
MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Technical Report No. 1 31 May 2011

NON-STATIONARY CORRECTION OF OPTICAL
ABERRATIONS

Christian J. Schuler, Michael Hirsch, Stefan Harmeling,
and Bernhard Schölkopf

Abstract. Taking a sharp photo at several megapixel resolution traditionally
relies on high grade lenses. In this paper, we present an approach to alleviate
image degradations caused by imperfect optics. We rely on a calibration step
to encode the optical aberrations in a space-variant point spread function and
obtain a corrected image by non-stationary deconvolution. By including the
Bayer array in our image formation model, we can perform demosaicing as part
of the deconvolution.

Note. This technical report is identical to the submission to International
Conference on Computer Vision (ICCV 2011) submitted on 7th March 2011.
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Figure 1. Self-made photographic lens with one glass element only. Taken image without and with lens correction.

Abstract

Taking a sharp photo at several megapixel resolution tra-
ditionally relies on high grade lenses. In this paper, we
present an approach to alleviate image degradations caused
by imperfect optics. We rely on a calibration step to en-
code the optical aberrations in a space-variant point spread
function and obtain a corrected image by non-stationary de-
convolution. By including the Bayer array in our image for-
mation model, we can perform demosaicing as part of the
deconvolution.

1. Introduction
In an ideal optical system as described theoretically by

paraxial optics, all light rays emitted by a point source con-
verge to a single point in the focal plane, forming a clear
and sharp image. Departures of an optical system from this
behaviour are called aberrations, causing unwanted blurring
of the image.

Manufacturers of photographic lenses attempt to mini-
mize optical aberrations by combining several lenses. The
design and complexity of a compound lens depends on var-
ious factors, e.g., aperture size, focal length, and constraints
on distortions. Optical aberrations are inevitable and the de-
sign of a lens is always a trade-off between various param-
eters, including price. To correct these errors in software is
still an unresolved problem.

Rather than proposing new designs for complicated com-
pound lenses, we show that almost all optical aberrations

can be corrected by digital image processing. For this,
we note that optical aberrations of a linear optical sys-
tem are fully described by their point spread function
(PSF). We will show how PSFs encountered in real pho-
tographic lenses suffering from various optical aberrations
can be approximated as non-stationary convolutions. For a
given lens/camera combination, the parameters of the non-
stationary convolution are estimated via an automated cal-
ibration procedure that measures the PSF at a grid cover-
ing the image. We also include demosaicing into our im-
age reconstruction, because it fits naturally into our forward
model. Our results surpass current state of the art.

Main contribution: We show how to reconstruct a full-
color image, i.e., all three color channels at full resolution,
given a raw image that is corrupted by various monochro-
matic and chromatic aberrations, and Bayer filtered by a
color filter array (CFA) of our off-the-shelf camera. This
image reconstruction is even possible for heavily degraded
images, taken with a self-constructed lens consisting of
a single lens element attached to a standard camera, see
Fig. 1.

2. Related work

We are not aware of any work that tries to solve the de-
mosaicing and the correction of lens errors simultaneously.
There exist many different methods solely for demosaicing,
for reviews see [15, 7, 1, 12]. However, none of them model
and exploit the aberration of the lens to facilitate demosaic-
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ing as our method does.

Chromatic aberrations arise because the refractive index
of glass, and thus focal length and image scale, is depen-
dent on the wave length. A common approach to correct
for lateral chromatic aberrations is a non-rigid registration
of the different color channels [2, 10, 13]. Such methods
correspond to restricting our model to delta-peaked PSFs,
and generally ignore other optical aberrations. The method
of [4] measures chromatic aberration at edges through color
differences and compensates locally, however without us-
ing a PSF model of the lens. The approach in [9] also relies
on the estimation of sharp step edges and can be used in
a non-blind fashion. Even though full PSF are estimated,
they are only used to remove chromatic aberrations, where
a rough knowledge of the PSF is sufficient. None of these
approaches consider demosaicing.

A method that focuses on correcting coma has been pro-
posed in [6], showing how to reduce coma by locally ap-
plying blind deconvolution methods to image patches. This
method is designed for gray scale images and thus does nei-
ther consider chromatic aberration nor demosaicing.

Algorithmically related to our work is [5], consider-
ing sparsity regularization in the luminance channel, and
Tikhonov regularization in the two chromaticity channels.
However, [5] combines the image information from several
images, while our method works with a single image. Also,
[5] combines demosaicing with super-resolution, while we
combine it with correction for chromatic aberrations.

The image reconstruction problem we are addressing can
also be dealt with using the proprietary software “DxO Op-
tics Pro 6” (DXO), which tries to correct for image aber-
rations. DXO is considered state of the art among profes-
sional photographers and presumably uses the same kind of
information as our approach (it contains a custom database
of lens/camera combinations). It has been developed over a
number of years and is highly optimized. DXO states that
it can correct for “lens softness”, which their website1 de-
fines as image blur that varies across the image and between
color channels in strength and direction. It is not known to
us whether DXO models the blur as space-variant defocus
blur of different shapes or with more flexible PSFs as we
do; neither do we know whether DXO demosaics and de-
blurs simultaneously as we do. In the experimental section
we show that our results compare favorably against results
obtained by DXO.

There exist several papers which suggest calibration pro-
cedures to measure the lens, e.g. [16, 18, 9]. However, they
mainly focus on correcting geometric distortion or do not
address monochromatic aberrations.

1http://www.dxo.com/us/photo/dxo_optics_pro/
optics_geometry_corrections/lens_softness

3. Aberrations as a non-stationary convolution
While the aberrations of an imaging system can be de-

scribed as a simple matrix operator, the required matrix-
vector multiplication would be computationally expensive.
More efficient for describing blurs are convolutions, how-
ever, the usual stationary convolution applies the same blur
kernel across the whole image and can thus only describe
space-invariant PSFs, which are insufficient to model lens
aberrations. As can be seen in Fig. 4 on the left, the PSF
can vary in size, shape, orientation, position and intensity.
How can we approximate such a space-variant PSF in an
imaging model that allows efficient computation?

Hirsch et al. [8] presented the so-called Efficient Fil-
ter Flow (EFF) framework, which can model a PSF that
smoothly varies across the image. The basic idea is to cover
the image with overlapping patches each of which is as-
signed a blur kernel.

For notational simplicity, all images and blur kernels are
column vectors. The generalization to two-dimensional ma-
trices is straight-forward. Let x be some image, i.e., a col-
umn vector of length n, and f (r) a blur kernel or filter, i.e.,
a column vector of length k. The ith pixel value yi in the
blurred image y can be written as a linear combination of
the p differently blurred patches,

yi =

p−1∑

r=0

k−1∑

j=0

f
(r)
j w

(r)
i−j xi−j for 0 ≤ i < n (1)

where w(r) ≥ 0 is a fixed weighting vector which is non-
zero only on the rth patch. Since the patches are usually
chosen to overlap, these weights smoothly interpolate be-
tween neighboring filters f (r). Note that the weighting vec-
tors have to sum up to one, i.e.

p−1∑

r=0

w
(r)
i = 1 for 0 ≤ i < n. (2)

Let f be the column vector that we obtain by stacking all
local filters f (r). Since the space-variant blur in Eq. (1) is
linear in x and in f there exist matrices X and B such that

y = Xf = Bx. (3)

Below, we call X and B the EFF matrices.
Note that if there is overlap between the patches, this can

effectively imply a different PSF at each pixel. Basically,
the method applies the overlap-add trick for convolution, so
it can be computed as efficiently as the convolution, while
being much more flexible. Next, we explain the lens aber-
rations we would like to correct.

Monochromatic aberrations. This class of aberrations
include spherical aberration (in spherical lenses, the fo-
cal length is a function of the distance from the axis) as
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well as a number of off-axis aberrations: coma occurs in
an oblique light bundle when the intersection of the rays
is shifted w.r.t. its axis; field curvature occurs when the
focal surface is non-planar; astigmatism denotes the case
when the sagittal and tangential focal surfaces do not coin-
cide (i.e., the system is not rotationally symmetric for off
axis light bundles); distortion, which is the only aberration
we do not address, is related to a spatially varying image
scale. All these monochromatic aberrations lead to blur that
varies across the image. Any such blur can be expressed in
the EFF framework by appropriately choosing the local blur
filters f (0), . . . , f (p−1).

Chromatic aberration. The refraction index of most ma-
terials including glass is dependent on the wavelength of the
transmitted light. Axially, this results in the focus of a lens
being a function of the wavelength (longitudinal chromatic
aberration); off-axis, we observe lateral chromatic aberra-
tion caused by the fact that the different focal lengths for
different wavelengths directly imply that the image scale
slightly varies with wavelength. By modeling the three
color channels with separate space-variant PSFs, we are
able to describe such chromatic aberration. This means on
the color channels xR, xG, and xB each acts a blur BR, BG

and BB, which we can also write as a blur B acting on the
full color image x.

Vignetting. Because oblique light bundles do not reach
the focal plane in their entirety, the intensity of the image
falls off towards the image corners. This can be corrected by
photographing a flat field frame, i.e., an image of a homoge-
neous background, and dividing the image by it. While this
is straightforward, the EFF framework can also include vi-
gnetting into our model by omitting the energy conservation
constraint, in that case the filters f (r) in Eq. (1) do not have
to sum up to one, i.e., we only require

∑
j f

(r)
j ≤ 1 and

f
(r)
j ≥ 0 for all j and r. By allowing dimmer filters we au-

tomatically correct for vignetting using our procedure. Note
that Eq. (2) is unaffected by relaxing the energy conserva-
tion constraint.

4. Forward model including mosaicing

The image blurred by the blur B is the image that will
enter the CFA, just before being mosaiced. The operation
of the CFA can be described as a linear map represented
by some matrix D, whose result will be the image that hits
the photo-sensitive sensor behind the CFA. Note that D is a
rectangular matrix with three times as many columns than
rows.

The forward model combines the lens aberration and

Bayer filtering into a single matrix A and adds noise n, i.e.

y = DBx+ n = Ax+ n. (4)

5. Recovering the corrected, full-color image
Assuming the weights in the Bayer matrix D to be fixed

and known (we use a trivial Bayer matrix disregarding
cross-talk between color channels) the linear transforma-
tion A, i.e., the PSF, is parameterized by the set of filters
that determine the EFF matrices BR, BG, and BB for the
three color channels. These filters depend on the lens and
the camera used. In Sec. 6 we will detail the experimental
setup and procedure how we measure these filters at regu-
larly placed sites.

Assuming the noise in Eq. (4) to be Gaussian, we could
recover the unknown full-color image x from a measured
raw image y by solving a least-squares problem, i.e., by
minimizing ‖y − Ax‖22 w.r.t. x. However, the PSF param-
eterized by the EFF framework is only an approximation to
the true PSF and is subject to errors. Using stochastic ro-
bust matrix approximation [3] and the assumption that each
of the n elements of the PSF exhibits a standard deviation
of σ with zero mean, we add a regularization term. Just for
the EFF matrices this would result in nσ2‖x‖22, including
the Bayer matrix the regularization can be approximated as
nσ2(‖xR‖22/4 + ‖xG‖22/2 + ‖xB‖22/4).

One challenge of processing real photos is that pixels
might be saturated, their true values may be clipped due
to limited dynamic range. Thus the measured values of
clipped pixels are not in agreement with the physical model
of the blur. We exclude saturated pixels in the data-fidelity
term ‖y−Ax‖22 by summing only over non-saturated pixels.

This term corresponds to the likelihood term (or data fit)
of the implicitly underlying probabilistic model. However,
because we are trying to estimate three color channels from
a single raw image, which means there are three times as
many unknowns as observations, our deblurring problem
is ill-posed. To regularize it we include prior knowledge
about natural images: it has been shown that the image gra-
dients approximately follow a hyper-Laplacian distribution
[11, 17]. This can be incorporated into the optimization
problem by adding a regularization term of the form ‖∇x‖γ1
to the objective function. The effect of this regularization is
to penalize strong gradients and therefore to smooth the im-
age. We follow Farsiu et al. [5] who transformed the RGB
image to a luminance/chrominance color space (here we use
YUV) before applying the regularization. This allows us to
regularize more strongly in the chrominance channels, and
less in luminance. Note that the human eye is more sensitive
to differences in luminance than in chrominance, i.e., a visu-
ally pleasing result has to be sharp in the luminance channel.
The transformation from RGB to YUV is simply a matrix
vector multiplication [xTY, x

T
U, x

T
V]

T = C[xTR, x
T
G, x

T
B ]

T with

3
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appropriately chosen matrix C. With xY, xU, and xV we we
can write our combined objective function as

∥∥y −Ax
∥∥2
2
+ α

∥∥∇xY
∥∥γ
1
+ β

∥∥∇xU
∥∥γ
1
+ β

∥∥∇xV
∥∥γ
1

(5)

+nσ2(‖xR‖22/4 + ‖xG‖22/2 + ‖xB‖22/4).

We obtained good results by setting α = 10−4, β = 10−3,
γ = 0.65 and σ = 10−3 in our simulated experiments. On
real images, the optimal values for α and β were smaller by
a factor of ten.

We minimize the objective function w.r.t. x adapting Kr-
ishnan and Fergus’ [11] approach to our setup, alternating
between a convex and a non-convex phase, with the non-
convex phase being accelerated by a lookup table.

6. Estimating the non-stationary convolution
Leaving aside diffraction effects (e.g., by ensuring the

pixel size to be larger than the Airy disk), a point light
source should influence just a single pixel on the imaging
sensor of a digital camera. However, this would only hap-
pen if a digital camera was a perfect optical system. In
practice, the various lens aberrations discussed above will
spread out the point light source over a larger region of the
imaging sensor. This local pattern characterizes the PSF, so
by recording these patterns across the image plane we can
set the filters of the non-stationary convolution described
above.

To automate the measurements, we mounted a camera
on a motor-driven platform with two rotational degrees of
freedom. A lens measurement process is conducted in a
completely dark room by remotely changing the angles of
the camera towards a point light source (a gas lamp emitting
light through an aperture of 100µm in 12 meters distance)
such that in subsequent exposures the light point is captured
at equidistant locations on the sensor.

In our experiments we use a 18 times 27 grid of support-
ing points for the EFF framework. The blur kernels were
recorded by averaging three dark frame subtracted images
of the point light source and thresholding noise. This sim-
ple setup gives sufficiently good measurements for the PSF,
as can be seen in the deconvolution results in Sec. 8.

7. Results on simulated images
To test our method under controlled conditions we artifi-

cially blurred test images usually used for evaluating demo-
saicing algorithms from the Kodak PhotoCD. To simulate
the lens aberrations, we created a 4 × 6 filter array con-
taining measured blur kernels of a Canon 50mm f/1.4 lens
at maximum aperture on a Canon 5D Mk II. This filter ar-
ray are the parameters of a non-stationary convolution that
represent our estimated model of the artificial lens aberra-
tions. To account for the fact that the true PSF is not exactly

Image (a) Deconv. (b) Demosaic. (c) Joint
then demosaic. then deconv. approach

1 23.09 25.92 26.35
2 30.11 31.92 32.23
3 30.67 33.47 33.68
4 29.12 32.23 32.49
5 22.58 26.08 26.62
6 24.84 27.09 27.47
7 27.87 33.07 33.47
8 20.32 23.77 24.28
9 28.02 32.11 32.51

10 28.54 31.53 31.96
11 25.92 28.77 29.11
12 29.51 32.67 33.04
13 21.32 23.32 23.81
14 25.34 28.32 28.79
15 28.90 32.14 32.52
16 28.41 30.40 30.68
17 28.22 31.33 31.68
18 25.06 27.75 28.20
19 24.77 27.87 28.46
20 27.66 31.40 31.78
21 25.27 28.17 28.63
22 26.86 29.61 29.95
23 30.00 34.08 34.59
24 23.74 26.06 26.34

Average 26.51 29.54 29.94
Table 1. Comparison of peak signal-to-noise ratios (PSNR in dB)
for Kodak image data set. Consistently, the joint approach outper-
forms the sequential demosaicing and deconvolution procedures
(higher number means better reconstruction).

Figure 3. Point spread function used for our simulations on the
Kodak image data set.

known, we modify these filters with a low pass filter before
convolving the ground truth images. In the image recon-
struction process, the non-modified blur filters were used.
We then added white noise with signal to noise ratio 50 dB
and mosaiced the result with a Bayer filter array.

With the simulated experiments we want to investigate
whether (a) we should apply the aberration correction sep-

4
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Ground truth Blurred and mosaiced (a) Deconv. (b) Demosaic. (c) Joint
input image then demosaic. then deconv. approach

PSNR 24.77 dB PSNR 27.87 dB PSNR 28.46 dB
Figure 2. Comparison of our joint approach vs. sequential demosaicing and deconvolution procedures. The PSF used for the simulations
are shown in Fig. 3. Gaussian noise with a SNR of 50 dB has been added.

arately on each color channel and subsequently demosaic
with a state-of-the-art demosaicing algorithm [14], whether
(b) our aberration correction should be better applied to im-
ages that have been already demosaiced by a standard de-
mosaicing procedure, or whether (c) it is best to apply the
forward model that includes the mosaicing (as described in
Sec. 4), i.e., to jointly correct the aberrations and the demo-
saicing.

Tab. 1 compares the peak-signal-to-noise ratios (PSNR)
of the reconstructed images for the approaches (a), (b), and
(c) on the image data set. For all 24 images the joint ap-
proach (c) leads to the best results, approach (b) being a
close runner-up. This finding is also visually confirmed in
Fig. 2 where approach (c) leads to the best reconstruction.
Note that to suppress influence of the border region, a 15
pixel border on all edges has been excluded in the calcula-
tion of the PSNR.

We believe that our approach is able to compete with
state-of-the-art demosaicing algorithm because separating
demosaicing and deblurring has the disadvantage that it
does not require the result to be consistent with the image
formation model. Because of the blur, we gain knowledge
about possible values for missing color information. For ex-
ample, if we measure no light at a certain pixel, we can infer
that in the deblurred image the surrounding region given by
the size of the PSF also has to be dark. Furthermore, typ-
ical demosaicing algorithms do not take chromatic aberra-

Figure 6. Interpolation of a mosaiced PSF at the example of a green
PSF from the Canon 50mm f/1.4 lens.

tion into account, which lead to a spatial separation of edge
information across different color channels.

8. Results on real images
Using the automated procedure from Sec. 6, we approx-

imate the PSFs of three different lenses: (i) Canon 50mm
f/1.4, (ii) Canon 24mm f/1.4 L, and (iii) a self-built lens con-
sisting of a single glass element, see Fig 1. For the Canon
lenses, we took several pictures with a Canon 5D Mk II dig-
ital camera, for the self-built lens we used a Canon 5D Mk
I. We applied our image reconstruction procedure described
in Sec. 5 to these images and next describe the results.

In our PSF measurement we only obtain mosaiced ver-

5
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sions. However, as can be seen in Fig. 6, the blur is suffi-
ciently well behaved such that bilinear interpolation gives a
good approximation to the true PSF.

Canon 50mm f/1.4. First, we use a Canon 50mm f/1.4
prime lens on a Canon 5D Mark II at maximum aperture.
The comparison between original photo and the image cor-
rected for lens errors is in Fig. 4. In Fig. 5, it is compared
with the result of DXO (see Sec. 2), a software that is also
able to correct for lens aberrations. Similar to our approach,
it relies on previously recorded information about the error
of a certain lens/camera-combination. In the comparison,
all image improvements except the correction for “lens un-
sharpness”, chromatic aberration and vignetting were deac-
tivated. While in the DXO result the edges are sharpened,
the objects have a halo, e.g., around the wooden bars, which
is not present in the original scene. This means the blur in-
troduced by the lens is not completely removed.

Canon 24mm f/1.4. Furthermore, we correct the errors
of a Canon EF 24mm f/1.4 at maximum aperture, which ex-
hibits considerably visible errors in the border regions of the
image at fully open aperture. The original and the corrected
image can be seen in Fig. 4. In the recorded image strong
chromatic aberration is visible as green and red lines near
edges, which are reduced in the deconvolved result. This
lens is not available in the DXO database for the Canon 5D
Mk II, so DXO cannot be applied.

Self-built lens with a single lens element. The two lenses
used above are high-end lenses with a complicated system
of compound lenses that are built to minimize optical errors.
Trying to make our algorithm fail, we constructed a simple
photographic lens from a single convex-concave lens with
focal length 120mm. Amazingly, the image can be well
reconstructed as can be seen in Fig. 1 and 4. In Fig. 4,
nearly no detail is recognizable in the grain of the wood
in the original image. Also, the pegs on the right and upper
edge of the image are hardly visible. The corrected image
does not suffer from these problems.

Running time. For the 21.1 megapixel photos taken with
the Canon lenses, the full-color non-convex optimization
problem has more than 60M unknowns. It needs about 5
hours running time on a quad-core computer. For the self-
built lens, we used a camera which produces 12.8 megapixel
images and a blur size of 200x200. In the EFF framework
with 27x18 supporting points, the processing takes about 7
hours using a MATLAB implementation of the algorithm.

This running time is impractical. However, we show how
the EFF framework can be used to do Direct Deconvolution

Figure 7. Comparison of deconvolution with optimization (left)
and direct method (right).

in Fourier space with a slightly modified version of our ob-
jective function. Since the demosaicing operator is not diag-
onal in Fourier space, we work on each already demosaiced
color channel separately and solve the problem

∥∥y −Bx
∥∥2
2
+ α

∥∥∇x
∥∥γ
1
+ nσ2‖x‖22. (6)

This can be done with the approach of [11], however, the
inversion of B is necessary. Using the expression from [8],
the application of B in the EFF framework can be written
as

y =
∑

r

LT
rF

H Diag
(
FPf (r)

)
FKr Diag(w(r))

︸ ︷︷ ︸
B

x. (7)

In this summation over all patches, the matrix P zero-padds
each patch, the matrices Kr and Lr are cropping matrices.
F applies the discrete Fourier transform. This expression
can be approximately inverted as

x ≈ N
∑

r

Diag(w(r))1/2 · (8)

KT
r F

HFPf
(r) � (FLr Diag(w(r))1/2 y)

|FPf (r)|2 + |FR|2 ,

where |z| and z denote entry-wise absolute value and com-
plex conjugate, respectively. The matrix R regularizes the
result, e.g., a discrete Laplace operator. The weighting N is
obtained by applying the inversion to a constant image and
is necessary to remove artifacts stemming from inverting
the windows. In Fig. 7 the results obtained by optimizing
the more sophisticated objective function (6) are compared
to the direct method. While losing a small amount of im-
age quality, the running time is only 2 minutes for a 21.1
megapixel image.

9. Conclusion
We have proposed a method to correct the aberrations in

optical imaging systems. A spatial-variant PSF is obtained
in a calibration step, encoding the errors of the imaging sys-
tem. These are then removed by non-stationary deconvolu-
tion. Furthermore, by requiring the corrected image to be
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consistent with the image formation model, we are able to
recover missing image information. We have shown this
using the example of reconstructing color data lost in a mo-
saicing process.

Using controlled experiments on images artificially con-
volved with a non-stationary PSF, we have seen that our lin-
ear image formation model leads to better results than sep-
arately deblurring and demosaicing Bayer-filtered photos.
More importantly, we were able to show that in a real imag-
ing setup, we can correct the optical aberrations rather well
both for commercial camera lenses and optically poor sin-
gle element lenses. The results compare favorably to DXO,
a commercially available software package considered state
of the art in lens error correction among professional pho-
tographers.

9.1. Limitations

For the image taken with a one-element lens, we have
seen that although a drastic improvement can be achieved,
a perfect reconstruction was not possible. Moreover, our
measurement procedure suffers from the fact that the PSF
obtained are already subject to mosaicing, therefore the PSF
used in the joint demosaicing/deblurring are only an ap-
proximation. A better PSF could, e.g., be obtained with a
monochromatic camera and color filters. The general qual-
ity of the PSF could for example be improved with wave-
front measurement. Also, the lens aberrations depend to a
certain extent on the settings of the lens (aperture, focus,
zoom), which can not be trivially modeled.

9.2. Future Work

A further common error of imaging systems, distortions,
can in principle also be encoded in a spatially varying PSF.
However, in the case of strong distortions this would require
PSFs as large as 500x500 pixels, say, and a large computa-
tional load. It would, however, be an elegant method for
correcting all optical aberrations in one framework.

We believe that our work can have significant implica-
tions for the design of lenses, which today are probably the
most expensive components of high-end camera systems.
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Figure 4. Comparison between original and corrected image and the respective PSFs.

Blurred image DXO Our approach
Figure 5. Comparison with DXO for images taken with a Canon EF 50mm f/1.4 lens. Best viewed on screen.
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