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Abstract

We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent
random variables. The first is based on a new lemma that enables to bound expectations
of convex functions of certain dependent random variables by expectations of the same
functions of independent Bernoulli random variables. This lemma provides an alternative
tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our sec-
ond approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian
analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of lim-
ited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret
bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as
state-of-the-art regret bounds based on other well-established techniques, our results signif-
icantly expand the range of potential applications of PAC-Bayesian analysis and introduce
a new analysis tool to reinforcement learning and many other fields, where martingales and
limited feedback are encountered.

1 Introduction

PAC-Bayesian analysis was introduced over a decade ago (Shawe-Taylor and Williamson, 1997,
Shawe-Taylor et al., 1998, McAllester, 1998, Seeger, 2002) and has since made a significant con-
tribution to the analysis and development of supervised learning methods. The power of PAC-
Bayesian approach lies in the successful marriage of flexibility and intuitiveness of Bayesian models
with the rigor of PAC analysis. PAC-Bayesian bounds provide an explicit and often intuitive and
easy-to-optimize trade-off between model complexity and empirical data fit, where the complex-
ity can be nailed down to the resolution of individual hypotheses via the prior definition. The
PAC-Bayesian analysis was applied to derive generalization bounds and new algorithms for lin-
ear classifiers and maximum margin methods (Langford and Shawe-Taylor, 2002, McAllester, 2003,
Germain et al., 2009), structured prediction (McAllester, 2007), and clustering-based classification
models (Seldin and Tishby, 2010), to name just a few. However, the application of PAC-Bayesian
analysis beyond the supervised learning domain remained surprisingly limited. In fact, the only addi-
tional domain known to us is density estimation (Seldin and Tishby, 2010, Higgs and Shawe-Taylor,
2010).

Even within supervised learning the applications of PAC-Bayesian analysis were restricted to
i.i.d. data for a long time. The issue of treating non-independent samples was partially addressed
only recently by Ralaivola et al. (2010) and Lever et al. (2010) (their approaches are also suitable
for density estimation (Higgs and Shawe-Taylor, 2010). The solution of Ralaivola et al. (2010) es-
sentially boils down to breaking the sample into independent (or almost independent) subsets (which
also reduces the effective sample size to the number of independent subsets). Such an approach is
inapplicable to martingales due to strong dependence of the cumulative sum on all of its compo-
nents. Lever et al. (2010) employed Hoeffding’s canonical decomposition of U-statistics into forward
martingales and applied PAC-Bayesian analysis directly to these martingales. Our second approach
to handling sequences of dependent samples by combining PAC-Bayesian analysis with Hoeffding-
Azuma inequality is based on similar ideas. Our first approach to sequences of dependent samples
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is based on the new lemma that allows to bound expectations of functions of certain sequentially
dependent random variables by expectations of the same functions of independent random variables.

One of the most prominent and important fields of application of martingales is reinforce-
ment learning. Some potential advantages of applying PAC-Bayesian analysis in reinforcement
learning were recently pointed out by several researchers, including Tishby and Polani (2010) and
Fard and Pineau (2010). Tishby and Polani (2010) suggested that the mutual information between
states and actions in a policy can be used as a natural regularizer in reinforcement learning. They
showed that regularization by mutual information can be incorporated into Bellman equations and
therefore can be computed efficiently. Tishby and Polani conjectured that PAC-Bayesian analysis
can be applied to justify such form of regularization and provide generalization guarantees for it.

Fard and Pineau (2010) suggested a PAC-Bayesian analysis of batch reinforcement learning.
They used the analysis to design an algorithm that is able to leverage the prior knowledge when it
is informative and confirms the data distribution and ignores it when it is irrelevant. In the first
case Bayesian learning algorithms perform well and in the second case PAC learning algorithms
perform better, whereas Fard and Pineau showed that their algorithm performs on par with the
best out of the two in all situations. However, the analysis of Fard and Pineau does not address the
exploration-exploitation trade-off, which is the key feature of reinforcement learning. In their batch
analysis they assume that every action was sampled in every state some minimal number of times
and the bound decreases at the rate of a square root of the minimum over states and actions of the
number of times an action was sampled in a state. Clearly, such an analysis is not applicable in
online setting, since we do not want to sample “bad” actions many times, but then the bound does
not improve with time.

One of the reasons for the difficulty of applying PAC-Bayesian analysis to address the exploration-
exploitation trade-off is the limited feedback (the fact that we only observe the reward for the action
taken, but not for all the rest). In supervised learning (and also in density estimation) the empirical
error for each hypothesis within a hypotheses class can be evaluated on all the samples and therefore
the size of the sample available for evaluation of all the hypotheses is the same (and usually relatively
large). In the situation of limited feedback the sample from one action cannot be used to evaluate
another action (that is the reason why the bound of Fard and Pineau (2010) depends on the minimum
of the number of times any action was taken in any state, which is the minimal sample size available
for evaluation of all state-action pairs). In online setting the sample size of “bad” actions has to
increase sublinearly in the number of game rounds, which results in slow or even no convergence of
the bound. We resolve this issue by applying weighted sampling strategy (Sutton and Barto, 1998),
which is commonly used in the analysis of non-stochastic bandits (Auer et al., 2002b), but has not
been applied to the analysis of stochastic bandits previously.

The usage of weighted sampling introduces two new difficulties. One is the dependence between
the samples: the rewards we observe influence the distribution over actions we play and through
this distribution influence the variance of the subsequent weighted sample variables. We handle
this dependence using our new PAC-Bayesian approaches to sequences of dependent variables. At
the moment both approaches yield comparable bounds, however each of the approaches has its own
potential advantages that can be exploited in future work.

The second problem introduced by weighted sampling is the growing variance of the weighted
sample variables. Martingale bounding techniques used in this work do not enable to take full
control over the variance, which explains the gap between our results and state-of-the-art bounds for
mutliarmed bandits (Auer et al., 2002a, Auer and Ortner, 2010). Tighter bounds can be achieved by
combining PAC-Bayesian analysis with Bernstein-type inequality for martingales (Beygelzimer et al.,
2010). Such a combination will be presented in future work.

The subsequent sections are organized as follows: Section 2 surveys the main results of the paper,
Section 3 presents our bound on expectation of convex functions of sequentially dependent random
variables and illustrates its application to derivation of an alternative to Hoeffding-Azuma inequality,
Section 4 provides a PAC-Bayesian analysis of the weighted sampling strategy based on the bound
from Section 3, Section 5 provides PAC-Bayesian analysis of the weighted sampling strategy based
on martingales, Section 6 derives a regret bound for the multiarmed bandit problem, and Section 7
concludes the results.

2 Main Results

One of the foundation stones of our paper is the following lemma that enables to bound expectations
of convex functions of certain sequentially dependent random variables by expectations of the same
functions of independent Bernoulli random variables. The lemma generalizes a preceding result of
Maurer (2004) for independent random variables and might have a wide interest on its own right far
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beyond the PAC-Bayesian analysis. The lemma can be used to derive an alternative to Hoeffding-
Azuma inequality (Hoeffding, 1963, Azuma, 1967). This alternative can be much tighter in certain
situations (see our derivation and discussion of Lemma 7 in the next section).

Lemma 1 Let X1, .., XN be dependent random variables belonging to the [0, 1] interval and dis-
tributed by p(xi|X1, .., Xi−1), such that E[Xi|X1, .., Xi−1] = p for all i. Let Y1, .., YN be inde-
pendent Bernoulli random variables, such that EYi = p for all i. Then for any convex function
f : [0, 1]N → R :

Ef(X1, .., XN) ≤ Ef(Y1, .., YN ).

We present the subsequent results in the context of the multiarmed bandit problem, which is
probably the most common problem in machine learning, where sequentially dependent variables
are encountered. Let A be a set of actions (arms) of size |A| = K and let a ∈ A denote the actions.
Denote by R(a) the expected reward of action a. Let πt be a distribution over A that is played at
round t of the game. Let {A1, A2, ...} be the sequence of actions played independently at random
according to {π1, π2, ...} respectively. Let {R1, R2, ...} be the sequence of observed rewards. Denote
by Tt = {{A1, .., At}, {R1, .., Rt}} the set of taken actions and observed rewards up to round t (by
definition Tt−1 ⊂ Tt).

For t ≥ 1 and a ∈ {1, ..,K} define a set of indicator random variables {Iat }t,a:

Iat =

{

1, if At = a
0, otherwise.

Define a set of random variables Ra
t = 1

πt(a)
Iat Rt. In other words:

Ra
t =

{

1
πt(a)

Rt, if At = a

0, otherwise.

Define: R̂t(a) =
1
t

∑t
τ=1R

a
τ . For a distribution ρ over A define R(ρ) = Eρ(a)R(a) and R̂t(ρ) =

Eρ(a)R̂t(a).
For two distributions ρ and µ, let KL(ρ‖µ) denote the KL-divergence between ρ and µ. For two

Bernoulli random variables with biases p and q let kl(p‖q) = p ln p
q +(1−p) ln 1−p

1−q be an abbreviation

for KL([p, 1− p]‖[q, 1− q]).
We present two alternative results, the first applies Lemma 1 to handle sequences of dependent

random variables and the second is based on combination of PAC-Bayesian analysis with Hoeffding-
Azuma inequality. Then we compare the results and present a regret bound for the multiarmed
bandit problem based on the first solution.

2.1 PAC-Bayesian Analysis of Sequentially Dependent Variables Based on Lemma 1

Our first PAC-Bayesian theorem provides a bound on the divergence between R̂t(ρt) and R(ρt) for
any playing strategy ρt throughout the game.

Theorem 2 For any sequence of sampling distributions {π1, π2, ...} that are not zero for any a ∈ A,
where πt can depend on Tt−1, and for any sequence of “reference” (“prior”) distributions {µ1, µ2, ...}
over A, such that µt is independent of Tt (but can depend on t), for all possible distributions ρt given
t and for all t ≥ 1 simultaneously with probability greater than 1− δ:

kl(πlmin
t R̂t(ρt)‖πlmin

t R(ρt)) ≤
KL(ρt‖µt) + 3 ln(t+ 1)− ln δ

t
, (1)

where
πlmin
t ≤ min

a,
1≤τ≤t

πτ (a).

The number πlmin
t lower bounds sampling probabilities for all the actions up to time t (lmin

stands for “left minimum” or minimum of πτ (a) up to [“left to”] time t).
The KL-divergence kl(p‖q) bounds the absolute difference between p and q as

|p− q| ≤
√

kl(p‖q)/2 (2)

(Cover and Thomas, 1991). Combined with (1) this relation yields (with probability greater than
1− δ):

∣

∣

∣R(ρt)− R̂t(ρt)
∣

∣

∣ ≤ 1

πlmin
t

√

KL(ρt‖µt) + 3 ln(t+ 1)− ln δ

2t
. (3)
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2.2 Combination of PAC-Bayesian Analysis with Hoeffding-Azuma Inequality

The result presented next is based on a combination of PAC-Bayesian analysis with Hoeffding-Azuma
inequality. We introduce one more definition:

R̂wt

t (a) =

∑t
τ=1w

t
τR

a
τ

∑t
τ=1 w

t
τ

,

where wt
τ ≥ 0 for all t and τ and

∑t
τ=1w

t
τ > 0 for all t. R̂wt

t (a) is a weighted sum of the samples.

For a special case, where wt
τ = 1

t for all τ , R̂wt

t (a) = R̂t(a).

Theorem 3 For any sequence of sampling distributions {π1, π2, ...} that are not zero for any a ∈ A,
where πt can depend on Tt−1, and for any sequence of “reference” (“prior”) distributions {µ1, µ2, ...}
over A, such that µt is independent of Tt (but can depend on t), for any sequence of positive pa-
rameters {λ1, λ2, ...} and for any sequence of weighting vectors {w1, w2, ...}, such that λt and wt are
independent of Tt (but can depend on t), for all possible distributions ρt given t and for all t ≥ 1
simultaneously with probability greater than 1− δ:

∣

∣

∣R̂wt

t (a)−R(a)
∣

∣

∣ ≤
KL(ρt‖µt) +

1
2λ

2
t

∑t
τ=1

(

wt
τ

πmin
τ

)2

+ 2 ln(t+ 1) + ln 2
δ

λt

∑t
τ=1 w

t
τ

, (4)

where
πmin
t ≤ min

a
πt(a).

For the special case wt
τ = 1

t we obtain that with probability greater than 1− δ:

∣

∣

∣
R̂t(a)−R(a)

∣

∣

∣
≤

KL(ρt‖µt) +
1
2
λ2
t

t2

∑t
τ=1

1
(πmin

τ )2
+ 2 ln(t+ 1) + ln 2

δ

λt
. (5)

By taking

λt =

√

√

√

√2t2
(

2 ln(t+ 1) + ln
2

δ

)

/

(

t
∑

τ=1

1

(πmin
τ )2

)

we obtain:

∣

∣

∣R̂t(a)−R(a)
∣

∣

∣ ≤

√

√

√

√

1
t

(

∑t
τ=1

1
(πmin

τ )2

)

2t





KL(ρt‖µt)
√

ln(t+ 1) + ln 2
δ

+

√

ln(t+ 1) + ln
2

δ



 . (6)

2.3 Comparison of Theorem 2 with Theorem 3

It is interesting to compare Theorems 2 and 3 resulting from the two different approaches. Inequality

(3) depends on 1
πlmin
t

= max1≤τ≤t

{

1
πmin
τ

}

, whereas (6) depends on
√

1
t

∑t
τ=1

1
(πmin

τ )2
. If πmin

τ are

approximately equal for all τ , then the two terms are approximately identical. However, a single
small value of πmin

τ can increase the value of 1
πlmin
t

significantly for all t ≥ τ , while its relative

contribution to the average of 1
(πmin

τ )2
will decrease with time. This property provides an advantage

to Theorem 3. On the other hand, the stronger kl form (1) of Theorem 2 can potentially be an
advantage for the bound based on Lemma 1, but we did not exploit it in this work.

Since for our choice of sampling strategy 1
πlmin
t

≈
√

1
t

∑t
τ=1

1
(πmin

τ )2
up to small constants, we

present a regret bound based on Theorem 2 only. A regret bound based on Theorem 3 can be derived
in a similar way and is identical to the bound presented below up to small constants.

2.4 Regret Bound for Multiarmed Bandits

We applied Theorem 2 to derive the following regret bound for the multiarmed bandit problem.

Theorem 4 For t < K3 let πt(a) =
1
K for all a. Let γt = K1/4t1/4 and εt = K−1/4t−1/4 and for

t ≥ (K3 − 1) let
πt+1(a) = ρ̃exp

t (a) = (1−Kεt+1)ρ
exp

t (a) + εt+1, (7)
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where

ρexp

t (a) =
1

Z(ρexp

t )
eγtR̂t(a) (8)

and
Z(ρexp

t ) =
∑

a

eγtR̂t(a).

Then for t ≥ K3 the per-round regret R(a∗)−R(ρ̃exp

t ) (where a∗ is the best action) is bounded by:

R(a∗)− R(ρ̃exp

t ) ≤ K3/4

(t+ 1)1/4

(

2.5 +

√

ln(K) + 3 ln(t+ 1)− ln δ

2K
+

√

3 ln(t+ 1)− ln δ

2K

)

with probability greater than 1− δ for all rounds t simultaneously. This translates into a total regret
of Õ(K3/4t3/4) (where Õ hides logarithmic factors).

Note that εt bounds πt(a) from below for all a and t ≥ K3. Furthermore, since εt is a decreasing
sequence it actually bounds πτ (a) from below for all a and τ ≤ t. Hence, for the prediction strategy
selected in Theorem 4 and for t ≥ K3 we can substitute πlmin

t with εt in (1) and (3).

3 Proof of Lemma 1 and an Example of its Application

We start with the proof of Lemma 1 and then illustrate how it can be applied to martingales.
Proof of Lemma 1: The proof follows the lines of the proof of Lemma 3 in Maurer (2004).
Any point x̄ = (x1, .., xN ) ∈ [0, 1]N can be written as a convex combination of the extreme points
η̄ = (η1, .., ηN ) ∈ {0, 1}N in the following way:

x̄ =
∑

η̄∈{0,1}N





∏

i:ηi=0

(1− xi)
∏

i:ηi=1

xi



 η̄.

Convexity of f therefore implies

f(x̄) ≤
∑

η̄∈{0,1}N





∏

i:ηi=0

(1− xi)
∏

i:ηi=1

xi



 f(η̄), (9)

with equality if x̄ ∈ {0, 1}N . At the next step Maurer (2004) uses independence of Xi-s, whereas we
use the fact that their conditional expectation is constant. Taking expectation of both sides of (9)
we obtain:

EX1,..,XN
[f(X̄)] ≤ EX1,..,XN





∑

η̄∈{0,1}N





∏

i:ηi=0

(1−Xi)
∏

i:ηi=1

Xi



 f(η̄)





=
∑

η̄∈{0,1}N

EX1,..,XN









∏

i:ηi=0

(1−Xi)
∏

i:ηi=1

Xi







 f(η̄)

=
∑

η̄∈{0,1}N

EX1,..,XN−1



EXN









∏

i:ηi=0

(1−Xi)
∏

i:ηi=1

Xi





∣

∣

∣

∣

∣

∣

X1, .., XN−1







 f(η̄)

=
∑

η̄∈{0,1}N

EX1,..,XN−1

[ (

∏

i:ηi=0,i<N (1−Xi)
∏

i:ηi=1,i<N Xi

)

·EXN
[I(ηN = 0)(1−XN )I(ηN = 1)XN |X1, .., XN−1]

]

f(η̄) (10)

=
∑

η̄∈{0,1}N

EX1,..,XN−1









∏

i:ηi=0,i<N

(1−Xi)
∏

i:ηi=1,i<N

Xi



 · [I(ηN = 0)(1− p)I(ηN = 1)p]



 f(η̄)

= ... (11)

=
∑

η̄∈{0,1}N





∏

i:ηi=0

(1− p)
∏

i:ηi=1

p



 f(η̄)

= EY1,..,YN
[f(Ȳ )].
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In (10) I is the indicator function (note that only one of I(ηN = 0) and I(ηN = 1) is 1 and the other
one is 0). In (11) we apply induction in order to replace Xi-s by p, one-by-one from the last to the
first, same way we did it for XN .

3.1 Application to Martingales

We apply Lemma 1 to derive an alternative to Hoeffding-Azuma inequality. The derivation is based
on Markov’s inequality and a concentration result for independent Bernoulli variables provided
below.

Lemma 5 (Markov’s inequality) For a random variable X ≥ 0 with probability greater than
1− δ:

X ≤ 1

δ
EX. (12)

The concentration result for independent Bernoulli variables is based on the method of types
in information theory (Cover and Thomas, 1991). Its proof can be found in Seeger (2003),Banerjee
(2006), or Seldin and Tishby (2010).1

Lemma 6 Let X1, .., XN be i.i.d. Bernoulli random variables. Let Ŝ = 1
N

∑N
i=1 Xi be their empir-

ical average and S = EXi the expected value. Then:

EX1,..,XN
[eNkl(Ŝ‖S)] ≤ N + 1. (13)

Since KL-divergence is a convex function (Cover and Thomas, 1991) and exponent is convex and

non-decreasing, eNkl(Ŝ‖S) is also a convex function. Therefore, by Lemma 1 we obtain that Lemma
6 also holds for X1, .., XN that belong to the [0, 1] interval and are sequentially dependent on each
other as long as their conditional expectation E[Xi|X1, .., Xi−1] is identical.

Alternative to Hoeffding-Azuma Inequality Based on Lemmas 1 and 6

Now we are ready to present our alternative to Hoeffding-Azuma’s inequality.

Lemma 7 Let X1, .., XN be a martingale difference sequence (meaning that E[Xi|X1, .., Xi−1] = 0),
such that Xi ∈ [ai, bi] for an arbitrary ai ≤ 0 and bi ≥ 0. Let S1, .., SN be a martingale, where

Sj =
∑j

i=1 Xi. Let a = mini ai and b = maxi bi and let Zi = (Xi− a)/(b− a). Then with probability
greater than 1− δ the following holds simultaneously:

kl

(

1

N

N
∑

i=1

Zi‖
−a

b− a

)

≤ ln N+1
δ

N
(14)

and

|SN | ≤ (b − a)

√

1

2
N ln

N + 1

δ
. (15)

Proof of Lemma 7: By definition of Zi we have Zi ∈ [0, 1] and E[Zi|Z1, .., Zi−1] =
−a
b−a is iden-

tical for all Zi. Hence, by Markov’s inequality and combination of Lemma 1 with Lemma 6 with
probability greater than 1− δ:

eNkl( 1
N

∑N
i=1 Zi‖ −a

b−a
) ≤ 1

δ
EZ1,..,ZN

[eNkl( 1
N

∑N
i=1 Zi‖ −a

b−a
)] ≤ N + 1

δ
.

Taking logarithm and normalizing by N yields (14).
By relation (2) between L1-norm and KL-divergence (14) yields:

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Zi −
−a

b− a

∣

∣

∣

∣

∣

≤

√

ln N+1
δ

2N
.

From definitions, Xi = (b−a)Zi+a and SN = (b−a)
∑N

i=1 Zi+Na. Simple algebraic manipulations
yield (15).

1It is possible to prove even stronger result of a form
√
N ≤ EX1,..,XN

e
Nkl(Ŝ‖S) ≤ 2

√
N for N ≥ 8 using

Stirling’s approximation of the factorial (Maurer, 2004). For simplicity we use (13).
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Comparison with Hoeffding-Azuma Inequality

It is instructive to compare Lemma 7 with Hoeffding-Azuma inequality, which we cite below for the
comparison (Azuma, 1967, Cesa-Bianchi and Lugosi, 2006).

Lemma 8 (Hoeffding-Azuma Inequality) Let S1, .., SN be a zero-mean martingale satisfying
Si − Si−1 ∈ [ai, bi], then for any λ > 0:

E[eλSN ] ≤ e(λ
2/8)

∑

N
i=1(bi−ai)

2

.

It is easy to verify, using the same procedure we applied before, that Lemma 8 implies that with
probability greater than 1− δ:

|SN | ≤
1
8λ

2
∑N

i=1(bi − ai)
2 + ln 2

δ

λ

and that the above expression is minimized by λ =
√

8 ln 2
δ /
∑N

i=1(bi − ai) yielding:

|SN | ≤

√

√

√

√

1

2

(

N
∑

i=1

(bi − ai)2

)

ln
2

δ
. (16)

In a special case, where ai = a for all i and bi = b for all i, this further simplifies to:

|SN | ≤ (b− a)

√

1

2
N ln

2

δ
.

Now we are ready to make the comparison. If ai-s and bi-s are equal (or almost equal) for all
i, inequality (15) matches Hoeffding-Azuma inequality up to ln(N + 1) factor (which can also be
halved by using a tighter bound in (13)). If ai-s and bi-s are not identical, inequality (15) can be
potentially much worse, since a single large (bi − ai) term will permanently increase (b − a), but
its relative contribution to (16) will decrease with the increase of N . However, when the empirical
average is close to lower or upper limit of the domain interval the kl form of Lemma 7 in equation
(14) is much tighter than the relaxed L1 norm form in equation (15) (McAllester, 2003). Therefore,
in situations, where the analysis can be carried out using the kl form of the bound, it might be
preferable.

4 Proof of Theorem 2 (PAC-Bayesian Bound Based on Lemma 1)

Our proof uses the following lemma, which lays at the basis of PAC-Bayesian analysis from its incep-
tion and takes its roots back in information theory and statistical physics (Donsker and Varadhan,
1975, Dupuis and Ellis, 1997, Gray, 2011, Banerjee, 2006). The lemma allows to relate all posterior
distributions ρ to a single prior distribution µ.

Lemma 9 For any measurable function φ(h) on H and any distributions µ(h) and ρ(h) on H, we
have:

Eρ(h)[φ(h)] ≤ KL(ρ‖µ) + lnEµ(h)[e
φ(h)]. (17)

Proof of Theorem 2: First, we show that R(a) = ETt
[R̂t(a)]. Let p(r|a) be the distribution of the

reward for playing arm a and let Ra be a random variable distributed according to p(r|a). Then for
any t:

R(a) = Ep(r|a)[R
a] = Ep(r|a)

[

πt(a)
1

πt(a)
Ra

]

= Ep(r|a)Eπt(a)

[

1

πt(a)
Iat R

a

]

= Ep(r|a),πt(a)

[

1

πt(a)
Iat Rt

]

= Ep(r|a),πt(a)[R
a
t ], (18)

where (18) holds since if Iat = 1, then Rt is distributed by p(r|a), and otherwise Rt is irrelevant.

Hence, we obtain that ETt
[R̂t(a)] = ETt

[ 1t
∑t

τ=1R
a
τ ] = R(a) for all a and t.

Note that R̂t(a) is a sum of t random variables belonging to the [0, 1
πlmin
t

] interval. By scaling

R(a) and R̂t(a) by a factor of πlmin
t we scale the random variables to the [0, 1] interval, where

Lemmas 1 and 6 can be applied.
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We apply PAC-Bayesian analysis to the scaled version of R(a) and R̂t(a) for a fixed t:

t · kl(πlmin
t R̂t(ρt)‖πlmin

t R(ρt)) = t · kl(Eρt(a)[π
lmin
t R̂t(a)]‖Eρt(a)[π

lmin
t R(ρ)])

≤ Eρt(a)[t · kl(πlmin
t R̂t(a)‖πlmin

t R(a))] (19)

≤ KL(ρt‖µt) + lnEµt(a)[e
t·kl(πlmin

t R̂t(a)‖πlmin
t R(a))], (20)

where (19) is due to convexity of kl and (20) is by Lemma 9.
The second term in (20) can be bounded with high probability:

Eµt(a)[e
t·kl(πlmin

t R̂t(a)‖πlmin
t R(a))] ≤ 1

δt
ETt

Eµt(a)[e
t·kl(πlmin

t R̂t(a)‖πlmin
t R(a))] (21)

=
1

δt
Eµt(a)ETt

[et·kl(π
lmin
t R̂t(a)‖πlmin

t R(a))] (22)

≤ 1

δt
(t+ 1), (23)

where (21) holds with probability greater than 1− δt by Markov’s inequality (Lemma 5), the inter-
change of expectations in (22) is possible since µt is independent of Tt, and (23) is by Lemma 1 and
Lemma 6. Substitution of (23) into (20) yields with probability greater than 1− δt:

kl(πlmin
t R̂t(ρt)‖πlmin

t R(ρt)) ≤
KL(ρt‖µt) + ln t+1

δt

t
.

Finally, by setting δt =
δ

t(t+1) ≥ δ
(t+1)2 and applying union bound we obtain (1) for all t simul-

taneously (it is well-known that
∑∞

t=1
1

t(t+1) =
∑∞

t=1

(

1
t − 1

t+1

)

= 1).

The key ingredient that made the proof of Theorem 2 possible was Lemma 1, which enabled us

to bound ETt
[et·kl(π

lmin
t R̂t(a)‖πlmin

t R(a))] even though the variables {Ra
1 , .., R

a
t } are dependent.

5 Proof of Theorem 3 (PAC-Bayesian Analysis Based on
Hoeffding-Azuma Inequality)

In this section we provide an alternative PAC-Bayesian bound for |R̂wt

t (ρt) − R(ρt)| by using
Hoeffding-Azuma inequality.
Proof of Theorem 3: Let

M i
t (a) =

1

t

i
∑

τ=1

wt
τ (R

a
τ −R(a)).

Observe that M1
t (a), ..,M

t
t (a) is a martingale [since ERa

i

[

M i
t (a)

]

= M i−1
t (a)] and

M t
t (a) =

(

∑t
τ=1 w

t
τ

)

(R̂wt

t (a) − R(a)). Note that (M i
t − M i−1

t ) ∈ [− 1
πmin
i

, 1
πmin
i

] and EM t
t = 0.

Hence, by Hoeffding-Azuma inequality (Lemma 8), for all a:

ETt

[

eλt(
∑

t
τ=1 wt

τ)(R̂wt

t (a)−R(a))
]

= ETt

[

eM
t
t (a)
]

≤ e
1
2λ

2
t

∑t
τ=1

(

wt
τ

πmin
τ

)2

.

By going back to the proof of Theorem 2 and replacing kl(πlmin
t R̂t(a)‖πlmin

t R(a)) with R̂wt

t (a)−
R(a) and substituting the bound on ETt

[et·kl(π
lmin
t R̂t(a)‖πlmin

t R(a))] with the bound on

ETt
[eλt(

∑t
τ=1 wt

τ)(R̂
wt

t (a)−R(a))] we derived above we obtain that with probability greater than 1− 1
2δ

for all ρt

R̂wt

t (ρt)−R(ρt) ≤
KL(ρt‖µt) +

1
2λ

2
t

∑t
τ=1

(

wt
τ

πmin
τ

)2

+ 2 ln(t+ 1) + ln 2
δ

λt

∑t
τ=1w

t
τ

and, by a symmetric argument applied to −M1
t (a), ..,−M t

t (a),

R(ρt)− R̂wt

t (ρt) ≤
KL(ρt‖µt) +

1
2λ

2
t

∑t
τ=1

(

wt
τ

πmin
τ

)2

+ 2 ln(t+ 1) + ln 2
δ

λt

∑t
τ=1w

t
τ

.

Hence, both hold simultaneously with probability greater than 1− δ and yield (4).
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6 Proof of Theorem 4 (The Regret Bound)

In this section we derive a regret bound based on Theorem 2. We then discuss some possible ways
to tighten the regret bound.

The regret bound is derived for the special kind of posterior distribution ρ̃exp

t defined in (7) in
Theorem 4, which is used as sampling distribution πt+1 for the next round of the game, as described
in the theorem. Furthermore, we define a special kind of prior distribution µexp

t as:

µexp

t (a) =
1

Z(µexp

t )
eγtR(a). (24)

The prior µexp

t depends on the true expected rewards R(a), but not on the sample and hence it is a
legal prior.
Proof of Theorem 4: Let a∗ be the action with the highest reward. The expected regret of the
prediction strategy ρ̃exp

t at step t+ 1 can be written as follows:

R(a∗)−R(ρ̃exp

t ) = [R(a∗)− R̂t(a
∗)]+ [R̂t(a

∗)− R̂t(ρ
exp

t )]+ [R̂t(ρ
exp

t )−R(ρexp

t )]+ [R(ρexp

t )−R(ρ̃exp

t )].
(25)

We bound the terms in (25) one-by-one.

R(a∗) and R̂t(a
∗) are the expected and the empirical rewards of a prediction strategy, which is

a delta distribution on a∗. Hence, by Theorem 2:

R(a∗)− R̂t(a
∗) ≤ 1

εt

√

− lnµexp

t (a∗) + 3 ln(t+ 1)− ln δ

2t

=
1

εt

√

ln
Z(µexp

t )

eγtR(a∗) + 3 ln(t+ 1)− ln δ

2t

≤ 1

εt

√

ln(K) + 3 ln(t+ 1)− ln δ

2t
, (26)

where in (26) we used the fact that R(a∗) ≥ R(a) for all a and hence eγtR(a∗) ≥ 1
K

∑

a e
γtR(a) =

1
KZ(µexp

t ).
For the second term in (25) we write:

R̂t(a
∗)− R̂t(ρ

exp

t ) =
∑

a

(R̂t(a
∗)− R̂t(a))ρ

exp

t (a)

=
∑

a

(R̂t(a
∗)− R̂t(a))

eγtR̂t(a)

Z(ρexp

t )

=
∑

a

(R̂t(a
∗)− R̂t(a))

e−γt(R̂t(a
∗)−R̂t(a))

∑

a′ e−γt(R̂t(a∗)−R̂t(a′))

≤ K

γt
, (27)

where in (27) follows from the technical lemma below. The proof of the lemma is provided at the
end of this section.

Lemma 10 Let x1 = 0 and x2, .., xn be n− 1 arbitrary numbers. For any α > 0 and n ≥ 2:
∑n

i=1 xie
−αxi

∑n
j=1 e

−αxj
≤ n

α
.

The third term in (25) is bounded by the following lemma adapted from Lever et al. (2010). The
proof of this lemma is also provided at the end of this section.

Lemma 11 For µexp

t and ρexp

t defined by (24) and (8) under the conditions of Theorem 2 the
following holds simultaneously with the assertion of Theorem 2:

∣

∣

∣R̂t(ρ
exp

t )−R(ρexp

t )
∣

∣

∣ ≤ 1

εt
√
2t

(

γt

εt
√
2t

+
√

3 ln(t+ 1)− ln δ

)

. (28)
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Finally, for the last term in (25):

R(ρexp

t )−R(ρ̃exp

t ) =
∑

a

(ρexp

t (a)− ρ̃exp

t (a))R(a)

≤ 1

2
‖ρexp

t − ρ̃exp

t ‖1 (29)

=
1

2

∑

a

|ρexp

t (a)− (1−Kεt+1)ρ
exp

t (a)− εt+1|

=
1

2

∑

a

|Kεt+1ρ
exp

t (a)− εt+1|

≤ 1

2
Kεt+1

∑

a

ρexp

t (a) +
1

2
Kεt+1

= Kεt+1.

In (29) we used the fact that R(a) is bounded by 1 and ρexp

t and ρ̃exp

t are probability distributions.
Gathering all the terms and substituting them back into (25) we obtain:

R(a∗)−R(ρ̃exp

t ) ≤ 1

εt

√

ln(K) + 3 ln(t+ 1)− ln δ

2t
+

K

γt

+
1

εt
√
2t

(

γt

εt
√
2t

+
√

3 ln(t+ 1)− ln δ

)

+Kεt+1.

By choosing γt = K1/4t1/4 and εt = K−1/4t−1/4 we get:

R(a∗)−R(ρ̃exp

t ) ≤ K3/4

(t+ 1)1/4

(
√

ln(K) + 3 ln(t+ 1)− ln δ

2K
+ 1 +

1

2
+

√

3 ln(t+ 1)− ln δ

2K
+ 1

)

.

By integration over t the total regret is bounded by Õ(K3/4t3/4), where Õ hides logarithmic
factors.

6.1 Proofs of Technical Lemmas for Section 6

We conclude this section with proofs of the two technical lemmas used in the proof of the regret
bound.
Proof of Lemma 10: Since x1 = 0 we have:

∑n
i=1 xie

−αxi

∑n
j=1 e

−αxj
=

∑n
i=1 xie

−αxi

1 +
∑n

j=2 e
−αxj

≤
n
∑

i=1

xie
−αxi

≤ n

α
,

where the last inequality follows from the fact that xe−αx ≤ 1
α .

We note that by numerical simulations it seems that a tighter bound
∑n

i=1 xie
−αxi

∑

n
j=1 e−αxj

≤ ln(K)
α holds,

but we were unable to prove it analytically.
The proof of Lemma 11 is adapted with minor modifications from Lever et al. (2010) and is

based on the following two lemmas, which are also adapted from Lever et al. (2010) and are proved
right after the proof of Lemma 11.

Lemma 12 For µexp

t and ρexp

t defined by (24) and (8):

KL(ρexp

t ‖µexp

t ) ≤ γt

(

[R̂t(ρ
exp

t )−R(ρexp

t )] + [R(µexp

t )− R̂t(µ
exp

t )]
)

. (30)

Lemma 13 For µexp

t and ρexp

t defined by (24) and (8) under the conditions of Theorem 2 the
following holds simultaneously with the assertion of Theorem 2:

KL(ρexp

t ‖µexp

t ) ≤
(

γt

εt
√
2t

)2

+ 2

(

γt

εt
√
2t

)

√

3 ln(t+ 1)− ln δ. (31)
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Proof of Lemma 11: Substitution of (31) into (3) yields (28).

Proof of Lemma 12:

KL(ρexp

t ‖µexp

t ) =
∑

a

ρexp

t (a) ln

(

eγtR̂t(a)Z(µexp

t )

eγtR(a)Z(ρexp

t )

)

=
∑

a

ρexp

t (a)γt(R̂t(a)−R(a))− ln

(

∑

a e
γtR̂t(a)

Z(µexp

t )

)

= γt[R̂t(ρ
exp

t )−R(ρexp

t )]− ln

(

∑

a

µexp

t (a)eγt(R̂t(a)−R(a))

)

(32)

≤ γt

(

[R̂t(ρ
exp

t )−R(ρexp

t )] + [R(µexp

t )− R̂t(µ
exp

t )]
)

. (33)

In (32) we used the fact that 1
Z(µexp

t )
= µexp

t (a)e−γtR(a) (for any a) and in (33) we used the concavity

of ln.

Proof of Lemma 13: By Theorem 2 and simultaneously with it we have:

R̂t(ρ
exp

t )−R(ρexp

t ) ≤ 1

εt

√

KL(ρexp

t ‖µexp

t ) + 3 ln(t+ 1)− ln δ

2t

R(µexp

t )− R̂t(µ
exp

t ) ≤ 1

εt

√

3 ln(t+ 1)− ln δ

2t
.

By substituting this into (30) we have:

KL(ρexp

t ‖µexp

t ) ≤ γt

εt
√
2t

√

KL(ρexp

t ‖µexp

t ) + 3 ln(t+ 1)− ln δ +
γt

εt
√
2t

√

3 ln(t+ 1)− ln δ.

If KL(ρexp

t ‖µexp

t ) ≤ γt

εt
√
2t

we are done. Otherwise, by rearranging the terms we obtain:

(KL(ρexp

t ‖µexp

t ))2 − 2KL(ρexp

t ‖µexp

t )
γt

εt
√
2t

√

3 ln(t+ 1)− ln δ +

(

γt

εt
√
2t

)2

(3 ln(t+ 1)− ln δ)

≤
(

γt

εt
√
2t

)2

KL(ρexp

t ‖µexp

t ) +

(

γt

εt
√
2t

)2

(3 ln(t+ 1)− ln δ),

which together with the fact that KL(ρexp

t ‖µexp

t ) ≥ 0 implies the result.

7 Discussion

We presented a lemma that allows to bound expectations of convex functions of certain sequentially
dependent variables by expectations of the same functions of i.i.d. Bernoulli variables. We showed
that this lemma can be used to derive an alternative to Hoeffding-Azuma inequality for convergence
of martingale values.

We presented two different approaches to PAC-Bayesian analysis of martingale-type sequentially
dependent random variables, which was an important challenge for PAC-Bayesian analysis for a long
time. Our contribution opens the possibility to apply PAC-Bayesian analysis in multiple domains,
where sequentially dependent variables are encountered. For example, Theorems 2 and 3 can be
used to bound convergence of uncountable number of parallel martingale sequences, where simple
union bound does not apply.

We answered positively an important open question whether PAC-Bayesian analysis can be
applied under limited feedback and used to study the exploration-exploitation trade-off. Although
our regret bound for the multiarmed bandit problem is far from state-of-the-art yet, we believe that
this gap can be closed in future work.

Multiarmed bandits are just the first tier in a whole hierarchy of reinforcement learning problems
with increasing structural complexity, including continuum-armed bandits, contextual bandits, and
reinforcement learning in discrete and continuous spaces. In many of these domains Bayesian ap-
proaches and incorporation of prior knowledge have already proved beneficial in practice, but their
rigorous analysis remains difficult to carry out. We believe that PAC-Bayesian approach will prove
to be as useful for this purpose as it already proved itself in the domain of supervised learning.
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