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Human 

Multi-robot Mobile System 
Multiple: more effective and 
robust than a single complex one 
 
Mobile: more flexible and 
pervasive than fixed ones 
 
Large number of applications: 
• coverage, exploration, mapping, 
surveillance, search and rescue, sensor 
networks, localization and tracking, 
mobile infrastructures, 
transportation,cooperative manipulation 

• modular robotics 
• nano-robot medical procedures 

Human assistance still mandatory: 
• in highly complicated environment  
(dynamic, unpredictable, cluttered)

• whenever cognitive processes are 
needed  

Robotic assistance needed 
to extend the human perception and 
action abilities 
• higher precision and rapidity 
• multi-scale telepresence  
(microscopic, macroscopic, planetary)  

A mutually-beneficial interaction 
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Human/Multiple-Mobile-Robot Interaction: Why?  
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Human 
Operator Haptic 

Interface 

Communication 
Channel 

Multi-UAV 
System Remote 

Environment 

Haptic 
Interface 

•  Remote multi-UAVs possess 
local autonomy 

•  Keep the formation  
•  Avoid obstacles 
•  Perform local tasks 
•  Gather a map 
•  Pick and place operations 
•  Cooperative Grasping 
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•  Human operator gives high-level 
motion commands and receives a 
suitable force feedback 

Bilateral Teleoperation of Multiple Aerial Robots 
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HHaptic feedback 

�  The sense of touch carries rich  
and “fast” information 

�  Widely exploited in teleoperation 
applications (e.g., telesurgery) 
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HHaptic feedback 

�  Feeling force cues can be crucial for  
piloting a vehicle 

 
�  The force felt on the steering wheel  

informs car pilots on the amount of grip between tires and road 

�  An airplane pilot can judge the aerodynamic load 
or occurrence of wind gusts 
�  He can “feel” the state of the aircraft 

 
�  Often fly-by-wire systems are 

complemented with artificial force feedack 
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Ingredients 
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Collective behavior of 
multiple robots 

Robust flight control  

Bilateral Teleoperation 
and Telepresence 

Human evaluation and 
user studies 

reflective marker

motor

microcontroller board
(  C board)

brushless controller
(BC)

modular frame
LiPo Battery

Q7 board

Power supply board

colored marker

μ

force/torque sensor

a)

b)

monocular camera
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Bilateral Teleoperation 
•   “Remote” coupling between two (or more) mechanical systems (robots) 

•  Master: local robot interacting with a human operator 
•  Slave: remote robot(s) interacting with the environment 
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An Example of Bilateral Teleoperation 

9  

 
•  Instabilities mainly due to communication delays and discretization 
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Differences w.r.t. Conventional Teleoperation 
1. Kinematic dissimilarity 

Master side: 
limited workspace 

Slave side (UAVs): 
unlimited workspace 

2. No physical contact between environment and slave side 
•  avoid contact to prevent crash   
•  interaction forces must/can be designed 
(e.g., repulsive/attractive) 

E.g., the position of the master controls the velocity of the slave  

3. High motion redundancy of the slave 
• large gap in the number of DOFs (master vs slave): 

virtual 
interaction 

master: usually  
3 trans. + 3 rot. DOFs 

slave: made of  
several Robots 
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Stability in Bilateral Teleoperation 
•   Control Goals of a Bilateral Teleoperation System 

•  Ensure a stable Teleoperation behavior (stable reactions to Operator and 
Environment actions) 

•  Ensure “transparency” (~ interaction slave/env = interaction master/human) 

•   How to do it? A possibility: make sure the Master/Comm. Channel/Slave 
system is (altogether) a passive system 
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�  Passivity: intuitively, something that does not produce internal  
energy 

�  A generic nonlinear system 
 
is said to be passive if there exists a storage function 
 
 
such that                    or equivalently 
 
 
 
 
 
 
Current energy is at most equal to the initial energy + supplied energy from outside 

�  This condition can be interpreted as “no internal generation of energy” 
 

Σ�

Passivity 
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Networked Dynamical System 

•  A very convenient possibility: model the slave as the (passive) interconnection 
of multiple agents 

 
•  Exploiting the port-Hamiltonian Modeling formalism 
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Multi-Agents 
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Multi-Agents  
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State Synchronization 
An agreement by multiple systems 

on a common state 

Formation Control 
Keep a desired spatial configuration 
despite the large number of agents 
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Decentralization 
•   Decentralized: limited sensing/communication and/or computing power 

•   Every agent must elaborate the gathered information to run its local 
controller 

•   The controller complexity is related to the amount of needed information 

•   If the whole state is needed, the complexity (~ computing power) 
increases with the number of agents 

•  May easily become infeasible 
•  And would need to know the whole state... 
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Decentralization 
•  Decentralization: the limited sensing/communication/computing power 

induce an “information/interaction graph” among the agents 

•  The nodes represent the agents 

•  The edges represent an interaction or information  
flow 

•  Sensed 
•  Communicated 
•  Elaborated 

•  Decentralization: on each edge, size of 
information flow is constant (        per neighbor) 

•  example: adding node 6 does not increase the 
information needed by nodes 1,2,3,4 
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Human 
Operator Haptic 

Interface 

Communication 
Channel 

Multi-UAV 
System Remote 

Environment 

Haptic 
Interface 

•  Remote multi-UAVs possess 
local autonomy 

•  Keep the formation  
•  Avoid obstacles 
•  Perform local tasks 
•  Gather a map 
•  Pick and place operations 
•  Cooperative Grasping 

i-
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Communication 
Channel 

Mult
Sys

•  Human operator gives high-level 
motion commands and receives a 
suitable force feedback 
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Bilateral Teleoperation of Multiple Aerial Robots 
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Two Group Teleoperation Approaches 

Constant Topology Unconstrained Topology 

•  General “tele-navigation” framework 
•  Basis for building any higher-level exploration or generic cooperative task 

34 
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Constant Topology Unconstrained Topology 

-  Fixed graph topology 

-  Robots are constrained to keep a desired 
formation (with possible deformations) 

-  The human operator can control the 
remaining degrees of freedom 

-  Usually, good for precise measurements 
(data fusion) 

-  Time-varying graph topology 

-  Robots are loosely coupled together 
(can gain/lose neighbors) 

-  Robots can decide to split or to join 
depending on constraints or tasks 

-  The human operator controls the  
motion of a subset (e.g., one leader) 

-  Appropriate for “loose” tasks, e.g., 
coverage, persistent patrolling 

•  In general, force feedback = mismatch between commanded “motion task” and 
its actual realization 
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Differences 
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Possible uses: 
 
 
 
 
 
 
 
 
 
 

Inter-distances 
•  rotational invariant 
•  time-of-flight sensors, stereo cameras, 
structured light 

Constant Topology: Objectives and Measures 
In the semi-rigid formation case a desired shape is given and must be maintained 

•  taking precise measurements 
•  achieving optimal communication 

•  transportation 

Relative-bearings 
•  rotational and scale invariant 
•  monocular camera 

A shape is typically placement-invariant and is defined by constraints 

Aerial Service Robotics, ETH, Zurich, 5/7/2012 
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•  Shape defined through 
desired inter-distances 

•  Reference trajectory 
generation: 

•  Inter-distance  
preservation term 

•  Obstacle 
avoidance term 

•  Velocity command  
from the user 

•  3-DOF haptic device 

Constant Topology 

•  overall shape autonomously  
deforms reacting to obstacles 

•  reversible deformations  
are allowed 

37 Aerial Service Robotics, ETH, Zurich, 5/7/2012 



• Teleoperation force feedback:
•  force feedback term 

•          passive set modulation of 
•  guarantees passivity in presence of  

delay and discretization 

•  can be any signal (our case: velocity) 

•  Main results 
•  The overall teleoperation system is passive (stable when interacting with human/

environment) 
•  At steady state 

•                                                                                                   if 

•                                                                                                   if 

        

                                                                              

                                                                                        

(e.g. no obstacles) 

(e.g. stopped by 
obstacles) 

Semi-rigid Formation using Distances 

• Mismatch between  
commanded and 
actual motion 

•  Obstacle repulsion 
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Semi-rigid Formation using Distances 
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ICRA 2011 
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Semi-rigid Formation using Distances 
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Experiments on Intercontinental Haptic Control of Multiple UAVs, IAS 2012 
Bilateral teleoperation experiment from Korea (Korea University) to Germany (MPI Biol. Cyb.) 
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Robot  
controller 

Inter-robot 
communication 

Robot  
controller 

Robot  
controller 

Sensor data 

Human 
commands 

Force 
feedback/ 
Sensor data 

Experimental Testbed 
•  Experimental environment 

Robot  
controller 
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Mikrokopter quadrocopter 
•  Customizable modular kit 
•  Atmel ATMEGA644 @ 20MHz 
•  Accelerometers + Gyros + 

Pressure sensor 
•  PWM motors 
•  Additional Payload: 0.7 kg ca. 
•  Battery Autonomy 15 min. ca  
•  Serial connections: 
•  wired with Seco Qseven 

•  wireless (Xbee) with any PC 

  Seco Qseven Quadmo747 
•  Intel Atom Z500 1,6 GHz 
•  1 GB ram 
•  Intel graphic card 
•  Usb, ethernet, sata,… 

Hardware for Quadcotper UAV 
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Semi-rigid Formation using Bearings 

Shape defined through desired relative-bearings 

• Human controls the collective motion 
in the “null-space” of the formation 
control action 
•  translation velocity 
•  expansion rate 
•  rotational rate 

• reversible deformations are allowed

•  Each robot tracks a trajectory with first-order dynamics 
representative of the quadrotor actuation capabilities 

• The team maintains the desired shape
•  only measuring relative angles 
•  without collapsing/expanding 
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Semi-rigid Formation using Bearings 
•  Use relative bearings (angles) for formation 

control 
•  Relative bearings can be directly retrieved 

from onboard cameras 

•  Lack of metric (distance) measurements 

•  The spatial formation is defined up to 5 
dofs: 

•  Collective translation vel. 
•  Synchronized expansion rate 
•  Synchronized rotation rate 

•  The human operator controls these 5 dofs 
with 2 haptic devices 

•  Force feedback: mismatch between the 
desired and actual commands 

44 Aerial Service Robotics, ETH, Zurich, 5/7/2012 
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Force Feedback: mismatch between desired and actual 

Force Feedback 

Dynamics of the two masters 
(3DOF + 2DOF) 

Overall-motion Commands 

• translational velocity 

•  expansion/rotation rate 

translational velocity

expansion/rotation rate 

where 

where 
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Semi-rigid Formation using Bearings 
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Simulations with 12 quadrotor UAVs 
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System Architecture and Implementation 

3 Quadrotors + 
3 Onboard Cameras + 
3 Onboard PCs 
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Semi-rigid Formation using Bearings 

49 

Experiments with 3 quadrotor UAVs 
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Two Group Teleoperation Approaches 

Constant Topology Unconstrained Topology 

•  General “tele-navigation” framework 
•  Basis for building any higher-level exploration or generic cooperative task 

50 
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•  Time-varying graph topology because of sensing/task constraints 
•  Sensing model (e.g., maximum range, loss of visibility) 
•  Execution of extra tasks in parallel 

Unconstrained Topology 
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•  Features 
• decentralized design (1-hop communication/sensing) 
• single communication channel among the leader and the human operator (master-side) 
• flexible formation: split/join due to  

• sensing/communication constraints 
• execution of extra tasks in parallel 

• Autonomy in avoiding obstacles and inter-agent collisions 

•  Challenges 
• Time-varying topology: ensure stability despite a switching dynamics 
• Guarantee an overall stable teleoperation system (~ passivity) also in presence of delays 
•  Maintain group connectivity 

52 

Unconstrained Topology 
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Agent Model 

•  Every agent is modeled as a free-floating mass in      with Energy 

•               is the agent momentum and             the agent velocity. Let also             , 
with            , be the agent position 

•                    is the agent Inertia matrix 

•                          is a velocity damping term (either naturally present or artificially 
added) 

•  Force (input)               represents the interaction (coupling) with the other agents 

•  Force (input)               represents the interaction with the “external world” (e.g., 
obstacles or master side) 

Bi ≥ 0 ∈ R
3×3

pi ∈ R
3

vi ∈ R
3

ẋi = vi

Mi ∈ R
3×3

R
3

xi ∈ R
3

F a
i ∈ R

3

F e
i ∈ R

3
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Agent Model 

•  Remarks: 

•  In PHS terms, an agent represents an atomic element storing kinetic energy 
 
 
and endowed with two power ports               and 

•  We consider a simple “free-floating mass” mainly for easiness of exposition 
•  other (more complex) mechanical (PHS) system could do the job, also constrained 
(e.g., ground robots) 

•  The Inertia matrix       can model different inertial properties in space 
•  e.g., a quadrotor UAV with a faster vertical dynamics w.r.t. the horizontal one 

•  Heterogeneity in the group can be enforced by choosing different       and 

Mi

BiMi
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Neighboring definition 
�  Let                               be the interdistance among two agents  

�  Sensing/communication/interaction range 

�  Time-varying neighboring condition 
 

�  Interpretation: 
�  Must split if too far apart (              ) 
�  Symmetric neighboring condition 
�  Still, can choose to join/split if                 

(allow presence of any additional subtask/constraint during motion) 

�  This relationship induces a time-varying interaction graph                            where 

Example:  
visibility constraint 
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Agent Interconnection 

•  When neighbors, the agents should keep a cohesive formation 

•  We consider the (simple) case of maintaining a desired interdistance  
•  Other more complex (e.g., relative position) cases are possible  

•  This cohesive motion must be achieved by means of local and 1-hop information 
(decentralization), and by exploiting the coupling force      in the agent dynamics 

•  When non-neighbors, no interaction among the agents 
 

0 < d0 < D 0 < d0 < D

56 
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Agent Interconnection 

•  How to model this interagent coupling? Let us model it as a (nonlinear) elastic 
element 

•  Let               be the state of this element, and                                      some (lower-
bounded) Energy function (Hamiltonian) 
 
•  Take the usual PHS form for a storing element                             where                                    
are the input/output vectors 

•  For           , we take a function 
•  lower-bounded 
•  with a minimum at 
•  becoming flat for 
•  growing unbounded for 

xij ∈ R
3 V (xij) = V̄ (‖xij‖) ≥ 0

vij , F
a
ij ∈ R

3

V (xij)

dij → 0

dij > D
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Inter-agent interaction 
�  When    and     are neighbors (                                      ) the elastic element is coupled with 

the agent dynamics 

 
 

�        can be computed in a decentralized way 

�  When              , the elastic element is disconnected from the agents 
Relative bearing 
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Model of the Slave-side 

�  The overall slave-side in port-Hamiltonian (energetic) form can be rewritten as 
 
 
 
 
 
 
                                   and           is the incidence matrix of graph          
 
                                                                                                   and 

 
�  The total energy (Hamiltonian) of the system is 

�  For fixed topology                         , the system is passive            

                                  a                                
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Slave passivity 

�  Prop 1: if the graph topology stays constant                         , the slave-side is a 
passive system 

�  What about the general case of time-varying         ? 

�  Prop 2: a split decision                                 preserves passivity 

�  Reason: losing an edge induces a new subgraph               and associated 

�  However, the new matrix                        will keep being skew-symmetric… 

=0 because of  
skew-symmetry 

Negative definite 
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Slave passivity 

�  A split decision                                 preserves passivity 
 
�  A join decision                                   is more involved 

�  Reason: different interdistance        at the join decision w.r.t. the split decision 
�  Possible higher energy level                        creation of “extra” energy 

 
 
•  At the join, the state of the elastic element must be reset to the actual relative 
position of agents    and 
•  This action, in general, costs extra energy! (thus, can violate passivity) 
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Augmented Slave-side 

�  “Passify” the join decisions (cover for the “extra” join energy) 

�  Idea: because of local damping      , every agent dissipates some power 

�  Store this power in a local variable called energy tank 
with energy function 

�  Exploit the Tank Energies (in a decentralized way) to cover for passivity violations 

�  Bottom-line: keeping track of the dissipated energy grants a “passivity margin” to 
be freely used for implementing generic actions in a passive way 

71 
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•  In its integral form, the passivity condition reads 

•  Let                                      and 

•  Over time,  

Energy Tanks 
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•  Over time, a gap between 
and 

•  Because of the integral of the dissipation 
term 

•  However, we would be happy (from the passivity point of view) by just ensuring a 
lossless energy balance 

Energy Tanks 
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•  Dissipation term: passivity margin of the system 

•  Imagine we could recover this “passivity gap” 

•  This recovered energy can be freely used for 
whatever goal without violating the passivity 
constraint 

•  This idea is at the basis of the Energy Tank machinery 

•  Energy Tank: an energy storing element with state               and energy function 

Energy Tanks 
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Passivity of the Group 

•  Strategy for implementing a join decision in a passive way among agents         : 
•  1. at the join moment, compute 
•  2. if              , implement the join (and store        back into the tanks      and      ) 
•  3. if              , extract         from      and 

•  What if                        ? 

•  Must take a decision: 
•  Do not join (and wait for better conditions) 
•  Ask the rest of the group for “help” 

•  How to ask for “help” in a decentralized and passive way? 
•  A possibility: run a consensus on all the Tank Energies 
•  This redistributes the energies within the group  
•  But it doesn’t change the total amount of energy 

ΔV = V (xi − xj)− V (xij)

ΔV ≤ 0 ΔV

ΔV > 0 ΔV

Ti + Tj < ΔV
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Passivity of the Group 

•  Compact form of the Passive Join procedure (decentralized and passive) 

 
•  Note: if after the consensus still not enough energy (line 6) 

•  The agents do not join 
•  They can switch to a high damping mode for more quickly refilling the Tanks 

81 
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Passivity of the Group 

•  Additional remarks: 

•  We can always enforce a limiting strategy for the Tank refilling action by means of a 
parameter 
 
 
 
 
 
 
 
such that                                         where     is a suitable upper bound for the Tank 
energy level 

•  This way, we can avoid a too large accumulation and prevent practical non-passive 
behaviors over short periods of time 

⎧⎪⎪⎪⎪⎨
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i pi
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ij
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Bilateral Teleoperation of Multiple UAVs 
•  Consider one leader, and split its external force as 

•  Interconnect master and leader in this (passive) way 

•      is the leader velocity 
•       is (almost) the master position 

•  Force      will inform about the mismatch  
•  Number of agents in the connected component of the leader (their total inertia) 
•  Absolute speed of the group 
•  Interaction with the environment (obstacles) 

•  Obstacles are considered as passive systems producing repulsive forces (spring-like 
elements) 
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•   • 

ICRA 2011, T-RO 2012 (to appear) 87 
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•   •
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Consensus modes 

Tank energies 

89 
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Slave-side Passivity 
condition 

(Integral version of                    ) 
90 
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Intermezzo 

•  Where does the energy to keep everything in motion come from? 

•  As the agents move, they necessarily dissipate energy (damping terms) 

•  The dissipated energy is stored back into the Tank but then still used to implement 
joins 

•  If the slave-side had started with some initial energy          , this will be eventually 
dissipated because of local damping or join maneuvers 

•  Hence, “new energy” can only be supplied by the “Master-side” 

H(t0)
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Intermezzo 

•  However, the master is also assumed to be a passive system 

•  It can have some initial energy, but cannot create energy over time either 

•  At some point, its internal energy storage will also be depleted 

•  So, where does the energy to keep everything in motion (for a sustained amount of 
time) come from? 

92 
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Intermezzo 

•  It ultimately comes from the Human operator! 

Passive system! 
On its own, can only “lose energy” over time… 

The human operator acts on the master 
To move the master, he/she must perform (mechanical) work 
This work is the source of energy that keeps everything motion 

Passivity Metaphor = as in life, nothing comes for free, to get something 
done one must work hard and put in a lot of (his/her) energy 
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Velocity Synchronization 

•  Assume a constant velocity command for the leader 

•  We are interested in characterizing the (possible) steady-state synchronization with 
this velocity command 
                                                                                ? 

•  Characterization of the steady-state of the system (if it exists) 

•  Assumptions for the steady-state: 
•  1)                                                (no environmental forces ~ no close obstacles) 
•  2) Tanks are full to      and             (no joins, no energy exchanges with elastic elements) 
•  3)     is connected (can always reduce to the connected component of the leader) 

•  Also assume (w.l.o.g.) that the leader is agent 1 
•  For the leader,  
•  For all the others,                          (because of Assumption 1) 

vi → rM , ∀i

Γ = 0
G

F env
i = 0, ∀i = 1, . . . , N

F e
1 = Fs = bT (rM − v1)

F e
i = F env

i = 0

                              ? v    i  →        r    M      , ∀    i    

rM = const

T̄i
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Velocity Synchronization 

95 

•  Result: at steady-state  
  
•  As illustration, for “scalar” damping terms                    everything reduces to 

 
•  Perfect synchronization only in the hypothetical situation           (no damping on any 
agent!) 

•  In this case,                  and 

•  In general, the force       carries information about the group absolute speed and 
total number agents 

Bi = biI3

bi = 0

Fss =
bTKrM

∑
bi

bT +
∑

bi
vss =

bT rM
bT +

∑
bi

vss = rM Fss = 0
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vi → vss = (1T
N3

B′1N3
)−1bT rM
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Velocity Synchronization 
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Velocity Synchronization 
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Velocity Synchronization 

•  A (decentralized) extension to synchronize velocities with       at steady-state 

•  The damping terms     are 
•  good for stabilization and Tank refill 
•  bad for vel. synchronization, as they “slow down” the agents…. 
•  ….it seems they should be “switched off” 

•  Idea: modify the agent dynamics, considering 
 
 
 
 
 
 
 
where                                  is the “damping” force, but with a variable damping 
term 

Bi

F d
i = −Bi(ti)M−1

i pi

Bi(ti) =
{

0 if T (ti) = T̄i

B̄i if T (ti) < T̄i

rM

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗi = F a
i + F e

i + F s
i + F d

i

ẋti =
1

xti

Di +
∑N

j=1 w
t
ij

y =

[
vi
xti

]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗi = F a
i + F e

i −BiM
−1
i pi

ẋti =
1

xti

Di +
∑N

j=1 w
t
ij

y =

[
vi
xti

]

Bi(ti) =
{

0 if T (ti) = T̄iTT
B̄i if T (ti) < T̄iTT
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Velocity Synchronization 

•  The damping       is now active only when needed to refill the Tank 

•  The additional (synchronization) force       is designed as 
(consensus among velocities) 

•  The group dynamics takes the form, with 

TiBi

F s
i = −b

∑
j∈Ni

(vi − vj)F s
i

⎧⎪⎨
⎪⎩

⎛
⎝

ṗ
ẋ
ṫ

⎞
⎠ =

⎡
⎣
⎛
⎝

0 E 0

−ET 0 ΓT

0 −Γ 0

⎞
⎠ −

⎛
⎝

L + B 0 0
0 0 0

−PB 0 0

⎞
⎠

⎤
⎦∇H + GF e

v = GT∇H
(15

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
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⎝
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ṗ
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(15

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗi = F a
i + F e

i + F s
i + F d

i

ẋti =
1

xti

Di +
∑N

j=1 w
t
ij

y =

[
vi
xti

]

L = bL⊗ I3
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Velocity Synchronization 

•  With the same Assumptions as before (constant commands, Tanks full and connected 
Graph), it is possible to show that 

•  there exists a steady-state 
•  the agents synchronize with the commanded velocity 
•  resulting in a null force for the human operator 

v = 1N3
rM

(ṗ, ẋ, ṫ) = (0, 0, 0)

Fh = Fss = 0
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Velocity Synchronization 
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Velocity Synchronization 
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Connectivity Maintenance 

 

 
•  What about connectivity maintenance? 

•  Can the graph    stay connected while still allowing arbitrary split and join as 
before? 

•  And… 

•  How to do it in a decentralized and stable/passive way? 

G
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Connectivity Maintenance 

•  Connected graph ->             (second smallest eigenvalue of the graph Laplacian    ) 

•      is a measure of the degree of connectivity in a graph 
•  The larger its value, the “more connected” the graph 

•  However:       
•       is a global quantity               against decentralization? 
•       does not vary smoothly over time                cannot take “derivatives” 

λ2 > 0
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Connectivity Maintenance 

•  Idea: design the weights of the Adjacency matrix are smooth functions of the state  
                            rather than as discrete quantities 

•  Then, the Laplacian itself becomes a smooth function of the state 

•  Then, one conceive a gradient-like control action                based on  

•  This gradient has a closed-form expression (Yang, Freeman, Gordon, Lynch, Srinivasa, 
Sukthankar, “Decentralized estimation and control of graph connectivity for mobile sensor 
networks”, Automatica 2010) 
 
 
 
 
where      is the eigenvector associated to  

Aij = Aij(x) ≥ 0 Aij = {0, 1}

L = Δ(x)−A(x) = L(x)L = Δ(x)−A(x) = L(x)

λ2 = λ2(x)u =
∂λ2

∂x

∂λ2

∂xi
=

∑
j∈Ni

∂Aij

∂xi
(v2i − v2j )

2

v2 λ2
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Connectivity Maintenance 

•  How to exploit the freedom in designing the weights            ? 

•  Typically, weights            are chosen to take into account presence of physical 
limitations for interacting (sensing model as occlusions, maximum range) 

•  example: letting                                  as 

•  Keeping                  during motion ensures connectivity maintenance w.r.t. such 
sensing/communication limitations 

•  We extend this idea to also embed into the weights 
•  additional agent requirements which should be preferably met (e.g., keeping a 
desired interdistance) 
•  additional agent requirements which must be necessarily met (avoiding collisions 
with obstacles and other agents) 

•  Everything achieved by the sole “maximization” of the unique scalar quantity 
•  “physical” connectivity + any additional group requirement 

λ2(x)

Aij(x)

Aij(x)

Aij(xi − xj) → 0 dij → D

λ2(x) > 0

Aij(x)
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�  Idea: have the weights         of the adjacency matrix to be 
smooth functions of the agent states 

�  Let                as any of these conditions are met 

�  get too far apart (        ) 
 
 
 

�  get too close (inter-agent collisions) 
 
 
 
 

�  occluded line-of-sight 

�  obstacle collision 

Connectivity Maintenance 
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Connectivity Maintenance 

•  Define the weights       as the product of three terms 

•               (and then              ) if a sensing/communication limitation is approached 
•  Edge         will be lost and      will decrease 
•  in our case: exceeding maximum range and occluded line-of-sight 

•               (and then              ) if a “soft requirement” is not met 
•  Edge         will be lost and      will decrease 
•  in our case: deviating from a preferred interdistance 

•                (and then                    ) if a “hard requirement” is not met 
•  All edges departing from   will be lost and  
•  in our case: colliding with obstacles and other agents  

•  Keeping                  will fulfill these requirements but still allow complete freedom 
for arbitrary join/split decisions! (as long as    stays connected) 

Aij = αijβijγij

Aij

Aij = αijβijγij

γij → 0 Aij → 0

(i, j) λ2

βij → 0 Aij → 0

(i, j) λ2

αij → 0 Aij → 0, ∀j
i λ2 → 0 

h
λ2 → 0

d0

λ2(x) > 0
G
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Connectivity Maintenance 

•  As final step, we define a Connectivity Potential function                    which 
•  vanishes for 
•  grows unbounded for  

•  This will be the “Elastic Potential Energy” of 
the system 
 
•  Its anti-gradient (connectivity force) w.r.t. the 
i-th agent position is 

•  This can be shown to possess the following features: 
•  full decentralized evaluation (only local and 1-hop information, complexity per neighbor 
O(1)) 
•  only function of relative quantities (relative positions among robot and between robots/
obstacle) 
•  passifying action using the Tank machinery 
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Connectivity Maintenance 

•  Simulations with            robots (5 quadrotor UAVs and 3 ground robots) 

•  Experiments with            quadrotor UAVs 

N = 8

leader 1

leader 2

leader 1

leader 2
leader 2

leader 1

leader 1

leader 2

UGV

UGV

UGV

UAV

UAV

UAV

(a) (b) (c)

(d) (e) (f)

follower
UAV

follower
UAV

N = 4 RSS 2011, IJRR (submitted) 
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Connectivity Maintenance 

•  Simulations with            robots (quadrotor UAVs and ground robots) N = 8 RSS 2011, IJRR (submitted) 
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Connectivity Maintenance 

Average estimation error Real     (solid) vs. estimated     (dashed) λ2 λ̂i
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Connectivity Maintenance 
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Connectivity Maintenance 

•  Experiments with            quadrotor UAVs N = 4 RSS 2011, IJRR (submitted) 
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Connectivity Maintenance 
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Connectivity Maintenance 
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Rigidity Maintenance 

•  An extension (RSS 2012) 

•  one can also define a “Rigidity 
Eigenvalue”     and apply the 
same machinery  

•  rigidity maintenance with the 
same constraints and 
requirements as before 

•  Still flexibility in the graph 
topology 

•  Freedom in gaining/losing links 
as long as  

128 
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�  Consider different actuation strategies for flying robots to improve their 
maneuverability for inspection or interaction with the environment 
�  Quadrotor with (actuated) tilting propellers 

Additional Related Activities 

129 

ICRA 2012  
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Propeller 

Propeller motor 

Body 

Servo motor 

Axle 

Coupling 
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Additional Related Activities 



�  Some “new” maneuvers 

Additional Related Activities 

131 

ICRA 2012  

Rotation on the spot while 
minimizing energy consumption 

Rotation on the spot without 
minimizing energy consumption 
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�  Equip Quadrotors with Grippers for manipulation “on-the-fly” 

�  Time-optimal planning with actuator constraints and full quadrotor dynamics 
�  Exploitation of the quadrotor output flatness for trajectory planning 

Additional Related Activities 

132 

IROS 2012 
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�  Equip Quadrotors with Grippers for manipulation “on-the-fly” 

Additional Related Activities 

133 

IROS 2012 

Gripping trajectories Class I  Gripping trajectories Class II 

Gripping while in hover is “spanned” by these two classes 
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�  Equip Quadrotors with Grippers for manipulation “on-the-fly” 

�  A complete sequence of pick and place operations 

Additional Related Activities 

134 

IROS 2012 
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Ongoing activities at the MPI 

�  Equip Quadrotors with Grippers for manipulation “on-the-fly” 

�  implementation on a real quadrotor UAV 

135 Aerial Service Robotics, ETH, Zurich, 5/7/2012 



Ongoing activities at the MPI 

�  Interactive Planning of Persistent Trajectories for Human-Assisted Navigation of 
Mobile Robots 

IROS 2012 

�  Cyclic motion executed by 
a mobile robot  

�  The human operator 
teleoperates suitable 
parameters of the curve 

�  The curve autonomously 
deforms in presence of 
obstacles 

�  “Integral” haptic feedback 
on the global deformation 
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Other Perspectives 

�  Exploit different ways to provide feedback to human subjects 
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