Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Experiments with Motor Primitives to learn Table Tennis

MPG-Autoren
/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84097

Mülling,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Peters, J., Mülling, K., & Kober, J. (2014). Experiments with Motor Primitives to learn Table Tennis. In O. Khatib, V. Kumar, & G. Sukhatme (Eds.), Experimental Robotics (pp. 347-359). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B80C-0
Zusammenfassung
Efficient acquisition of new motor skills is among the most important abilities in order to make robot application more flexible, reduce the amount and cost of human programming as well as to make future robots more autonomous. However, most machine learning approaches to date are not capable to meet this challenge as they do not scale into the domain of high dimensional anthropomorphic and service robots. Instead, robot skill learning needs to rely upon task-appropriate approaches and domain insights. A particularly powerful approach has been driven by the concept of re-usable motor primitives. These have been used to learn a variety of “elementary movements” such as striking movements (e.g., hitting a T-ball, striking a table tennis ball), rhythmic movements (e.g., drumming, gaits for legged locomotion, padlling balls on a string), grasping, jumping and many others. Here, we take the approach to the next level and show experimentally how most elements required for table tennis can be addressed using motor primitives. We show four important components: (i) We present a motor primitive formulation that can deal with hitting and striking movements. (ii) We show how these can be initialized by imitation learning and (iii) generalized by reinforcement learning. (iv) We show how selection, generalization and pruning for motor primitives can be dealt with using a mixture of motor primitives. The resulting experimental prototypes can be shown to work well in practice.