information, the most appropriate pool is chosen. This mechanism
is efficient even if requests are arriving in bunches. In other words, as a new
request comes in, the scheduler already knows about the overall state change
of the whole system triggered by the previous request though this state change
might not even have fully evolved. System administrators may decide to make
pools with unused files more attractive than pools with only a small number of
movers, or some combination. Starting at a certain load, pools can be configured
to transfer datasets to other, less loaded pools, to smooth out the overall load
pattern. At a certain point, pools may even re-fetch a file from the Tertiary
Storage System rather than an other pool, assuming that all pools, holding the
requested dataset are too busy. Regulations are in place to suppress chaotic pool
to pool transfer orgies in case the global load is steadily increasing. Furthermore,
the maximum numbers of replica of the same file can be defined to avoid having
the same set of files on each node.

For various reasons (See figure[2]), dCache might decide to internally replicate
files. This process is handled transparently to the end user. Some of the reasons
for replication are :

e As already described, dCache may consider to redistribute files from a
highly loaded pool in order to reduce the access load of this particular
pool.

e A dataset could reside on a pools from which a client is not allowed to
read. (e.g. firewall setup).

6 P. Fuhrmann, T. Mkrtchyan, M. Radicke, O. Synge

ry Store

Main Tertia
E

Backup Store Transfer Pools

Read Only Cache

N Write Pools
\
Replicate
on high load

RAW Data
Second copy

—

non RAW Data
From Client immediately
copied to read pools

Figure 2: File hopping

e A second, safe copy of a dataset might be required until the system decides
to store the data onto a Tertiary Storage System.

e In order to optimize Tertiary Storage System access, it might be required
to support intermediate transfer pools, to decouple Tape Backend reads
from client read operations.

3.7 File Replica Manager

The Replica Manager Module[28] enforces that at least N copies of each file,
distributed over different pool nodes, must exist within the system, but never
more than M copies. This approach allows to shut down servers without affecting
system availability or to overcome node or disk failures. The administration
interface allows to announce a scheduled node shut down to the Replica Manager
so that it can adjust the N < n < M interval prior to the shutdown.

3.8 Data Grid functionality

In order to comply with the definitions of a WLCG Storage Element, as

sketched in picture[3, the storage fabric must provide the following interfaces :

e There must be a protocol for locally accessing data. dCache provides

this by nfs mounting a server for file name operations but transferring the

actual data via faster channels. Local Storage Elements, including dCache,

hide this mechanism by being integrated into a local filesystem wrapper
software provided by CERN, the Grid File Access Layer, GFAL|22].

e A secure wide-are transfer protocol must be implemented which, at the

time being, is agreed to be GsiFtp, a secure Ftp dialect. Furthermore

dCache offers kerberos based FTP as well as regular and secure http access.

GES 2007 dCache, scalable managed storage 7

ouT - SITE

IN - SITE

File Transfer Service

Compute
Element

Storage Resource
Manager Protocol

FTS Channels

dCap/root

Figure 3: dCache as part of the WLCG grid

e To allow central services to select an appropriate Storage Element for file
copy or file transfer requests, each Storage Element has to provide sufficient
information about its status. This includes its availability as well as its to-
tal and available space. Currently this information is provided via the ldap
protocol but this, for scalability reasons, is in process of being redesigned.
In order to be independent of the actually distribution mechanism, dCache
provides an interface to the Generic Information Provider, GIP. GIP[25] is
responsible to make this information available to the connected grid middle
ware.

e The forth area, defining a LCG Storage Element, is a protocol which makes
a storage area a manageable. The interface is called the Storage Resource
Manager,SRM|14]. Beside name space operations, it allows to prepare
datasets for transfers directly to the client or to initiate third party trans-
fers between Storage Elements. SRM takes care that transfers are retried
in case they didn’t succeed and handles space reservation and management.
In addition, it protects storage systems and data transfer channels from
being overloaded by scheduling transfers appropriately. The SRM doesn’t
do the transfer by itself, instead it allows to negotiate transfer protocols
available by the data exchanging parties.

4 Scalability and maintenance efforts

Scalability is certainly a buzzword which is interpreted by implementors of
large systems at their convenience. dCache is luckily in the good position hav-
ing installations out which prove that the technology copes with overall storage

8 P. Fuhrmann, T. Mkrtchyan, M. Radicke, O. Synge

Cumulative Data Sent
75 Weeks from 2005/35 to 2007/06 UTC

6000

5000

4000

@

3000

2000

1000

Sep’J 2005 Dec 2005 Mar 2006 Jun 2006 Sep 2006 Dec 2006

Time

o CNAF FNAL 1 IN2P3 m 7K mPCc
WRAL [CERN W ASGC

Total: 6647.43 TB, Average Rate: -0.00 TB/s

Figure 4: Data sent by Tier I centers (By courtesy of Frank Wuerthwein,
UCSD)

spaces in the order of petabytes and which can deliver data out of those reposi-
tories in the several hundred Terabyte range per day.

Although we actively investigate in upcoming bottlenecks in case the amount
of storage or the transfer rates are increasing significantly, currently our main
areas of investigations are :

e Does dCache scale in the small 7 Does it make sense to have dCache
running on a very small amount of data with moderate overall transfer
rates ?

e Is the number of sysadmins needed to run small to very large installations
justifiable with the achieved profits ?

Lots of effort is currently going into solving those issues, not only by dCache.ORG
itself but by groups like the d-grid initiative and the Open Science Grid[8]. We
are convinced of having suitable solutions at hand before end of 2007.

5 Ongoing development

dCache is currently encountering two classes of limitations. Due to the fact

that the user community has permanently increased, there are new requirements

which haven’t been though about initially. Second, because of the tremendous

increase in data storage and access profile, certain bottlenecks could be identified.

This section picks four of the most prominent planned improvements addressing
the issues described above.

e Chimera Again, for historical reasons, the current file name space engine

is only accessible through its nfs2/3 interface. The consequence is that even

the dCache core has to traverse the nfs client, network and nfs server layer

GES 2007 dCache, scalable managed storage 9

in order to access dataset meta-data. It’s obvious that this approach is a
significant bottleneck, especially because arbitrary node/users, mounting
the dCache nfs2 system can, by flooding the nfs layer with requests, inter-
fere with the dCache core system. To overcome this deficiency, Chimera,
a new file name space engine has been developed. Chimere essentially is a
meta-data catalogue providing a file system view of its maintained objects.
Access control lists The complexity of already existing grid communities,
resp. Virtual Organizations, concerning data access permissions, exceeds
the possibilities of the rather simple Unix authorization schema. Therefor
an Access Control List module for Chimera is under development.
Improved Tertiary Storage System interface The data stream, in-
jected into the WLCG Tier I sites has to be forwarded to the back-end
Tertiary Storage System. In order to cope with the special requirements
of such systems and the concurrent performance deficiencies of available
disk storage hardware a central component in dCache will be introduced
to optimize access to the Tertiary Tape Storage Systems.

NF'S 4.1 Although dCache provides two posix like data access protocols,
it would certainly be desirable to support a protocol for which the client
drivers are already part of the various operating systems. With the up-
coming nfs 4.1 specification, this will become possible. Nfs 4.1 can make
optimized use of highly distributed data sources and as to our current infor-
mation, industry is very interested in this protocol and a lot of OS vendors
already have nfs 4.1 clients ready. Moreover nearly all storage box vendors
are working on server implementations. A major part of the nfs 4.1 server
specification is already build into dCache. If nfs 4.1 will become widely
accepted by storage system vendors and customers, this would significantly
simplify the access to dCache data.

6 Conclusions

As shown in picture [4] dCache is already storing and transferring huge

amounts of data for several years. We expect this technology to handle the
majority of the LHC data in the years to come, mostly in the Tier I centers but
as well in larger Tier II’s. This fact, and the impressive feature-set of dCache
should make other communities curious to invest some time to evaluate dCache
as their storage middle-ware as well. Last but not least, with the described
current developments in dCache, this technology is well prepared for the future

References

CU N

DESY : http://www.desy.de

FERMI : http://www.fnal.gov

CERN : http://www.cern.ch

Rutherford Appleton Laboratory : http://www.cclrc.ac.uk/
GridKA : http://www.gridka.de/

10

P. Fuhrmann, T. Mkrtchyan, M. Radicke, O. Synge

®© N

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

The Nordic Data Grid Facility : http://www.ndgf.org/

UK Computing for partical Physics http://www.gridpp.ac.uk/

The US Open Science Grid http://www.opensciencegrid.org/

Large Hadron Collider : http://lhc.web.cern.ch/lhc/

LHC Computing Grid : http://lcg.web.cern.ch/LCG/

Fermi Enstore http://www.fnal.gov/docs/products/enstore/

High Performance Storage System : http://www.hpss-collaboration.org/hpss/
Tivoli Storage Manager : http://www-306.ibm.com /software/tivoli/products/storage-
mgr/

SRM : http://sdm.lbl.gov/srm-wg

dCache Documentation : http://www.dcache.org

dCache, the Book : http://www.dcache.org/manuals/Book

GsiFtp http://www.globus.org/ datagrid/deliverables/gsiftp-tools.html

Secure Ftp : http://www.ietf.org/rfc/rfc2228.txt

NFS2 : http://www.ietf.org/rfc/rfc1094.txt

NFS2 : http://www.ietf.org/rfc/rfc1094.txt

Cern CMS Experiment : http://cmsinfo.cern.ch

Grid GFAL http://lcg.web.cern.ch/LCG/peb/GTA /GTA-ES/Grid-File-
AccessDesign-v1.0.doc

D-Grid, The German e-science program : http://www.d-grid.de

Patrick Fuhrmann et al. dCache, the Upgrade. Spring 2006, CHEP06, Mumbai,
India

Lawrence Field et al. Grid Deployment Experiences: The path to a production
quality LDAP based grid information system. Spring 2006, CHEP06, Mumbai,
India

Tigran Mkrtchyan et al. Chimera. Spring 2006, CHEP06, Mumbai, India

Lars Schley, Martin Radicke et al. A Computational and Data Scheduling Archi-
tecture for HEP Application. Spring 2006, CHEP06, Mumbai, India

Alex KULYAVTSEV et al. Resilient dCache: Replicating Files for Integrity and
Availability Spring 2006, CHEP06, Mumbai, India

Timur Perelmutov et al. Enabling Grid features in dCache Spring 2006, CHEPO06,
Mumbai, India

Abhishek Sinh Rana et al. gPLAZMA : Introducing RBAC Security in dCache
Spring 2006, CHEP06, Mumbai, India

Patrick Fuhrmann et al. The TSM in the LHC Grid World Sep 2005, TSM Sym-
posium , Oxford, UK

Patrick Fuhrmann, dCache, the commodity cache. Spring 2004, Twelfth NASA
Goddard and Twenty First IEEE Conference on Mass Storage Systems and Tech-
nologies. Washington DC, USA

Timur Perelmutov, Storage Resource Managers by CMS,LCG. Spring 2004,
Twelfth NASA Goddard and Twenty First IEEE Conference on Mass Storage
Systems and Technologies. Washington DC

Michael Ernst et al. Managed Data Storage and Data Access Services for Data
Grids. Sep 2004, CHEPO04, Interlaken, Switzerland

Tigran Mkrtchyan et al. Chimera, the commodity namespace service. Sep 2004,
CHEPO04, Interlaken, Switzerland

Patrick Fuhrmann et al. dCache, LCG SE and enhanced use cases. Sep 2004,
CHEPO04, Interlaken, Switzerland

Michael Ernst, Patrick Fuhrmann et al. dCache. March 2003, CHEP03, San Diego,
USA

	Contributors
	Introduction
	Technical Specification
	File name space and dataset location
	Maintenance and fault tolerance
	Data access methods
	Tertiary Storage Manager connection
	Pool Attraction Model
	Load Balancing and pool to pool transfers
	File Replica Manager
	Data Grid functionality

	Scalability and maintenance efforts
	Ongoing development
	Conclusions

