UNIVERSITY OF PAVIA

PH.D. THESIS IN MATHEMATICS AND STATISTICS

Learning functions with kernel methods

Author: Supervisor:
Francesco Dinuzzo Prof. Giuseppe De Nicolao

January 9, 2011



ii



Contents

1 Machine learning and kernel methods
1.1 Learning functions from data . . . . ... ... ... ... ....
1.1.1 Supervised learning . . . . . . . .. ... ...
1.1.2  Unsupervised learning . . . . . . ... .. ... ... ...
1.1.3 Semi-supervised learning . . . . . . . ... ...,
1.2 Kernels . . .. ..
1.2.1 Reproducing Kernel Hilbert Spaces . . . . . . .. .. ...
1.3 Regularization . . ... .. ... .. oo
1.4 Feature maps . . . . . . . . . o e
1.4.1 RKHS featuremap . . . . . ... ... oL
1.4.2 Spectral feature maps . . . . ... ...
1.4.3 Stochastic process feature map . . . . ... ... ... ..
1.4.4 Fourier map for translation invariant kernels . . . . . ..
1.5 Extensions. . . . . . . . . . . e
1.5.1 Learning with structured outputs . . . . . ... ... ...
1.5.2 Learning vector-valued functions . . ... ... ... ...
1.5.3 Learning the kernel . . . . . . ... ... ... ... ...
1.5.4 Indefinite kernels . . . . . . . ... ...
1.6 Techniques for large scale problems . . . . . . .. ... ... ...
1.6.1 The kernel matrix may not fit into the memory . . . . . .
1.6.2 Exact kernel factorizations . . . . . ... ... ... ...
1.6.3 Approximate kernel factorizations . . . .. ... ... ..
1.6.4 Sparsekernels. . . . . ... . .. L 0oL
1.6.5 Decomposition methods . . . . . ... ... ... .....
1.7 Contribution of this thesis . . . . . . ... .. .. ... .. ....
1.7.1 Optimization for large scale kernel methods . . . . . . ..
1.7.2  Kernel machines with two layers . . . . .. ... .. ...
1.7.3  Kernel methods for multi-task learning . . . . . . . .. ..
Bibliography . . . . . . . ..

2 Optimization for large scale regularized kernel methods

2.1 Solution characterization . . . . . . . .. . ... ... .. .....
2.2  Fixed-point algorithms . . . . . . . . .. ... Lo

2.2.1  Convergence . . . . . .. oiu e e
2.3 Coordinate-wise iterative algorithms . . . . . .. ... ... ...

2.3.1 Coordinate descent methods . . . . . .. ... .. .. ...

2.3.2 CONvergence . . . . . . . ooiu i
2.4 A reformulation theorem . . . . . . . ... oL
2.5 Conclusions . . . . . . . ..
Bibliography . . . . . . . L

3 Kernel machines with two layers
3.1 Kernel machines with two layers . . . .. ... ... ... ....
3.2 MKL as a kernel machine with two layers . . . . ... ... ...
3.3 Conclusions . . . . .. ...
Bibliography . . . . . . . . .

=W ow W

© 0o O Ut Lt

10
10
11
12
13
13
13
15
16
17
17
18
19
20
20
21
21
21
22
22

27
28
30
32
33
33
35
36
37
37

39
40
41
43
43

iii



CONTENTS

4 Regularized least squares with two layers

4.1 Regularized least squares with two layers . . . . . .. ... ...
4.2 A Bayesian MAP interpretation of RLS2 . . . . . . ... ... ..
4.3 Linear regularized least squares with two layers . . . . . ... ..
4.4 Choice of the scaling and feature selection . . . . . ... ... ..
4.5 Experiments. . . . . .. ... L L0 e

4.5.1 Linear RLS2: illustrative experiments . . . .. ... ...

4.5.2 RLS2: regression and classification benchmark . . . . . .

4.5.3 RLS2: multi-class classification of microarray data . . . .
4.6 Conclusions . . . . . . . ..
Bibliography . . . . . . ..

5 Client-server multi-task learning from distributed datasets
5.1 Problem formulation . . . . ... ... ... ... 0.
5.2 Complexity reduction . . . . . .. ... ... oL
5.3 A client-server online algorithm . . . . . .. .. ... ... ....

5.3.1 Serverside . . .. ... . ... ...
5.3.2 Clientside. . . . . . . . . . . . e
5.4 TIlustrative example: music recommendation . . . . . . . .. ...
5.5  Multicentric pharmacological experiment . . . . . . . .. ... ..
5.6 Conclusions . . . . . . . . .. .
Bibliography . . . . . . . ..

A Appendix
A.1 Mathematical preliminaries . . . ... ... .. ... .. .....
A.2 Proofs for fixed-point and coordinate descent algorithms . . . . .
A.3 Proofs for kernel machines with two layers . . . . . .. ... ...
A4 Proofs for client-server multi-task learning . . . . . . .. ... ..
Bibliography . . . . . . ..

General bibliography

45
45
47
48
51
]
93
56
60
61
61

73

iv



Acknowledgements

Many people have influenced my research and my life during the years of my
Ph.D. Without them, this thesis would not have been possible.

First of all, I wish to thank my supervisor, Giuseppe De Nicolao, for his excellent
guidance and valuable advice that helped me to make the first steps into the
world of research. Second, I would like to thank Gianluigi Pillonetto for very
productive collaboration and numerous insightful discussions.

During my Ph.D program, I had the opportunity to live and conduct my stud-
ies in different countries, interacting with great people all over the world. This
would not have been possible without the support of the following institutions:
University of Pavia, Istituto Universitario degli Studi Superiori (IUSS), Con-
sorzio Italia-MIT, Unione Matematica Italiana (UMI), National Science Council
of Taiwan (NSC), ETH Ziirich. I would also like to thank my supervisor and the
coordinators of my Ph.D program Giuseppe Savaré and Gianpietro Pirola for
allowing me to conduct research on leave for a consistent part of my program.

I wish to thank Tomaso Poggio for hosting my visit at the Center of Biological
and Computational Learning (CBCL), Massachusetts Institute of Technology.
The visit has been interesting and enjoyable thanks to Sven Eberhardt, Sharat
Chikkerur, Lorenzo Rosasco, Huei-Han Jhuang, Jake Bouvrie, Federico Girosi,
Gadi Geiger, and Kathleen Sullivan.

I have been lucky enough to spend a very inspiring summer at the National
Taiwan University. I would like to thank Chih-Jen Lin for hosting my visit, and
all the members of the Machine Learning group for making it so pleasant. At
the risk of forgetting somebody, I would like to thank Hsiang-Fu Yu, Kai-Wei
Chang, Cho-Jui Hsieh, Peng-Jen Chen, Tien-Liang Huang, and Li-Jen Chu.

I would like to thank Joachim Buhmann for supporting my research stay at ETH
Ziirich. It has been a pleasure to work with Cheng Soon Ong, and I remember
several interesting discussions with Alberto Giovanni Busetto.

I owe my gratitude to many people at University of Pavia, where I grew up as
a student and learned from so many excellent teachers. I wish to thank all the
professors and researchers of the Department of Mathematics for creating and
keeping an environment of open exchange of ideas and knowledge. I could not
have asked for better officemates than Luca Natile, Francesco Bastianelli, Clau-
dio Durastanti, Gloria Della Noce, Emanuele Raviolo, and Emanuele Dolera. I
would also like to thank the following members of the Identification and Con-
trol of Dynamic Systems Laboratory (ICDS): Riccardo Porreca, Davide Martino
Raimondo, Luca Capisani, Matteo Rubagotti, Alberto Russu, Lalo Magni, An-
tonella Ferrara, Giancarlo Ferrari-Trecate.

Finally, I would like to thank my parents, my sister, and Stefania for continuous
support and encouragement during these years.







Machine learning and kernel methods

Machine learning is a discipline whose goal is to create algorithms that allow
machines to learn from experience. For a computer machine, experience takes
the form of a finite sequence of symbols called data, which can be organized in
structures representing abstract entities such as graphs, images, text documents,
etc.

In recent years, the growing availability and ubiquity of computational resources
has made machine learning not only a scientific framework for understanding
intelligence, but also a source of technologies for data analysis. Indeed, modern
machine learning algorithms are able to address problems involving very large
datasets, which would be untractable for humans.

1.1 Learning functions from data

The goal of a machine learning algorithm is to synthesize functional relationships
on the basis of the data. A learning algorithm is a rule that associates a dataset
D with a function g : X — ), where X and ) are called input set and output
set, respectively. Depending on the structure of the dataset, learning problems
can be classified as being supervised, unsupervised, or semi-supervised.

1.1.1  Supervised learning

The dataset for a supervised learning problem is also called training set, and is
made of a finite-number of input-output pairs (z;,y;) € X x V:

D= {(z1,91),-- - (xe,90)} -

The framework of supervised learning describes a scenario in which a super-
visor shows a set of examples to a learner. There’s a training phase in which
the learner infers a functional relationship between inputs and outputs using
a supervised learning algorithm. The learned relationship can be used during
a test phase to make predictions over new inputs, possibly not present in the
training set.

If all the inputs x; are distinct, it is always possible to find a functional relation-
ship that correctly predicts the output for all the examples in the training set.




Chapter 1

However, such relationship doesn’t necessarily ensures good predictive perfor-
mances on new examples. Querfitting occurs when an overly complex function
is used to correctly predict the training outputs, regardless of predictions on the
test set.

Depending on the structure of the output set ), one can distinguish between
two types of supervised learning problems: classification and regression.

In a classification problem, the output set contains a finite number d > 1 of
categorical elements called classes:

Yy={e,...,ci}. (1.1)

It is customary to distinguish between binary classification, where d = 2, and
multi-class classification, where d > 2.

In a regression problem, the output set ) contains numerical vectors and is
usually assumed to be a subset of R™:

y - Rm’ (12)

although, in practice, machines only have a finite number of symbols (e.g. bits)
to represent numbers. When m > 1, the problem is called multiple regression,
or multi-output regression, or vector-valued regression.

1.1.2 Unsupervised learning

Differently from supervised learning problems, where samples of both inputs
and outputs are given, datasets for unsupervised learning problems are made
only of inputs z; € X

D={x1,...,x¢}.

The goal is to learn a functional relationship g : X — ), where even the
structure of the output set ) may possibly be learned from the data. Examples
of unsupervised learning problems are clustering and dimensionality reduction.

Clustering is the unsupervised counterpart of classification, since it involve as-
signing inputs to groups (classes). The output set for clustering is of the form
(1.1), where d denotes the number of clusters, an important parameter that can
be either fixed a-priori or learned from the data.

Dimensionality reduction aims at finding an appropriate transformation to com-
press input patterns into a representation which is more parsimonious in terms
of information. Methods for unsupervised feature extraction or feature selection
belong to this class of learning algorithm. A large class of methodologies aim
at extracting a reduced number of numerical features from an input pattern,
and thus can be seen as an unsupervised counterpart of the regression problem,
where the output set is chosen as in (1.2). The number m of features to extract is
a parameter that may be subject of learning from the data as well. A particular
case of feature extraction is feature selection (or variable selection), that occurs
when the input set X is also a subset of R”, and the map g : X — ) depends
only on a subset of components of the input vector. It should be observed that




Machine learning and kernel methods

unsupervised feature extraction is different from feature extraction for the pur-
pose of prediction, which is usually obtained as a by-product of training process
for supervised problems. Indeed, while the goal of unsupervised feature selec-
tion is to capture regularities in the input data for the purpose of information
compression, supervised feature selection aims at finding good transformations
of the input data which are informative in order to predict the output with a
given supervised algorithm.

1.1.3 Semi-supervised learning

Semi-supervised learning problems falls in between supervised and unsupervised
learning problems, and are characterized by the presence of both labeled and
unlabeled examples in the dataset, namely:

D=D,UDy, Dr={(x1,91),---,(@e,y0)}, Du=ATet1,- - Tose,}-

Semi-supervised problems are motivated by situations in which obtaining output
labels is costly, whereas unlabeled examples abound. Is this the case of many
data analysis problems involving very large datasets in which labeling requires
human intervention.

Similarly to the supervised case, D is called training set, and the goal is to
solve classification or regression problems. Under certain conditions, the avail-
ability of unlabeled examples can bring considerable benefit to the learning
performances. For instance, in many classification problems, it is reasonable to
postulate a cluster assumption, according to which optimal decision boundaries
are likely to lie in regions of low input’s density. Similarly, the manifold assump-
tion states that input examples associated with the same class should lie in a
common manifold in the input space. See [Chapelle et al., 2006] for a review of
recent approaches to semi-supervised learning.

1.2 Kernels

A kernel is a similarity function that can be used to compare two objects be-
longing to some input domain X.

Definition 1 (Kernel). Let X denote a non-empty set. A kernel over X is a
function K : X x X — R which is symmetric

K(xl,xQ) = K(Jfg,xl).
By fixing one of the two arguments of a kernel, one obtain a real-valued function
defined over X which will play a key role in the following.

Definition 2 (Kernel section). Given a kernel K, a kernel section centered on
T € X is a function Kz : X — R defined as

Kz (z) = K(Z, z).




Chapter 1

The next definition introduces a specific class of similarity functions that can
be interpreted as generalized inner products, as shown in section 1.4.

Definition 3 (Positive semidefinite kernel). Let X denote a non-empty set. A
kernel K over X is called positive semidefinite kernel if, for any finite integer ¢,
it holds

14 0
ZZCiCjK(xiaxj) >0, V(mi,ci) < (X,R)7 1= 1,...,£.
i=1 j=1

Although most of the theory and applications of kernel methods have been
developed under the assumption of positive semidefiniteness, sometimes it might
be useful to consider indefinite kernels as well. In subsection 1.5.4, we review
some theory and results about machine learning with indefinite kernels.

1.2.1 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHS) provides a connection between the
problem of choosing an appropriate hypothesis space for learning functional
relationships, and the concept of positive semidefinite kernel. In this subsection,
we briefly review the central results in the theory of RKHS, and refer to standard
references [Aronszajn, 1950, Saitoh, 1988] for more details.

Recall that the goal of a learning algorithm is to synthesize a function to make
predictions for every possible z € X. Hence, it is natural to search for the
predictor into a set of functions which are at least well-defined everywhere on
X. We would also like to introduce a suitable norm to evaluate the “complexity”
(the size) of a function. A possible way to define a norm is to require that “small
functions” are associated with small function values (namely, predictions that
are close to zero). Such choice also induces the desirable property that functions
close to each other produce similar predictions. In order to keep the notation
simple, in this section we will focus on the problem of synthesizing a real-valued
function, that is ) = R. In section 1.5, some techniques to deal with more
general output sets are presented.

Definition 4 (Reproducing Kernel Hilbert Space). A Reproducing Kernel Hilbert
Space of functions g : X — R is an Hilbert space H such that, for all x € X,
there exists C, € R such that

l9(x)| < Callgllae, Vg eH.

In other words, the definition of RKHS requires that all the point-wise evaluation
functionals L, : H — R, defined as

are bounded (continuous) functionals. The following theorem [Aronszajn, 1950]
provides a correspondence between positive semidefinite kernels and reproducing
kernel Hilbert spaces.




Machine learning and kernel methods

Theorem 1 (Moore-Aronszajn). To every RKHS H there corresponds a unique
positive semidefinite kernel K, called the reproducing kernel, such that the fol-
lowing reproducing property holds:

9(x) = (g, Ka)n,  V(z,9) € (X, H) (1.3)

Conversely, given a positive semidefinite kernel K, there exists a unique RKHS
of real valued functions defined over X whose reproducing kernel is K.

The following result characterizes the solution of a large class of optimization
problems defined over an RKHS H , featuring the minimization of a functional
J:Hxg — RU {400} defined as

J(g) :Q(g(xl)v"'7g(x€)a”g”HK)a (14)

where
Q:R' xRy —» RU{+0c}

is an extended-valued functional. Observe that J(g) depends on g only through
a finite number of point-wise evaluations and the norm ||g||3,. The structure
of the objective functional encodes the idea that optimal solutions of a learning
problem should depend only on the predictions over a finite set of available
input data, and should not be “too complex”, where complexity is measured by
the RKHS norm.

Theorem 2 (Representer theorem). Let X denote a non-empty set, and x; € X
(i=1,...,¢) a finite number of elements. Let Hx be an RKHS of real-valued
functions defined over X with reproducing kernel K. If there exist minimizers of
functional J defined as in (1.4), and @ is non-decreasing in the last argument,
then there exists at least one minimizer g* such that

¢
9" (x) = ZCiKzi (). (1.5)

The importance of the representer theorem lies in the fact that the optimal
solution of a broad range of optimization problems can be represented as a
linear combination of a finite number of kernel sections centered on the input
data, independently of the dimensionality of the search space. Philosophically,
the representer theorem formalize the intuition that, having a finite amount of
available data, it is not possible to learn arbitrarily complex functions. From
a practical point of view, it makes possible to carry out inference in possi-
bly infinite-dimensional spaces without introducing approximations, by solving
finite-dimensional optimization problems.

Many different versions of the representer theorem have appeared in the liter-
ature, see [Scholkopf et al., 2001] and references therein. One of the earliest
instances can be found in [Kimeldorf and Wahba, 1971]. Theorem 2 is a rather
general version that encompasses many results. Since the functional J can as-
sume the value 400, it is also possible to include hard constraints jointly on the
predictions g(z;) and the norm ||g||4, . Observe that existence of minimizers of




Chapter 1

functionals of the form (1.4) is taken as an hypothesis. If @ is strictly increasing
in the last argument, it holds that every minimizer of J can be written as in
(1.5). These facts are summarized in the following theorem, that also gives a
sufficient condition for existence of minimizers.

Theorem 3. If Q is lower semicontinuous and coercive in the last argument,
there exist minimizers of J defined in (1.4). By the representer theorem, at least
one of them can be written in the form (1.5). If Q is strictly increasing in the
last argument, then all the minimizers are in the form (1.5).

Once an optimal solution is expressed in the form (1.5), the problem reduces to
the characterization of coefficients ¢; of the linear combination. To address this
issue, we introduce the following definition.

Definition 5 (Kernel matrix). Given a kernel K over X, the kernel matriz
associated with K and a set of points z; € X, ¢ = 1,...,¢, is the matrix
K € R®* whose entries k;; are defined as

k‘ij = K(Ii, Ij).
By plugging the representation (1.5) into (1.4) and using the reproducing prop-

erty (1.3), the problem of minimizing J boils down to the problem of obtaining
a vector of coefficients ¢ € R, by minimizing a functional of the type

Fle)=Q (Kc, VJT@) ,

where K is the kernel matrix associated with K and the set of data points
z;, € X.

1.3 Regularization

A mathematical problem whose solution depends on data is said to be well-
posed in the Hadamard sense if it admits a unique solution whose dependence
on the data is continuous. Problems which do not satisfy this condition are
called ill-posed.

The classical theory of regularization [Tikhonov and Arsenin, 1977] has been
developed to solve ill-posed problems, by converting them to well-posed ones.
The regularization approach has been very successful in many areas of science
and engineering, such as system identification, computational vision, geophysics,
remote sensing, and signal processing.

Regularization theory has been introduced to the machine learning literature in
[Poggio and Girosi, 1990], where it is shown that a particular regularization algo-
rithm is equivalent to the training of a radial basis function (RBF) network. The
modern approach to regularization in machine learning uses the framework of
RKHS, within which different regularization methods such as smoothing splines
[Wahba, 1990], regularization networks [Girosi et al., 1995], Gaussian processes
[Rasmussen and Williams, 2006], and support vector machines [Vapnik, 1998],
can be seen to be related to each other and treated in a unified way.




Machine learning and kernel methods

In this thesis, we use the expression reqularized kernel methods to denote those
learning algorithms in which the solution is searched within an RKHS by mini-
mizing a functional of the type (1.4), where

Q(z,1) = f(z) +Q(t), (1.6)

f:Rf = R is a function (usually depending on data) called empirical risk, and
0 : Ry — RiU{+oo} is called regularizer, or regularization term. The following
theorem summarizes important facts about existence, uniqueness, and charac-
terization of solutions for a regularization problems. The first two statements
are immediate corollaries of Theorems 2 and 3.

Theorem 4. Let H* C H denote the set of minimizers of functional (1.4),
where (1.6) holds, f and Q are lower semi-continuous, and Q) is non-decreasing.
The following statements hold:

1. If Q s coercive, then H* is non-empty and bounded.

2. If Q is strictly increasing, then any g* € H* satisfy (1.5).
When f is convex, the following additional statements hold:

1. If Q is convex, then H* is a convex set.

2. If Q is strictly convex, then H* = {g*} is a singleton, and g* satisfy (1.5).

Common choices for € include the Tikhonov regularizer

or the Ivanov regularizer
0, 0<t<1
Q) = { +oo, t>1

Both the regularizers are lower-semicontinuous (extended-valued) convex, and
coercive. In addition, the Tikhonov regularizer is strictly increasing and strictly
convex.

1.4 Feature maps

In this section, it is shown that positive semidefinite kernels can be interpreted
as generalized inner products. Such interpretation has been widely exploited
to obtain non-linear versions of classical linear algorithms, a method sometimes
referred to as the “kernel trick” [Scholkopf and Smola, 2001], which was used
already in [Aizerman et al., 1964]. The following equivalent definition of positive
semidefinite kernel is a corollary of the Moore-Aronszajn Theorem.




Chapter 1

Corollary 1 (Feature space representation). Let X' denote a non-empty set. A
function K : X x X — R is a positive semidefinite kernel if and only if there
exist an Hilbert space F and a map ® : X — H called feature map, such that

K(z1,22) = (B(21), D(22)) 7. (L.7)

The space F and the feature map ® are not unique.

On one hand, it is straightforward to verify that (1.7) implies positive semidefi-
niteness of K. On the other hand, the Moore-Aronszajn theorem gives a way to
explicitly build at least one feature map for a given positive semidefinite kernel,
namely the RKHS feature map.

1.4.1 RKHS feature map

Definition 6 (RKHS feature map). Given a positive semidefinite kernel K,
its RKHS feature map is a function ® that associates any x € X with the
corresponding kernel section centered on x:

*:X >H, O)=K,.

To see that the feature space representation (1.7) holds, it suffices to set F = H,
and apply the reproducing property (1.3) to a pair of kernel sections:

K(xlny) = <Kx17KI2>’H'

The RKHS feature map is not the only possible one. In fact, other maps may
give additional insights into the structure of an RKHS, as well as providing
different interpretations of the kernel function.

1.4.2 Spectral feature maps

Consider the problem of diagonalizing a positive semidefinite kernel, namely
obtaining a representation of the type

K(z1,22) = ZN@(T/O@(IQ), (1.8)

i€l

where 7 is a set which is at most countable, and functions ¢; are orthonormal
with respect to some inner product. When the input set has finite cardinal-
ity, the set of positive semidefinite kernels over X is isomorphic to the set of
symmetric positive semidefinite matrices of finite order. Then, letting 7 = X,
representation (1.8) follows from the spectral theorem, where \; > 0 are the
eigenvalues, and ¢; are the orthonormal eigenvectors of the linear operator as-
sociated with the corresponding kernel matrix.

One possible generalization of this last result is the following. Let (X, M, p)
be a o-finite measure space. A square integrable kernel on X is a kernel K €

10



Machine learning and kernel methods

Lf@#()( x X). Each square integrable kernels is associated with a bounded

integral operator Tk : L2 (X) — L2 (X) defined as

(T, ¥) 2 = K (21, z2)p(z1)d(2z2)d[p ® pl (21, 22),
XXX

which is a positive semidefinite compact Hilbert-Schmidt operator. By the
spectral theorem for compact operators, Tk generates an orthonormal basis
of Li(X ) made of eigenvectors {¢; };ez associated with strictly positive eigen-
values {A;};ez, where 7 is at most countable. It turns out that the eigenvalues
are square summable, that is ), _; A? < +o00, and the series on the right hand
side of (1.8) converges to the quantity on left hand side in the LZ (X)) norm. The
following theorem gives a condition under which the series converges uniformly,
see [Mercer, 1909, Cucker and Smale, 2001].

Theorem 5 (Mercer). Let (X, M, u) denote a o-finite measure space. Let K
denote a positive semidefinite kernel over X which is square integrable. If X is
a compact space with respect to some metric, and K is continuous, then (1.8)
holds, and convergence of the series is absolute and uniform.

The representation (1.8) gives another class of feature maps that highlights the
spectral properties of a kernel function.

Definition 7 (Spectral feature maps). Let K denote a positive definite kernel
over & such that a representation of the type (1.8) holds, where ), A? < +oo
and {¢; }:e7 is a set of orthonormal functions with respect to some inner product.
Then, a spectral feature map of K is defined as:

B, X (R(I),  Du(x) = {\/Mi(x)}

ieT

Here, (%(Z) is either a finite dimensional Euclidean space or the space of square
summable sequences. Representation (1.7) follows by taking F = ¢%(Z), and
applying (1.8). Observe that spectral maps are not unique, since eigenvalues
and eigenvectors depend on the measure p.

1.4.3 Stochastic process feature map

We now discuss the interpretation of positive semidefinite kernel functions as
covariance functions of stochastic processes. Let S denote the Hilbert space of
real-valued random variables whose inner product is given by the covariance

<A1, A2>S = COV (Al,A2> .

Let U, denote a real-valued zero mean stochastic process indexed by x € X
with covariance

K(x1,22) = cov (U,,,U,,).

Then, it is natural to define a new feature map as follows.

11



Chapter 1

Definition 8 (Stochastic process feature map). A stochastic process U, defined
over X, whose covariance function is given by the positive semidefinite kernel
K, induces the following feature map:

Py X oS, dylz)=U,.

The equivalence between positive semidefinite kernel functions and covariance
functions of stochastic processes is particularly insightful in the case of centered
Gaussian Processes, which are uniquely identified by the covariance function.

1.4.4 Fourier map for translation invariant kernels

A kernel over X = R? is called translation invariant if there exists a real-valued
function R such that

K(ml,xg) = R(l‘l — l‘g).

In this subsection, we derive a feature map associated with continuous and
translation invariant positive semi-definite kernels over R?. Recall the following
result, that characterizes the Fourier transform of a positive measure, see [Rudin,
1994].

Theorem 6 (Bochner). A positive semidefinite kernel K over X = R? is con-
tinuous and translation invariant if and only if there exists a probability measure
w and a number a > 0 such that:

K(ara2) =a [ cos (6,01 = 22)2) dule).

X

Let S% denote the Hilbert space of random vectors in R?, whose inner product is
given by the covariance. Introduce a generic random vector U € S? distributed
according to u, and let

. cos((U, x)2) 2
Zy(z) = \/&( sin((U. z)5) €S’ (1.9)
Using Bochner theorem and the sum rule of cosines, one can verify that
K(z1,12) = (Zu(r1), Zu(22)) 52,

so that we obtain the following feature map.

Definition 9 (Fourier feature map). Given any continuous translation invariant
positive semidefinite kernel K over X = R?, its Fourier feature map is defined
as:

bp: X — S Op(z) = Zy (),

where Zy () is defined as in (1.9).

12



Machine learning and kernel methods

1.5 Extensions

In this section, some extensions of the standard theory of positive semidefinite
kernels and RKHS are reviewed.

1.5.1 Learning with structured outputs

So far, we focussed on the case in which outputs are real numbers. For supervised
learning problems, there’s a simple technique, called structured output learning
[Tsochantaridis, 2005, Bakir et al., 2007], that can be used to learn functional
relationships with generic output set g : X — ). The main idea is to model the
input-output relationship as

g(z) = argmaxh(z,y), (1.10)
yeY

(max can be equivalently replaced by the min) where h : X x J — R is to be
searched within a standard RKHS of real valued functions. Hence, predictions
are obtained by solving an optimization problem whose complexity depends on
the structure of the output set ) and the function h. In order to obtain A, one
can minimize a functional J of the standard form (1.4), where the inputs z; are
replaced by the pairs (z;,y;), namely

J(h) = Q(h(z1,y1), -, h(@e, ye), 1Al ),

so that the problem is basically reduced to the scalar case. Under the assump-
tions of the representer theorem, there exists an optimal h* in the form:

4
h* (:p’ y) = Z CiK(mi,yi)(xa y)
i=1

The choice of the joint kernel K over X x Y is crucial, since one need to ensure
that the optimization problem (1.10) is well-posed, and can be solved efficiently.

1.5.2 Learning vector-valued functions

In this subsection, the definition of kernel is properly generalized to deal with
functions mapping a generic set X into a vector space ). A theory of repro-
ducing kernel Hilbert spaces of functions with values in a general locally convex
topologically spaces has been developed in [Schwartz, 1964]. The presentation
here is focussed on the case in which Y is an Hilbert space, and follows [Micchelli
and Pontil, 2005]. Let £()) denote the space of bounded linear operators from
Y into itself, and consider the following definitions.

Definition 10 (Y-kernel). Let X denote a non-empty set and ) an Hilbert
space. An Y-kernel over X is a function K : X x X — £()) which is symmetric

K(ml,xg) = K(xg,xl).

13



Chapter 1

Definition 11 (Kernel section). Given an Y-kernel K, a kernel section centered
onz € X isamap Kz : X = L(Y) defined as

Kz (z) = K(Z,z).

Definition 12 (Positive semidefinite }-kernel). Let X denote a non-empty set
and ) an Hilbert space. An Y-kernel K is called positive semidefinite if, for any
finite integer /£, it holds

L

0
Zz<ylaK(xL7xj)y]>yzoa V(l‘“yl)e(xvy)) 7'21776

i=1 j=1

Positive semidefinite )Y-kernels are associated with suitable spaces of vector-
valued functions.

Definition 13 (Reproducing Kernel Hilbert Space of Y-valued functions). A
Reproducing Kernel Hilbert Space (RKHS) of Y-valued functions g : X — Y is
an Hilbert space H such that, for all x € X, there exists C,, € R such that

lg(@)lly < Callgllne,  VgeH.

It turns out that Moore-Aronszajn theorem can be extended to the vector-
valued case, with no substantial changes in the proof. Hence, it holds that
positive semidefinite operator-valued kernels are in a one-to-one correspondence
with reproducing kernel Hilbert spaces of vector-valued functions, where the
reproducing property now reads

(9@), )y = (9, Ke)n,  V(z,y,9) € (X, YV, H).

The representer theorem can be also extended to RKHS of vector-valued func-
tions, so that the search for solution of optimization problems of the type (1.4)
can be restricted to the set of finite combinations of kernel sections of the type:

14

g(2) = Ko (a)ei, €Y, i=1,...,L

i=1

Let’s analyze further the case in which ) is a vector space of finite dimension
m, and K is an Y-kernel over X. By fixing a basis {b; };c7 for the output space,
where 7 = {1,...,m}, one can uniquely define an associated (scalar-valued)
kernel R over X x T such that

(bis K(z1,22)bj)y = R((21,1), (22,])),

so that an Y-kernel can be seen as a function that maps two inputs into the
space of square matrices of order m. Similarly, by fixing any function g : X — Y,
one can uniquely define an associated function h: X x 7 — R such that

g(x) = hlx,i)b;.
€T
Consequently, a space of Y-valued functions over X is isomorphic to a standard
space of scalar-valued functions defined over the input set X x 7. In conclusion,
by fixing a basis for the output space, the problem of learning vector-valued
functions can be also reduced to the scalar case over an enlarged input set.

14



Machine learning and kernel methods

1.5.3 Learning the kernel

By choosing the kernel function, we have a rather flexible way to embed prior
knowledge into a machine learning algorithm. However, the available prior
knowledge might not be sufficient to uniquely determine the best kernel for a
given problem among the set of all possible kernels on a given domain &X’. This
observation leads to the idea of learning the kernel function itself from the data,
which is motivating a considerable amount of research in recent years.

First of all, observe that the set of all possible positive semidefinite kernels over
X can be characterized as follows.

Lemma 1. The set of positive semidefinite kernels over X is a cone A4 (X)
which is convex, pointed, salient, and closed in the uniform metric.

From Lemma 1, one can obtain a variety of rules to build new kernels from
elementary components. Since A4 (X)) is a pointed convex cone, it follows that
a linear combination of basis positive semidefinite kernels with non-negative
coeflicients is still a positive semidefinite kernel. In particular, the null kernel
K = 0 is a valid positive semidefinite kernel. Since the cone is salient, for
any non-null positive semidefinite kernel K, its opposite —K is not positive
semidefinite. Finally, since the cone is closed in the uniform metric, the limit of
a uniformly convergent sequence of positive semidefinite kernels is still a positive
semidefinite kernel.

A possible framework to attack the problem of learning the kernel is the one
based on minimization problems of the form

i i e 1.11
min min Q (g(z1), -, 9(xe), lgllus) (L.11)
where K C A, (X) is a subset of the cone of positive semidefinite kernels. Under
the assumptions of Theorem 2, as soon as the inner problem admit minimizers,
there exists an optimal g* in the form (1.8). It follows that (1.11) can be
rewritten as

min min Q (Kc, cTKc) , (1.12)
KeM ceRt

where M C Sﬁ is the set of kernel matrices associated with all the kernel
functions in K and the data points x1,...,z,. The problem is then reduced to
finding a symmetric positive semidefinite matrix and a vector of coefficients. A
popular choice for K is the convex hull of a finite set of basis kernels:

K:co{ffl,...,f(m}, (1.13)

meaning that every K € K satisfies

Multiple kernel learning (MKL) is a family of optimization algorithms of the
type (1.12) in which K is chosen as in (1.13).

15



Chapter 1

More generally, when K is compact and convex, a theorem of Carathéodory’s
can be used to characterize the solution of the outer optimization problem, as
shown in [Argyriou et al., 2005].

Theorem 7. Under the assumptions of Theorem 2, if K is compact convex and
there exist minimizers in (1.11), then there exist basis kernels K; (i=1,...,m),
and an optimal kernel K* such that

K*Gco{fﬁ,...,f(m}glﬁ m<{+1.

Hence, whenever K is compact and convex, problem (1.11) is equivalent to a
suitable MKL problem where the number of basis kernels does not exceed £+ 1.
Unfortunately, the theorem does not specify how to find the basis kernels K;, so
that this property cannot be directly used to simplify the optimization problem.

Apart from methods that boils down to optimization problems of the form
(1.12), there are at least two other methodologies that address the problem of
learning the kernel. The first is based on the idea of searching the kernel func-
tion itself into another RKHS of functions defined over X x X whose kernel,
called hyper-kernel, satisfying additional symmetry properties [Ong et al., 2005].
The second is based on the framework of kernel machines with two layers de-
veloped in this thesis. The two methodologies share the idea of introducing an
additional regularization layer in the optimization problem, but lead to different
optimization problems.

1.5.4 Indefinite kernels

Indefinite kernels have been sometimes employed in machine learning with some
degree of success, so that a certain amount of theory has been produced to in-
terpret optimization methods with indefinite kernel from a functional analytic
point of view. Along this direction, it has been proposed to generalize Repro-
ducing Kernel Hilbert Spaces, whose theory is heavily based on the assumption
of positive semidefiniteness of the kernel, by introducing RKKS (Reproducing
Kernel Krein Spaces) [Ong et al., 2004].

A Krein space can be obtained by the following construction. Consider the direct
sum H = H, @ H_ of two Hilbert spaces, and observe that H is automatically
endowed with the inner product:

(g1, 92)m = (91, 95 )y + (97,95 Y1

with natural meaning of the notation. Now, H can be turned into a Krein space
by endowing it with an additional symmetric bilinear form defined as

<glvg2>’;_{ = <9T793>H+ - <gl_a92_>7'lfa (114)
whose associated quadratic form is not necessarily positive semidefinite.

Definition 14 (Reproducing Kernel Krein Space). A Reproducing Kernel Krein
Space (RKKS) of functions g : X — R is the direct sum of two RKHS H =
Hy ®H_ endowed with an additional symmetric bilinear form defined in (1.14).

16



Machine learning and kernel methods

Letting K and K_ denote the reproducing kernels of H, and H_, respectively,
the RKKS H can be associated with two different kernels, namely the sum
K = K, + K, which is positive semidefinite, and the difference K = K, — K_,
which may be indefinite. Indeed, there’s two different reproducing properties,
namely the usual (1.3) and the new one:

9(@) ={9: Ko)yy  V(w,9) € (X, H).

Conversely, it can be shown that a generic indefinite kernel K can be associated
to an RKKS if and only if it can be expressed as the difference of two positive
semidefinite kernels.

Now, the goal is to derive learning algorithms characterized by a representer the-
orem involving the (possibly) indefinite kernel K. The key idea is to introduce
functionals of the form

(9,91
2 )

flg(z1), ..., g(ze)) +

and looking for their stationary points (rather than their minimizers). It can
be shown that, under suitable conditions on f, there exist stationary points g*
which admit the expansion:

£
0'(@) = Yo ek, (@)

The problem then reduces to finding a stationary point with respect to ¢ € R?
of the functional

TKe

f(Kc) + 5

where K is the kernel matrix associated with K and the points z; (i = 1,..., ),
which may be indefinite.

In chapter 2 we will show that, by allowing indefinite kernel matrices, one
can solve convex non-differentiable kernel regularization problems with positive
semidefinite kernel by finding stationary points of a corresponding differentiable
functional with indefinite kernel.

1.6 Techniques for large scale problems

Considerable effort has been devoted to make kernel methods feasible on large
scale problems, see e.g. [Bottou et al., 2007]. In this section, we review some
techniques that have been proposed in the literature to address this issue.

1.6.1 The kernel matrix may not fit into the memory

Computing weighted combination of kernel functions is a crucial operation in
many kernel-based algorithms. To practically implement such operation, one

17



Chapter 1

must typically face a trade-off between computational efficiency and memory
occupation. The most memory efficient solution would be not storing any of the
entries of the kernel matrix, thus re-computing them when necessary. However,
this solution requires evaluating the kernel function (a computationally intensive
operation) many times on the same data pairs, which might significantly reduce
computation speed. On the other extreme, one can consider evaluating the
kernel function once for all the data pairs and storing all the results into the
memory. However, storing the whole kernel matrix into the memory might be
unfeasible. For instance, when the kernel matrix is fully dense, the amount
of memory required to store all the entries scales with O(¢?). For a learning
problem with ¢ = 10 examples and single precision accuracy (4 bytes for each
entry), storing a single row of the kernel matrix requires 4 MegaBytes of memory,
while storing the whole matrix requires 4 TeraBytes (about the half by exploiting
symmetry). Apparently, storing the kernel matrix is an approach that doesn’t
scale well to large problems.

1.6.2 Exact kernel factorizations

Even when storing the kernel matrix is possible, plain matrix-vector multiplica-
tion need not to be the most efficient way to compute the product and, indeed,
there are many situations in which other solutions work better. A representative
example is given by the case in which K is the linear kernel on R™ defined as

K(z1,22) = (21, 72)2,

which imply the decomposition K = XX, where X € R*™ is the matrix that
contains the input data. In the linear case, the whole matrix-vector product
z = Kec can be computed in two steps without actually forming the kernel
matrix:

w=X"Te,

z = Xw.

The computational cost is O(nf), which may be much better than O(¢?). When
the matrix containing input data is sparse, the computational cost is further
reduced. More generally, techniques that are suitable for the linear case also
apply whenever the kernel matrix admits a compact factorization of the form
K = XX, where the factor X has some desirable property such as being low-
rank, sparse or both. When a closed-form expression for the feature map is
available and involve a finite number of features, one can reduce exactly to the
linear case, possibly at the expense of a high number of features. Is this the
case of polynomial kernels

K(xl,CCQ) = (1 + <I1,$2>2)d,

for which is it possible to work out explicit feature maps involving a finite,
though exponential in d, number of features. Taking advantage of sparsity in
the original features which propagates to the derived features, the idea has been
applied with success to low degree polynomial kernels [Chang et al., 2010].

18



Machine learning and kernel methods

1.6.3 Approximate kernel factorizations

In order to handle more general situations, one can compute approximate fac-
torizations of the kernel matrix of the form

K~ X)NCT,

where the entries z;; of the factor X can be obtained using a variety of methods,
including incomplete Cholesky factorization [Fine and Scheinberg, 2001, Bach
and Jordan, 2002, 2005, Kulis et al., 2006], approximate eigendecomposition
based on the Nystrom method [Williams and Seeger, 2000, Drineas and Ma-
honey, 2005], and random selection of a subset of columns of the kernel matrix
[Smola and Schoélkopf, 2000].

For kernels with an infinite number of derived features, such as the Gaussian
RBF, one can still take advantage of explicit feature maps. For example, one
may think about approximating the kernel function itself by truncating the
spectral representation

K(z1,m0) ) \jd;(w1)¢;(w2).

j=1

This is equivalent to using an approximate factorization of the kernel matrix,
where 7;; = \/x¢](xl) The approximation error as a function of n decreases
at the same rate of the eigenvalues \;. A spectral representation for Gaussian
RBF kernels can be found in [Steinwart et al., 2006].

Instead of approximating the spectral feature map (definition 7), one can also
approximate the stochastic process feature map (definition 8). Indeed, the co-
variance can be empirically approximated by randomly drawing a finite number
of realizations U’ (j = 1,...,n) of the associated zero-mean stochastic process
U, and then computing the empirical covariance:
" Ui Ul
K(xlva) = cov (Uanmz) ~ Z %a
j=1

which is equivalent to using an approximate factorization of the kernel matrix,
where z;; = U /\/n.

For continuous and translation invariant positive semi-definite kernels on R¢,
one can also approximate the Fourier feature map (subsection 1.4.4) by drawing
random samples U7 (5 = 1,...,n) from the distribution p given by the inverse
Fourier transform of R/«, see [Rahimi and Recht, 2008]. Then, letting Zy(x)
as in equation (1.9), the Fourier feature map can be approximated as follows:

. L T i (T2
K(z1,29) = cov (Zy(z1), Zu(z2)) =~ Z ZUJ( )nZU ( )7

which amounts to approximately factorize the kernel matrix using

_ @ - a . )
Ti(2j—1) = \/;cos(<U,sc>2), Ti(25) = \/;sm((U,x)g), ji=1,...,n.

19




Chapter 1

1.6.4 Sparse kernels

Another possibility to improve computational performances when computing
weighted kernel combination is to explicitly introduce sparsity in the kernel
expansion by using kernels that take the value zero on a certain subset of the
input pairs. The idea has been extensively developed in the case of radial basis
function kernels on R™, see [Gneiting, 2002] and references therein. For instance,
[Genton, 2001] reports that a general class of compactly supported RBF kernels
can be obtained by multiplying a compactly supported RBF function of the
form

Y(rn, @) = (1= flor —2l)f, 7> (n+1)/2

by RBF kernels of the Matérn type [Matérn, 1960], defined as

1 2Vvlz — @ \” 2\/v||z1 — 2|
K(“’”):zv—lr(u)< 0 B\ )

where I' is the Gamma function, and H, is the modified Bessel function of the
second kind of order v. Observe that Matérn kernels reduces to the Gaussian
kernel for v 4+ co. Several other examples of compactly supported radial ba-
sis functions have been introduced in the literature, see e.g. [Schaback, 1995,
Wendland, 1995].

1.6.5 Decomposition methods

Besides the two extreme approaches of pre-computing the kernel matrix and
kernel computation on-the-fly, a whole spectrum of intermediate solutions have
been proposed to practically address the trade-off between space and time. In
order to overcome memory limitations in support vector machines training, re-
searchers introduced a variety of decomposition methods [Osuna et al., 1997,
Joachims, 1998, Keerthi et al., 2001], which involve iteratively choosing a sub-
set of the training data, called working set, and solving the corresponding sub-
problem of reduced size for which the corresponding entries of the kernel matrix
do fit into the memory. To avoid recomputing many times the same entries of
the kernel matrix, one can maintain a cache of kernel values that are likely to
be used in the next iterations. Convergence of decomposition methods has been
studied in [Lin, 2001, 2002, List and Simon, 2004, 2007, Palagi and Sciandrone,
2005, Lucidi et al., 2007]. The popular SMO (Sequential Minimal Optimiza-
tion) algorithm [Platt, 1998] is an instance of decomposition method for SVM
training. The working set size for SMO is two, which is minimal for the original
formulation of SVM, that included an constant bias term. Different working
set selection rules for SMO have been introduced in [Keerthi et al., 2001, Hush
and Scovel, 2003, Fan et al., 2005, Glasmachers and Igel, 2006]. Convergence
of SMO has been studied in [Keerthi and Gilbert, 2002, Lin, 2002, Chen et al.,
2006]. A major complication in the analysis of classical SVMs comes from the
presence of an unregularized constant bias term, which corresponds to an addi-
tional equality constraint in the optimality conditions. Recently, it is becoming
customary to formulate SVM without unregularized bias, see e.g. [Fan et al.,
2008]. In this case, the minimal size of the working set is one, which leads to

20



Machine learning and kernel methods

coordinate descent algorithms. In this thesis, we present a general class of co-
ordinate descent algorithms for regularized kernel methods with generic convex
loss function.

1.7 Contribution of this thesis

In this thesis, we present some extensions of classical framework of kernel ma-
chines, and discuss a new variational approach to analyze optimization al-
gorithms for large scale learning problems. The major contributions can be
grouped as follows:

e Analysis of optimization algorithms for large scale kernel methods.
e Kernel machines with two layers.

e Kernel methods for multi-task learning.

1.7.1 Optimization for large scale kernel methods

We study two general classes of optimization algorithms for kernel methods
with convex loss function and quadratic norm regularization, and analyze their
convergence. The first approach, based on fixed-point iterations, is simple to
implement and analyze, and can be easily parallelized. The second, based on
coordinate descent, exploits the structure of additively separable loss functions
to compute solutions of line searches in closed form. Instances of these classes
of algorithms are already incorporated into state of the art machine learning
software for large scale problems. We start from a solution characterization of
the regularized problem, obtained using sub-differential calculus and resolvents
of monotone operators, that holds for general convex loss functions regardless
of differentiability. The two methodologies can be regarded as instances of non-
linear Jacobi and Gauss-Seidel algorithms, and are both well-suited to solve
large scale problems.

1.7.2 Kernel machines with two layers

In recent years, a variety of techniques such as semi-definite programming,
hyper-kernels, and multiple kernel learning (MKL), have been used to address
the problem of learning the kernel from the data. Kernel machines with two
layers extend the classical framework of regularization over Reproducing Kernel
Hilbert Spaces (RKHS), by modeling the unknown relationship between input
and outputs as the composition of two functional layers. A suitable represen-
ter theorem for kernel machines with two layers shows that a general class of
regularization problems boils down to finite-dimensional optimization problems
independently of the dimensionality of the search spaces. It is shown that MKL
can be interpreted as a particular instance of kernel machine with two layers in
which the second layer is a linear function. Finally, a simple and effective MKL
method called RLS2 (regularized least squares with two layers) is introduced,

21



Chapter 1

and his performances on several learning problems are extensively analyzed.
An open source MATLAB toolbox to train and validate RLS2 models with a
Graphic User Interface is available at http://www.mloss.org.

1.7.3 Kernel methods for multi-task learning

Multi-task learning is the simultaneous solution of multiple related learning
problems by joint analysis of several datasets. There’s theoretical and experi-
mental evidence suggesting that simultaneous solution of multiple related learn-
ing tasks performs better than independent (single-task) learning. In this thesis,
we present several results related to a general class of mixed-effect models where
each functional relation is modeled as the sum of a common function plus an
individual shift:

9;(x) = g(x) + g;(x).

Mixed-effect models already have a well-established role in the solution of PK-
PD (pharmacokinetics and pharmacodynamics) data analysis problems, whose
goal is to estimate responses of different subjects to a drug administration from
multiple tiny sets of individual measurements. We describe a client-server ar-
chitecture for on-line learning of multiple tasks based on the non-parametric
mixed-effect model. Interestingly, it turns out that such client-server archi-
tecture also enjoys other desirable properties such as the ability to perform
distributed computations, and preserve privacy of individual data.

Bibliography

A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical foundations of
the potential function method in pattern recognition learning. Automation
and Remote Control, 25:821-837, 1964.

A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations
of continuously parameterized basic kernels. In Peter Auer and Ron Meir,
editors, Learning Theory, volume 3559 of Lecture Notes in Computer Science,
pages 338-352. Springer Berlin / Heidelberg, 2005.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337-404, 1950.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3:1-48, 2002.

F.R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel meth-
ods. In Proceedings of the 22nd Annual international conference on Machine
learning (ICML 2005), pages 33-40. ACM Press, 2005.

G. H. Bakir, T. Hofmann, B. Schélkopf, A. J. Smola, B. Taskar, and S. V. N.
Vishwanathan. Predicting Structured Data (Neural Information Processing).
The MIT Press, 2007.

22


 http://www.mloss.org

BIBLIOGRAPHY

L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors. Large Scale Kernel
Machines. MIT Press, Cambridge, MA, USA, 2007.

Y-W. Chang, C-J. Hsieh, K-W. Chang, M. Ringgaard, and C-J. Lin. Training
and testing low-degree polynomial data mappings via linear SVM. Journal of
Machine Learning Research, 11:1471-1490, 2010.

O. Chapelle, B. Scholkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, MA, USA, 2006.

P-H Chen, R-E Fan, and C-J Lin. A study on SMO-type decomposition methods
for support vector machines. IFEE Transactions on Neural Networks, 17(4):
893-908, 2006.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin
of the American mathematical society, 39:1-49, 2001.

P. Drineas and M. W. Mahoney. On the Nystrom method for approximating a
Gram matrix for improved kernel-based learning. Journal of Machine Learn-
ing Research, 6:2153-2175, 2005.

R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research,
9:1871-1874, 2008.

R-E Fan, P-H Chen, and C-J Lin. Working set selection using second order in-
formation for training support vector machines. Journal of Machine Learning
Research, 6, 2005.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel repre-
sentations. Journal of Machine Learning Research, 2:243-264, 2001.

M. G. Genton. Classes of kernels for machine learning: A statistics perspective.
Journal of Machine Learning Research, 2:299-312, 2001.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7(2):219-269, 1995.

T. Glasmachers and C. Igel. Maximum-gain working set selection for SVMs.
Journal of Machine Learning Research, 7:1437-1466, 2006.

T. Gneiting. Compactly supported correlation functions. Journal of Multivari-
ate Analysis, 83:493-508, 2002.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support
vector machines. Machine Learning, 51(1):51-71, 2003.

T. Joachims. Advances in Kernel Methods: Support Vector Machines, chapter
Making large-scale support vector machine learning practical, pages 169-184.
MIT Press, Cambridge, MA, USA, 1998.

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm
for SVM classifier design. Machine Learning, 46(1-3):351-360, 2002.

23



Chapter 1

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improve-
ments to Platt’s SMO algorithm for SVM classifier design. Neural Computa-
tion, 13:637-649, 2001.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33(1):82-95, 1971.

B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. In
Proceedings of the 28rd Annual international conference on Machine learning
(ICML 2006), pages 505-512, 2006.

C-J. Lin. On the convergence of the decomposition method for support vector
machines. IEEE Transactions on Neural Networks, 12:1288-1298, 2001.

C-J. Lin. A formal analysis of stopping criteria of decomposition methods for
support vector machines. IEEE Transactions on Neural Networks, 13:1045—
1052, 2002.

N. List and H. U. Simon. A general convergence theorem for the decomposition
method. In John Shawe-Taylor and Yoram Singer, editors, Learning Theory,
volume 3120 of Lecture Notes in. Computer Science, pages 363—-377. Springer
Berlin / Heidelberg, 2004.

N. List and H. U. Simon. General polynomial time decomposition algorithms.
Journal of Machine Learning Research, 8:303-321, 2007.

S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. A convergent decomposi-
tion algorithm for support vector machines. Computational Optimization and

Applications, 38:217-234, 2007.
B. Matérn. Spatial Variation. Springer, New York, NY, USA, 1960.

J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society
of London, 209:415-446, 1909.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural
Computation, 17:177-204, 2005.

C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive ker-
nels. In Proceedings of the 21th Annual international conference on Machine
learning (ICML 2004), page 81, New York, NY, USA, 2004. ACM.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyper-
kernels. Journal of Machine Learning Research, 6:1043-1071, 2005.

E. Osuna, Freund. R., and F. Girosi. Training support vector machines: An
application to face detection. In Proceedings of Computer Vision and Pattern
Recognition, pages 130-136, 1997.

L. Palagi and M. Sciandrone. On the convergence of a modified version of the
svimlight algorithm. Optimization Methods and Software, 20:315-332, 2005.

24



BIBLIOGRAPHY

J. Platt. Fast training of support vector machines using Sequential Minimal
Optimization. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA,
USA, 1998.

T. Poggio and F. Girosi. Networks for approximation and learning. In Proceed-
ings of the IEEE, volume 78, pages 1481-1497, 1990.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1177-1184. MIT Press, Cambridge,
MA, USA, 2008.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

W. Rudin. Fourier Analysis on Groups. Wiley-Interscience, New York, NY,
USA, 1994.

S. Saitoh. Theory of Reproducing Kernels and its Applications, volume 189
of Pitman Research Notes in Mathematics Series. Longman Scientific and
Technical, Harlow, 1988.

R. Schaback. Creating surfaces from scattered data using radial basis functions.
In T. Lyche M. Dhlen and L.L. Schumaker, editors, Mathematical Methods
in Computer Aided Geometric Design III, pages 477-496. Vanderbilt Univ.
Press, 1995.

B. Schélkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. (Adaptive Computation
and Machine Learning). MIT Press, 2001.

B. Schélkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Neural Networks and Computational Learning Theory, 81:416-426, 2001.

L. Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux
associés (noyaux reproduisants). J. Analyse Math., 13:115-256, 1964.

A. J. Smola and B. Schélkopf. Sparse greedy matrix approximation for ma-
chine learning. In Proceedings of the 17th Annual international conference on
Machine learning (ICML 2000), pages 911-918, 2000.

I. Steinwart, D. R. Hush, and C. Scovel. An explicit description of the repro-
ducing kernel Hilbert spaces of Gaussian RBF kernels. IEEFE Transactions
on Information Theory, 52(10):4635-4643, 2006.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill Posed Problems. W. H.
Winston, Washington, D. C., 1977.

I. Tsochantaridis. Large margin methods for structured and interdependent
output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, USA, 1998.

25



Chapter 1

G. Wahba. Spline Models for Observational Data. STAM, Philadelphia, USA,
1990.

H. Wendland. Piecewise polynomial, positive definite and compactly supported
radial basis functions of minimal degree. Advances in Computational Mathe-
matics, pages 389-396, 1995.

C. Williams and M. Seeger. Using the Nystrom method to speed up kernel ma-
chines. In Proceedings of the 18th Annual Conference on Neural Information
Processing Systems, pages 682-688, Whistler, BC, Canada, 2000.

26



Optimization for large scale regularized
kernel methods

The development of optimization software for learning from large datasets is
heavily influenced by memory hierarchies of computer storage. In presence of
memory constraints, most of the high order optimization methods become un-
feasible, whereas techniques such as coordinate descent or stochastic gradient
descent may exploit the specific structure of learning functionals to scale well
with the dataset size. One of the most important features of modern machine
learning methodologies is the ability to leverage on sparsity in order to obtain
scalability. Typically, learning methods that impose sparsity are based on the
minimization of non-differentiable objective functionals. Is this the case of sup-
port vector machines or methods based on ¢; regularization.

In this chapter, we analyze optimization algorithms for a general class of regu-
larization functionals, using sub-differential calculus and resolvents of monotone
operators [Rockafellar, 1970, Hiriart-Urruty and Lemaréchal, 2004] to manage
non-differentiability. In particular, we study learning methods that can be in-
terpreted as the minimization of a convex empirical risk term plus a squared
norm regularization into a reproducing kernel Hilbert space [Aronszajn, 1950]
Hrx with non-null reproducing kernel K, namely

min (f (g, .. g(ze)) + ”“"'”K) 7 (2.1)

gEH K 2

where f : R® — R, is a finite-valued bounded below convex function. Regu-
larization problems of the form (2.1) admit a unique optimal solution which, in
view of the representer theorem [Scholkopf et al., 2001], can be represented as
a finite linear combination of kernel sections:

14
o) = Y ek, (@)

We characterize optimal coefficients ¢; of the linear combination via a family
of non-linear equations. Then, we introduce two general classes of optimiza-
tion algorithms for large scale regularization methods that can be regarded as
instances of non-linear Jacobi and Gauss-Seidel algorithms, and analyze their

27



Chapter 2

convergence properties. Finally, we state a theorem that shows how to reformu-
late convex regularization problems, so as to trade off positive semidefiniteness
of the kernel matrix for differentiability of the empirical risk.

2.1 Solution characterization

As a consequence of the representer theorem, an optimal solution of problem
(2.1) can be obtained by solving finite-dimensional optimization problems of the
form

cTKe

min F(e),  F(e) = f(Ke) + -, (2.2)

where K € R is a non-null symmetric positive semi-definite matrix called
kernel matriz. The entries k;; of the kernel matrix are given by

kij = K(xi,7;),

where K : X x X — R is a positive semidefinite kernel function. Let k; denote
the columns of the kernel matrix (i = 1,...,¢). Particularly interesting is the
case when function f is additively separable.

Definition 15 (Additively separable functional). A functional f : R* — R is
called additively separable if

4
fz) = Z fi(z).- (2.3)

Models with ¢5 (ridge) regularization correspond to the case in which inputs
are n-dimensional numeric vectors (X = R™) and the kernel matrix is chosen
as K = XX”, where X € R“*" is a matrix whose rows are the input data ;.
Letting

w:= X", (2.4)

the following class of problems is obtained:

min < F(Xw) + ”1"2'%) . (2.5)

weR?

Observe that one can optimize over the whole space R", since the optimal
weight vector will automatically be in the form (2.4). Parametric models with
{5 regularization can be seen as specific instances of kernel methods in which K
is the linear kernel:

K(x1,22) = (x1,22)2.

In the following, two key mathematical objects will be used to characterize
optimal solutions of problems (2.2) and (2.5). The first is the subdifferential 0 f

28



Optimization for large scale regularized kernel methods

of the empirical risk. The second is the resolvent J,, of the inverse subdifferential,
defined as

Jo = (I ta (6f)_1>_1. (2.6)

See the appendix for more details about these objects. The following result
characterizes optimal solutions of problem (2.2) via a non-linear equation in-
volving J,. The characterization also holds for non-differentiable loss functions,
and is obtained without introducing constrained optimization problems. The
proof of Theorem 8 is given into the appendix.

Theorem 8. For any a > 0, there exist optimal solutions of problem (2.2) such
that

c=—J,(aKe - ¢), (2.7)

where J, is the resolvent of the inverse sub-differential (af)_l, see (2.6).

The usefulness of condition (2.7) depends on the possibility of computing closed-
form expressions for the resolvent, which may not be feasible for general convex
functionals. Remarkably, for many learning methods one can typically exploit
the specific structure of f to work out closed-form expressions. For instance,
when f is additively separable as in (2.3), the sub-differential decouples with
respect to the different components. In such a case, the computation of the
resolvent reduces to the inversion of a function of a single variable, which can
be often obtained in closed form. Indeed, additive separability holds for many
supervised learning problems. Typically, we have f;(z;) = CL(y;,z2;), where
L:R xR — Ry is aloss function, and C' > 0 is a complexity parameter. Table
2.1 reports the expression of the J, in correspondence with commonly used loss
functions. When f is additively separable, the characterization (2.7) can be
generalized as follows.

Corollary 2. Assume that (2.3) holds. Then, for any a; > 0, 1 = 1,...,¢,
there exist optimal solutions of problem (2.2) such that

ci = —JL (k] e — ¢;), i=1,...,¢, (2.8)
where J}, are the resolvents of the inverse sub-differentials (afi)_l, see (2.6).

In this chapter, we analyze two iterative approaches to compute optimal solu-
tions of problem (2.2), based on the solution characterizations of Theorem 8
and Corollary 2. For both methods, we show that cluster points of the iteration
sequence are optimal solutions, and we have

. . k

(IzreuRr% F(e) = kBTooF(C ), (2.9)
where F' denote the functional of problem (2.2). Section 2.2 describes a first
approach, which involves simply iterating equation (2.7) according to the fixed-
point method. The method can be also regarded as a non-linear Jacobi algo-
rithm to solve equation (2.7). It is shown that o can be always chosen so as
to make the iterations approximate an optimal solution to arbitrary precision.

29



Chapter 2

Name Loss L(y1,y2) Operator —J, (v)
L1-SVM (1 —y1y2), Yy © min (C, (ae—y@v)+)
L2-SVM | (1 —y1y2)7 /2 Yo (ae—yov), /(1+a/C)
RLS (y1 — y2)%/2 (ay —v) /(1+/C)
RLA lyr — 2 sign(y — v) © min (C, |y — v|)
SVR (lyr — y2| —e)+ sign(y — v) © min (C’,(|y—v| —ozee)+)

Table 2.1: Operator —.J, for different methods. In the rightmost column, ®
denotes the element-wise product, e denotes the vector of all ones, and all the
functions min, max, sign, |- | are applied component-wise. The “positive part”
function is defined as (z); = max{0,z}.

In section 2.3, we describe a second approach, that involves separately iterating
the single components using the characterization of equation (2.8). For a suit-
able choice of «;, the method boils down to coordinate descent, and optimality
of cluster points holds whenever indices are picked according to an “essentially
cyclical” rule. Equivalently, the method can be regarded as a non-linear Gauss-
Seidel algorithm to solve (2.8).

2.2 Fixed-point algorithms

In this section, we suggest computing the optimal coefficient vector ¢ of problem
(2.2) by simply iterating equation (2.7), starting from any initial condition c°:

A= —J, (aKcF — k). (2.10)

Such procedure is the well-known fixed point iteration (also known as Picard or
Richardson iteration) method. Provided that « is properly chosen, the proce-
dure can be used to solve problem (2.2) to any given accuracy. Before analyzing
the convergence properties of method (2.10), let’s study the computational com-
plexity of a single iteration. To this end, one can decompose the iteration into
three intermediate steps:

2F =K, step 1
oF = a2k — ck, step 2
= — g, (vF). step 3

The decomposition emphasize the separation between the role of the kernel
(affecting only step 1) and the role of the function f (affecting only step 3).

Step 1

Step one is the only one that involves the kernel matrix. Generally, it is also the
most computationally and memory demanding step. Since z = Kc represents
predictions on training inputs (or a quantity related to them), it holds that
being able to perform fast predictions has a crucial impact also on the training

30



Optimization for large scale regularized kernel methods

time. This is remarkable, since good prediction speed is a desirable goal on its
own. Notice that an efficient implementation of the prediction step is beneficial
for any learning method of the form (2.2), independently of f. Ideally, the
computational cost of such matrix-vector multiplication is O(¢?). However,
the kernel matrix might not fit into the memory, so that the time needed to
compute the product might also include special computations or additional I/O
operations. Observe that, if many components of vector ¢ are null, only a subset
of the rows of the kernel matrix is necessary in order to compute the product.
Hence, methods that impose sparsity in vector ¢ may produce a significant
speed-up in the prediction step. As an additional remark, observe that the
matrix-vector product is an operation that can be easily parallelized.

In the linear case (2.5), the computation of z¥ can be divided in two parts:
wh = XT ek,

2k = Xuw”.

In order to compute the product, it is not even necessary to form the kernel
matrix, which may yields a significant memory saving. The two intermedi-
ate products both need O(nf) operations and the overall cost still scales with
O(nf). When the number of features is much lower than the number of exam-
ples (n < £), there’s a significant improvement with respect to O(£?). Speed-up
and memory saving are even more dramatic when X is sparse. In such a case,
computing the product in two steps might be more convenient also when n > £.

Step 2

Step two is a simple subtraction between vectors, whose computational cost is
O(¢). In section 2.4, it is shown that v = aKc — ¢ can be interpreted as the
vector of predictions on the training inputs associated with another learning
problem consisting in stabilizing a functional regularized whose empirical risk
is always differentiable, and whose kernel is not necessarily positive.

Step 3

Step three is the only one that depends on function f. Hence, different algo-
rithms can be implemented by simply choosing different resolvents J,. Table
2.1 reports the loss function L and the corresponding resolvent for some com-
mon supervised learning methods. Some examples are given below. Consider
problem (2.2) with the “hinge” loss function L(y1,y2) = (1 — y1y2) , associated
with the popular Support Vector Machine (SVM). For SVM, step three reads

&t =4 ® min (07 (1—y®vk)+),

where ® denotes the element-wise product, and min is applied element-wise. As
a second example, consider classic regularized least squares (RLS). In this case,
step three reduces to

k
k+1 _ QY — v

© T iva/C

31



Chapter 2

Generally, the complexity of step three is O(¢) for any of these classical loss
functions.

2.2.1 Convergence

The following result states that the sequence generated by the iterative proce-
dure (2.10) can be used to approximately solve problem (2.2) to any precision,
provided that « is suitably chosen.

Theorem 9. If the sequence c* is generated according to algorithm (2.10), and

2
—_— 2.11
0<a< KL ( )

then (2.9) holds. Moreover, c* is bounded, and any cluster point is a solution
of problem (2.2).

A stronger convergence result holds when the kernel matrix is strictly positive or
f is differentiable with Lipschitz continuous gradient. Under these conditions,
it turns out that the whole sequence c* converges at least linearly to an unique
fixed point.

Theorem 10. Suppose that the sequence c* is generated according to algorithm,
(2.10), where « satisfy (2.11), and one of the following conditions holds:

1. The kernel matrix K is positive definite.

2. Function f is everywhere differentiable and V f is Lipschitz continuous,

Then, there exists a unique solution c¢* of equation (2.7), and c* converges to
c* with the following rate

[HH =t flo < pllk e flay 0<p<L.

In practice, condition (2.11) can be equivalently satisfied by fixing o = 1 and
scaling the kernel matrix to have spectral norm between 0 and 2. In problems
that involve a regularization parameter, this last choice will only affect its scale.
A possible practical rule to choose the value of « is & = 1/|/K]|2, which is equiv-
alent to scale the kernel matrix to have spectral norm equal to one. However,
in order to compute the scaling factor in this way, one generally needs all the
entries of the kernel matrix. A cheaper alternative that uses only the diagonal
entries of the kernel matrix is o = 1/tr(K), which is equivalent to fix a to one
and normalizing the kernel matrix to have trace one. To see that this last rule
satisfy condition (2.11), observe that the trace of a positive semidefinite ma-
trix is an upper bound for the spectral norm. In the linear case (2.5), one can
directly compute o on the basis of the data matrix X. In particular, we have
K|z = [1X]3, and tr(K) = || X||%, where || - || denotes the Frobenius norm.

32



Optimization for large scale regularized kernel methods

2.3 Coordinate-wise iterative algorithms

In this section, we describe a second optimization approach that can be seen as
a way to iteratively enforce optimality condition (2.8). Throughout the section,
it is assumed that f is additively separable as in (2.3). In view of Corollary
2, the optimality condition can be rewritten for a single component as in (2.8).
Consider the following general update algorithm:

A= T (kTR — by, i=1,...,¢ (2.12)

i 7

A serial implementation of algorithm (2.10) can be obtained by choosing «; = «
and by cyclically computing the new components cf“ according to equation
(2.12). Observe that this approach requires to keep in memory both c* and
cF*1 at a certain time. In the next sub-section, we analyze a different choice of
parameters «; that leads to a class of coordinate descent algorithms, based on

the principle of using new computed information as soon as it is available.

2.3.1 Coordinate descent methods

Algorithm 1 Coordinate descent for regularized kernel methods
while max; |h;| > 6 do
Pick a coordinate index ¢ according to some rule,
2k = kTck
v = 2Fky — k)
tmp = S;(v}),
h; = tmp — ck,
cf“ = tmp,
end while

A coordinate descent algorithm updates a single variable at each iteration by
solving a sub-problem of dimension one. During the last years, optimization
via coordinate descent is becoming a popular approach in machine learning
and statistics, since its implementation is straightforward and enjoys favorable
computational properties [Friedman et al., 2007, Tseng and Yun, 2008, Wu and
Lange, 2008, Chang et al., 2008, Hsieh et al., 2008, Yun and Toh, 2009, Huang
et al., 2010, Friedman et al., 2010]. Although the method may require many
iterations to converge, the specific structure of supervised learning objective
functionals allows to solve the sub-problems with high efficiency. This makes
the approach competitive especially for large-scale problems, in which memory
limitations hinder the use of second order optimization algorithms. As a matter
of fact, state of the art solvers for large scale supervised learning such as glmnet
[Friedman et al., 2010] for generalized linear models, or LIBLINEAR [Fan et al.,
2008] for SVMs are based on coordinate descent techniques.

The update for ¢f in algorithm (2.12) also depends on components c? with
j < i which have already been updated. Hence, one needs to keep in memory
coefficients from two subsequent iterations ¢*T' and ¢*. In this sub-section, we
describe a method that allows to take advantage of the computed information

33



Chapter 2

as soon as it is available, by overwriting the coefficients with the new values.
Assume that the diagonal elements of the kernel matrix are strictly positive,
i.e. ki > 0. Notice that this last assumption can be made without any loss
of generality. Indeed, if k;; = 0 for some index i then, in view of the inequal-
ity |kij| < /kik;j, it follows that k;; = 0 for all j. Hence, the whole i-th
column (row) of the kernel matrix is zero, and can be removed without affect-
ing optimization results for the other coefficients. By letting a; = 1/k;; and
S; = —J(ik”),1 in equation (2.8), the i-th coefficient in the inner sum does
cancel out, and we obtain

C; = Si Z %Cj . (2.13)

g#i

The optimal i-th coefficient is thus expressed as a function of the others. Similar
characterizations have been also derived in [Dinuzzo and De Nicolao, 2009] for
several loss functions. Equation (2.13) is the starting point to obtain a variety
of coordinate descent algorithms involving the iterative choice of a a coordinate
index 7 followed by the optimization of ¢; as a function of the other coeflicients.
A simple test on the residual of equation (2.13) can be used as a stopping
condition. The approach can be also regarded as a non-linear Gauss-Seidel
method [Ortega and Rheinboldt, 2000] for solving the equations (2.8). It is
assumed that vector ¢ is initialized to some initial ¢, and coefficients h; are
initialized to the residuals of equation (2.13) evaluated in correspondence with
. Remarkably, in order to implement the method for different loss functions,
we simply need to modify the expression of functions S;. Each update only
involves a single row (column) of the kernel matrix. In the following, we will
assume that indices are recursively picked according to a rule that satisfy the
following condition, see [Tseng, 2001, Luenberger and Ye, 2008].

Essentially Cyclic Rule. There exists a constant integer 1" > ¢ such that
every index i € {1,..., ¢} is chosen at least once between the k-th iteration and
the (k + T — 1)-th, for all k.

Iterations of coordinate descent algorithms that use an essentially cyclic rule
can be grouped in macro-iterations, containing at most 1" updates of the form
(2.13), within which all the indices are picked at least once. Below, we report
some simple rules that satisfy the essentially cyclic condition and don’t require
to maintain any additional information (such as the gradient):

1. Cyclic rule: In each macro-iteration, each index is picked exactly once
in the order 1,...,¢. Hence, each macro-iteration consists exactly of £
iterations.

2. Aitken double sweep rule: Consists in alternating macro-iterations in
which indices are chosen in the natural order 1, ..., ¢ with macro-iterations
in the reverse order, i.e. (¢ —1),...,1.

3. Randomized cyclic rule: The same as the cyclic rule, except that in-
dices are randomly permuted at each macro-iteration.

34



Optimization for large scale regularized kernel methods

In the linear case (2.5), z¥ can be computed as follows
wh = X,
28 = aTwk.

By exploiting the fact that only one component of vector ¢ changes from an
iteration to the next, the first equation can be further developed:

wh = XTck = wh = 4 (XTe,)h, = w1 + a,h,

where p denotes the index chosen in the previous iteration, and h, denotes the
variation of coefficient ¢, in the previous iteration. By introducing these new
quantities, the coordinate descent algorithm can be rewritten as in Algorithm

2, where we have set S; := —J"IHI_Q.
T2

Algorithm 2 Coordinate descent (linear kernel)

while max; |h;| > 6 do
Pick a coordinate index ¢ according to some rule,
k _ k=1
w® = w + xphp,
end if
s i
vy =z /|l@ill3 — ¢
h; = tmp — cf,
o+

if hy, # 0 then
p: T, k
k k
tmp = Si(vf),
= tmp,

p=1i
end while

The computational cost of a single iteration depends mainly on the updates for
w and z;, and scales linearly with the number of features, i.e. O(n). When the
loss function has linear traits, it is often the case that coefficient ¢; does not
change after the update, so that h; = 0. When this happen, the next update of
w can be skipped, obtaining a significant speed-up. Further, if the vectors x;
are sparse, the average computational cost of the second line may be much lower
than O(n). A technique of this kind has been proposed in [Hsieh et al., 2008]
and implemented in the package LIBLINEAR [Fan et al., 2008] to improve speed
of coordinate descent iterations for linear SVM training. Here, one can see that
the same technique can be applied to any convex loss function, provided that
an expression for the corresponding resolvent is available.

2.3.2 Convergence

The main convergence result for coordinate descent is stated below. It should
be observed that the classical theory of convergence for coordinate descent is
typically formulated for differentiable objective functionals. When the objec-
tive functional is not differentiable, there exist counterexamples showing that
the method may get stuck in a non-stationary point [Auslender, 1976]. In the
non-differentiable case, optimality of cluster points of coordinate descent itera-
tions has been proven in [Tseng, 2001] (see also references therein), under the

35



Chapter 2

additional assumption that the non-differentiable part is additively separable.
Unfortunately, the result of [Tseng, 2001] cannot be directly applied to prob-
lem (2.2), since the (possibly) non-differential part f(Kc) is not separable with
respect to the optimization variables ¢;, even when (2.3) holds. Notice also
that, when the kernel matrix is not strictly positive, level sets of the objective
functional are unbounded (see Lemma 12 in the appendix). Despite these facts,
it still holds that cluster points of coordinate descent iterations are optimal, as
stated by the next Theorem.

Theorem 11. Suppose that the following conditions hold:

1. Function f is additively separable as in (2.3),

2. The diagonal entries of the kernel matriz satisfy ky; > 0,
3. The sequence c* is generated by the coordinate descent algorithm (Algo-
rithm 1 or 2), where indices are recursively selected according to an essen-

tially cyclic rule.

Then, (2.9) holds, c* is bounded, and any cluster point is a solution of (2.2).

2.4 A reformulation theorem

The following result shows that solutions of problem (2.2) satisfying equation
(2.8) are also stationary points of a suitable family of differentiable functionals.
See the appendix for the definition of the Moreau-Yosida regularization.

Theorem 12. If ¢ satisfy (2.7), then it is also a stationary point of the following
functional:
K,

2 )

Fo(c) = a t fo(Kac) +
where fo, denotes the Moreau-Yosida reqularization of f, and K, := oK — 1.

Theorem 12 gives an insight into the role of parameter «, as well as providing
an interesting link with machine learning with indefinite kernels. By the prop-
erties of the Moreau-Yosida regularization, f, is differentiable with Lipschitz
continuous gradient. It follows that F,, also have such property. Notice that
lower values of « are associated with smoother functions f,, while the gradi-
ent of a~!f, is non-expansive. A lower value of « also implies a “less positive
semidefinite” kernel, since the eigenvalues of K,, are given by (aa; —1), where o
denote the eigenvalues of K. Indeed, the kernel becomes non-positive as soon
as amin;{ce;} < 1. Hence, the relaxation parameter « regulates a trade-off
between smoothness of f, and positivity of the kernel.

When f is additively separable as in (2.3), it follows that f, is also additively
separable:

Vi
fa(Z) = me(zi),

36



BIBLIOGRAPHY

and f;, is the Moreau-Yosida regularization of f;. The components can be often
computed in closed form, so that an “equivalent differentiable loss function” can
be derived for non-differentiable problems. For instance, when f; is given by
the hinge loss fi(2;) = (1 — y;2i) ., letting a = 1, we obtain

oy 12 =z, Yizi <0
Funlz) = { (1 —9iz)1/2, yizi >0

Observe that this last function is differentiable with Lipschitz continuous deriva-
tive. By Theorem 12, it follows that the SVM solution can be equivalently
computed by searching the stationary points of a new regularization functional
obtained by replacing the hinge loss with its equivalent differentiable loss func-
tion, and modifying the kernel matrix by subtracting the identity.

2.5 Conclusions

In this chapter, fixed-point and coordinate descent algorithms for regularized
kernel methods with convex empirical risk and squared RKHS norm regular-
ization have been analyzed. The two approaches can be regarded as instances
of non-linear Jacobi and Gauss-Seidel algorithms to solve a suitable non-linear
equation that characterizes optimal solutions. While the fixed-point algorithm
has the advantage of being parallelizable, the coordinate descent algorithm is
able to immediately exploit the information computed during the update of a
single coefficient. Both classes of algorithms have the potential to scale well
with the dataset size. Finally, it has been shown that minimizers of convex
regularization functionals are also stationary points of a family of differentiable
regularization functionals involving the Moreau-Yosida regularization of the em-
pirical risk.

Bibliography

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337-404, 1950.

A. Auslender. Optimisation Méthodes Numériques. Masson, France, 1976.

K-W. Chang, C-J. Hsieh, and C-J. Lin. Coordinate descent method for large-
scale L.2-loss linear support vector machines. Journal of Machine Learning
Research, 9:1369-1398, 2008.

F. Dinuzzo and G. De Nicolao. An algebraic characterization of the optimum
of regularized kernel methods. Machine Learning, 74(3):315-345, 2009.

R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research,
9:1871-1874, 2008.

J. Friedman, T. Hastie, H. Hoefling, and R. Tibshirani. Pathwise coordinate
optimization. Annals of Applied Statistics, 1(2):302-332, 2007.

37



Chapter 2

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):
1-22, 2010.

J-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Conver Analysis.
Springer, 2 edition, 2004.

C. Hsieh, K.W. Chang, C.J. Lin, S. S. Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In Proceedings of the
25th Annual International Conference on Machine Learning (ICML 2008),
pages 408-415, Helsinki, Finland, 2008.

F-L Huang, C-J Hsieh, K-W Chang, and C-J Lin. Iterative scaling and coor-
dinate descent methods for maximum entropy models. Journal of Machine
Learning Research, 11:815-848, 2010.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. International
series in operation research and management science. Springer, 2008.

J. M. Ortega and W. C. Rheinboldt. [lterative solution of nonlinear equations
in several variables. Classics in Applied Mathematics. STAM, 2000.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,
USA, 1970.

B. Scholkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Neural Networks and Computational Learning Theory, 81:416-426, 2001.

P. Tseng. Convergence of a block coordinate descent method for nondifferen-
tiable minimization. Journal of optimization theory and applications, 109(3):
475-494, June 2001.

P. Tseng and S. Yun. A coordinate gradient descent method for linearly con-
strained smooth optimization and support vector machines training. Compu-
tational Optimization and Applications, pages 1-28, 2008.

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized
regression. Annals of Applied Statistics, 2(1):224-244, 2008.

S. Yun and K.-C. Toh. A coordinate gradient descent method for ¢;-regularized
convex minimization. Computational Optimization and Applications, pages
1-35, 2009.

38



Kernel machines with two layers

In this chapter, we introduce the framework of kernel machines with two layers,
that generalizes classical regularized kernel methods and provides also a flexible
way to learn a kernel function from the data. Consider a generic architecture
whose input-output behavior can be described as a function composition of two
functions called layers

g=g2091, G1: X —>Z, g:Z-=)Y, (3.1)

where X is a generic set while Z and ) are two Hilbert spaces. We will formalize
in a functional analytic setting the problem of learning simultaneously the two
functions g; and g from the data. Structures of the type (3.1) can be interpreted
in different ways:

e In many data modeling problems, the outputs can be assumed to depend
indirectly on the inputs through a set of unobserved factors. By using a
structure with two layers of the form (3.1), one can embed prior knowledge
about the dependence of both the factors on the inputs (function ¢;), and
the outputs on the factors (function g2).

e Function ¢g; can be interpreted as a transformation to pre-process the
inputs in order to extract features which are useful for the purpose of
predicting the output. Indeed, pre-processing of input examples is a cus-
tomary step in many supervised learning problems. An architecture with
two layers of the form (3.1) can be seen as a way to learn simultaneously
a pre-processing function g, and the final output predictor gs.

In section 3.1 we state a representer theorem for kernel machines with two layers:
irrespectively of dimension of the hypothesis spaces for g; and g, finite linear
combination of kernel functions on each layer are optimal computational archi-
tectures with respect to general regularization functionals. Remarkably, such
representer theorem also imply that, upon training, architecture (3.1) can be
equivalently regarded as a standard kernel machine in which the kernel function
is learned from the data.

The problem of learning the kernel is receiving considerable attention in recent
years, both from functional analytic point of view and from pure optimization

39



Chapter 8

perspectives [Bach et al., 2004, Lanckriet et al., 2004, Ong et al., 2005, Mic-
chelli and Pontil, 2005, Argyriou et al., 2005, Wu et al., 2007, Micchelli and
Pontil, 2007]. Indeed, the difficulty of choosing a good hypothesis space with
little available a-priori knowledge is significantly reduced when the kernel is also
learned from the data. The flexibility of algorithms which learn the kernel makes
also possible to address important issues such as feature selection, learning from
heterogeneous sources of data, and multi-scale approximation.

After discussing the general result on the solution representation for two non-
linear layers, the attention is focused on the case in which the second layer is
linear. In section 3.2, we introduce a regularization framework that turns out to
be equivalent to a general class of methods to learn simultaneously a predictor
and the associated kernel as convex combination of basis kernels, sometimes
called multiple kernel learning (MKL).

3.1 Kernel machines with two layers

A learning architecture with two layers can be formalized as a map g : X — )
expressed as a function composition as in equation (3.1). Introduce an RKHS
H1 of Z-valued functions over X and an RKHS Hs of Y-valued functions over
Z, with kernel functions K' and K2, respectively. Then, consider the following
problem:

Join [f (92 090)(x1),-- (92 0 91)(@e)) + D (llgnllae) + L2(llgallae )] (3.2)

g2€H2

Here, f : Y — R, is a functions measuring the approximation of training
data, while ©4,Q : Ry — Ry U {400} are two extended-valued proper non-
decreasing functions that play the role of regularization terms. Problem 3.2 is
outside the scope of standard representer theorems [Scholkopf et al., 2001] due
to the presence of the composition (g2 o g1). Nevertheless, it still holds that
linear combinations of a finite number of kernel functions are optimal solutions,
as soon as there exist minimizers.

Theorem 13. If the functional of problem (3.2) admit minimizers, then there
exist minimizers in the form

‘ ¢
g1(x) = ZK;l (x)ei, 92(2) = ZK;(%)(Z)Q?-
i=1 i=1

Letting

K(z1,22) := K*(g1(21), g1 (22)),

denote the equivalent input-output kernel, there exists optimal learning archi-
tectures whose input-output map can be written as:

14

9(@) = (g2091)(2) = Y_ Ko, (2)c]. (3-3)

i=1

40



Kernel machines with two layers

Theorem 13 is a restriction theorem: the search for solutions of problem (3.2)
can be restricted to kernel machines with two layers involving a finite number of
kernel functions, even when H; and Hs are infinite dimensional spaces. Notice
that Theorem 13 is not an existence theorem, since existence of minimizers is
one of the hypotheses. As shown in the next sections, existence can be ensured
under mild additional conditions on f;, €21, {2. Under the general hypothesis of
Theorem 13, uniqueness of minimizers is also not guaranteed, even when f is
strictly convex. Notice also that Theorem 13 do admit the presence of optimal
solutions not in the form of finite kernel expansions. However, if such solutions
exist, then their projections over the finite dimensional span of kernel sections
are optimal as well, so that one can restrict the attention to kernel machines
with two layers also in this case. Finally, when Q; and Q9 are strictly increasing,
it holds that every minimizer can be expressed as a kernel machine with two
layers.

3.2 MKL as a kernel machine with two layers

Theorem 13 shows that training an architecture with two layers is equivalent to
training simultaneously a single-layer kernel network and the kernel function,
see equation (3.3). In this section, it is shown that multiple kernel learning,
consisting in simultaneous learning of a finite convex combination of kernels
and the associated predictor, can be interpreted as a specific instance of kernel
architecture with two layers. Introduce a set of m positive semidefinite kernels
K; over X, called basis kernels and consider the following choice for H; and Hs.

e H; is an RKHS of vector valued functions g : X — R™ associated with
the matrix-valued kernel function K' such that

K!'= diag{f(h...,f(m} .
e Hs is the RKHS of real valued functions g : R™ — R associated with the
linear kernel
K2 (21,2) = 21 Sz,
where S is a diagonal scaling matrix:
S =diag{s1,...,sm} > 0.

For any g € Hy, let ¢°, (i = 1,...,m) denote its components. Introduce the
indicator function I of the interval [0, 1] defined as

0, o0<t<l
I(t)_{+00, t>1 ’

let f: R® — R, denote finite-valued convex empirical risk. In the following,
we analyze the particular case of problem (3.2) in which Q is the Tikhonov
regularizer and (s is the Ivanov regularizer:

41



Chapter 8

which are both convex functions:

2
min [£((g209) @) (02 0 9) (@) + 208 1 (lgalen)] . (3.4

g1€H, 2
g2€H2

Since f is convex and g5 is linear, the problem is separately convex in both g;
and ¢go. Apparently, the Ivanov regularization on g, is equivalent to imposing
the constraint ||ga|l%, < 1. The next Theorem characterizes optimal solutions
of problem (3.4).

Theorem 14. There exist optimal solutions g1 and go of problem (3.4) in the
form

‘
gi(x) = sia;i »_¢;Ki(zj,x),  ga(z) = 2"Sa.
j=1
Letting d; := s;a?, optimal coefficients (c,d) solve the following problem

cTKe
i K 3.5
ceerI,lcllrelR"” (f( )+ 2 ) (3:5)

subject to
Kl = sifK(eiay), K=Y &K',  d>0, Y di<l (36)
k=1 k=1

Finally, the solution of problem (3.4) can be written as in equation (3.3), where
the kernel K satisfies

m 4 14
K(z,y) =Y diKi(r,y),  Kiz,y) =Y Y cjcpKi(z,,2)Ki(w),,y).
i=1 J1=1j2=1

(3.7)

Theorem 14 shows that the variational problem (3.4) for a two-layer kernel
machine is equivalent to problem (3.5)-(3.6). The non-negativity constraints
dy > 0 produces a sparse selection of a subset of basis kernels. In standard
formulations, multiple kernel learning problems feature the equality constraint
S, di, = 1, instead of the inequality in (3.6). Nevertheless, Lemma 2 below
shows that there always exist optimal solutions satisfying the equality, so that
the two optimization problems are equivalent.

Lemma 2. There exists an optimal vector d for Problem 3.5 satisfying the
equality constraint

f: d = 1. (3.8)
k=1

42



BIBLIOGRAPHY

Lemma 2 completes the equivalence between the specific kernel machines with
two layers obtained by solving (3.4) and MKL.

A few comments on certain degeneracies in problem (3.5)-(3.6) are in order.
First of all, observe that the absolute value of optimal coefficients a; charac-
terizing the kernel machine with two layers is given by |a;| = +/d;/s;, but
sign(a;) is undetermined. Then, without loss of generality, it is possible to
choose a; = +/d;/s;. Second, observe that the objective functional in (3.5)
depends on c¢ through the product z = Ke¢. When K is singular, the optimal
vector ¢ is not unique (independently of f). In particular, if u belongs to the
nullspace of K, then ¢ + u achieves the same objective value of c. One possible
way to solve the indetermination, again without any loss of generality, is to
constrain ¢ to belong to the range of the kernel matrix. With such additional
constraint, there exists v such that ¢ = K'v, where 1 denote the Moore-Penrose
pseudo-inverse (notice that, in general, v might be different from z).

Finally, the following Lemma gives another important insight into the structure
of problem (3.5)-(3.6).

Lemma 3. Letting z = K¢, problem (3.5)-(5.6) can be rewritten as

min _ (f(z) + h(2,K)), subject to  (3.6), (3.9)
z€RE,dER™
where
[ ((TKT2)/2, =z € range(K)
h(z K) = { +00, otherwise

Problem (3.9) is a convex optimization problem.

Observe that, under the hypothesis of Lemma 3, it follows that local minimizers
in (3.5) are also global minimizers.

3.3 Conclusions

This chapter introduces the framework of kernel machines with two layers, a
general class of computational architectures that generalize classical regularized
kernel methods. These architectures can be also seen as a general way to learning
a kernel function from the data. Algorithms that learn the kernel as a convex
combination of basis kernels (multiple kernel learning) are shown to be a sub-
class of kernel machines with two layers.

Bibliography

A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations
of continuously parameterized basic kernels. In Peter Auer and Ron Meir,
editors, Learning Theory, volume 3559 of Lecture Notes in Computer Science,
pages 338-352. Springer Berlin / Heidelberg, 2005.

43



Chapter 8

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning,
conic duality, and the SMO algorithm. In Proceedings of the 21th Annual
international conference on Machine learning (ICML 2004), page 6, New
York, NY, USA, 2004. ACM Press.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jor-
dan. Learning the kernel matrix with semidefinite programming. Journal of
Machine Learning Research, 5:27-72, 2004.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization.
Journal of Machine Learning Research, 6:1099-1125, 2005.

C. A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel.
Machine Learning, 66:297-319, 2007.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyper-
kernels. Journal of Machine Learning Research, 6:1043-1071, 2005.

B. Schélkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Neural Networks and Computational Learning Theory, 81:416-426, 2001.

Q. Wu, Y. Ying, and D. Zhou. Multi-kernel regularized classifiers. Journal of
Complexity, 23(1):108-134, 2007.

44



Regularized least squares with two layers

In this chapter, we study the problem of learning a convex combination of ker-
nels based on regularization with the square loss function [Micchelli and Pontil,
2005]. Despite the simplicity and importance of the model, no efficient al-
gorithmic implementations have been made available so far. Here, we show
that the involved optimization problem can be efficiently solved using a two-
step optimization procedure called RLS2 (regularized least squares with two
layers), alternating between the solution of a linear system and a constrained
least squares problem. We adopt a combination of conjugate gradient for the
linear system and SMO (sequential minimal optimization) for the least square
problem, with suitable variable shrinking techniques. In section 4.2, RLS2 is
interpreted as the Bayesian MAP estimate of a suitable model with two layers.
Such interpretation can be used to obtain confidence intervals for least square
multiple kernel learning algorithms. It can be shown, see [Micchelli and Pontil,
2007], that regularized learning of a convex combination of linear kernels on each
feature with the square loss function boils down to ¢; regularized least squares,
also known as the Lasso [Tibshirani, 1996]. In section 4.3, such interpretation
is briefly reviewed, showing that RLS2 with linear basis kernels on each feature
coincides with least squares regularized with a suitably scaled £; norm. Impor-
tant aspects related to the choice of the scaling of basis kernels in least squares
multiple kernel learning and weighted ¢; norms are investigated in subsection
4.4. The application of RLS2 on a variety of learning problems is analyzed in
section 4.5. State of the art generalization performances are achieved on several
datasets, including multi-class classification of genomic data. An open source
toolbox to train and validate RLS2 models with a Graphic User Interface is
available at http://www.mloss.org. All the proof of Theorems and Lemmas
are given in the Appendix.

4.1 Regularized least squares with two layers

In the previous chapter, a general class of convex optimization problems to
learn finite linear combinations of kernels is shown to be equivalent to a ker-
nel machine with two layers. Different choices of loss functions f; lead to a
variety of learning algorithms. For instance, the version with two layers of stan-
dard Support Vector Machines with “hinge” loss functions f;(z) = (1 —y;2),

45


 http://www.mloss.org

Chapter 4

is equivalent to the SILP (Semi-Infinite Linear Programming) multiple kernel
learning problem studied in [Sonnenburg et al., 2006], whose solution can be
computed, for instance, by using gradient descent.

Herein, attention is focussed on square loss functions f;(z) = (y; —2)?/2 and the
associated kernel machine with two layers. As we shall show, coefficients ¢; and
d; defining the architecture as well as the “equivalent input-output kernel” K
can be computed by solving a very simple optimization problem. Such problem
features the minimization of a functional in (c, d), that is separately quadratic
in both ¢ and d. It is worth noticing that the square loss function can be used
to solve regression problems as well as classification ones. In this respect, it has
been observed that test performances of regularized least squares classifiers are
comparable to that of Support Vector Machines on many datasets, see [Rifkin
et al., 2003, Fung and Mangasarian, 2005] and references therein.

Let A > 0, and consider the following optimization problem:

<|y - I;A(d)cng + CTK2(d)C> . subject to  (3.6).  (4.1)

min
ceRt,deR™

Also, let A,,, denote the standard (m — 1)-simplex in R™:

A, = {deRm: d>0, Zdil}.

=1

For any fixed d, problem (4.1) is an unconstrained quadratic optimization prob-
lem with respect to c¢. It is then possible to solve for the optimal ¢* in closed
form as a function of d:

c*(d) = (Zm: ;K" + AI) _ Y. (4.2)

i=1
By eliminating ¢, problem (4.1) can be reduced to a problem in d only, as stated
by Lemma 4 below.
Lemma 4. If (4.2) holds and d* is an optimal solution of the following problem:

min <M> , (4.3)

deAm, 2

then the pair (¢*,d*) is an optimal solution of (4.1).

Optimal coefficients can be computed using an iterative two-step procedure that
alternates between kernel and predictor optimization. The specific structure of
problem (4.1) allows for exact minimization in each of the two phases. Let

Ac

Vie (0~ vm)=(Kle - Krc), u::(y—2>.

For any fixed ¢, minimization with respect to d boils down to a simplex-constrained
least squares problem, as stated by Lemma 5.

46



Regularized least squares with two layers

Lemma 5. For any fized ¢, the optimal coefficient vector d of (4.1) can be
obtained as the solution of the following problem.:

. 2
i [|Vd — ull3. (4.4)

Algorithm 3 alternates between minimization with respect to ¢ obtained through
the solution of the linear system (4.2), and the solution of the simplex-constrained
least squares problem (4.4) in d. The non-negativity constraint induces sparsity
in the vector d, thus selecting a subset of basis kernels. To understand the ini-
tialization of coefficients ¢ and d in Algorithm 3, consider the limiting solution
of the optimization problem when the regularization parameter tends to infinity.
Such solution is the most natural starting point for a regularization path, since
optimal coefficients can be computed in closed form.

Lemma 6. The limiting solution of problem (4.1) when A — +00 is given by

(Coor doo) = (0, ;) , i € arg max (y"K"y).

As shown in section 4.4, the result of Lemma 6 can be also used to give an
important insight into the choice of the scaling S in the second layer.

Algorithm 3 Regularized least squares with two layers

i ¢ arg maxg—i,.. m yTKFy
d <+ e;
B+ {i}
while (stopping criterion is not met) do
K<+0
for j € B do
end for
¢ + Solution of the linear system (K + AI)c=y
ue(y—%)
fori=1,...,m do
v; — K'e
end for
d < Solution of (4.4).
B« {j:d; #0}
end while

4.2 A Bayesian MAP interpretation of RLS2

The equivalence between regularization problem (3.4) and multiple kernel learn-
ing optimization can be readily exploited to give a Bayesian MAP (maximum a
posteriori) interpretation of RLS2. To specify the probabilistic model, we need
to introduce a prior distribution over the set of real-valued functions defined over
X, and define the data generation model (likelihood). In the following, N (u,o?)
denote a real Gaussian distribution with mean p and variance o2, GM (g, K)

47



Chapter 4

a Gaussian measure on the set of functions from X into R™ with mean g and
covariance function K, and U(Q2) the uniform distribution in R™ over a set 2
of positive finite measure. Let g : ¥ — R be such that

g= a’TSgl7

where g1 : X — R™ is distributed according to a Gaussian measure over H;
with zero mean and (matrix-valued) covariance function K', and a is a random
vector independent of gy, distributed according to an uniform distribution over
the ellipsoid Eg := {a € R™ : a’Sa < 1}:

g1 ~GM (0,K"), a~ U(Esg).
Regarding the likelihood, assume that the dataset is generated by drawing pairs

(24, y;) independently and identically distributed according to an additive Gaus-
sian noise model:

When H; is a finite dimensional space, the MAP estimate of g is:
g =TS,
where (g7, a*) maximize the posterior density:

p(g|D)  p(Dlg)p(g1)p(a).

Specifically, we have
4 T 2
yi —a’ Sgi(z;)
p(Plg) o [[exw (—( ) )
i=1

- 202
g1l
p(g1) o exp (”1 :

2

(a) x 1, ze€ kg
P 0, else

It follows that a* € Fg and, by taking the negative logarithm of p(g|D), that the
MAP estimate coincides with the solution of the regularization problem (3.4)
with square loss functions and A = ¢2. When H; is an infinite-dimensional
function space, the Gaussian measure prior for g; do not admit a probability
density. Nevertheless, (3.4) can be still recovered by interpreting the MAP
estimate as a maximal point of the posterior probability measure, as described

in [Hengland, 2007].

4.3 Linear regularized least squares with two layers

In applications of standard kernel methods involving high-dimensional input
data, the linear kernel on R™

K($17$2) = <$1,$2>2

48



Regularized least squares with two layers

plays an important role. Optimization algorithms for linear machines are being
the subject of a renewed attention in the literature, due to some important
experimental findings. First, it turns out that linear models are already enough
flexible to achieve state of the art classification performances in application
domains such as text document classification, word-sense disambiguation, and
drug design, see e.g. [Joachims, 2006]. Second, linear machines can be trained
using extremely efficient and scalable algorithms [Hsieh et al., 2008, Shalev-
Shwartz et al., 2007, Fan et al., 2008]. Finally, linear methods can be also used
to solve certain non-linear problems (by using non-linear feature maps), thus
ensuring a good trade-off between flexibility and computational convenience.

Linear kernels are also meaningful in the context of multiple kernel learning
methods. Indeed, when the input set & is a subset of R", a possible choice for
the set of basis kernels K}, is given by linear kernels on each component:

Ki(2y, 20) = abak. (4.5)
Such a choice makes the input output map (3.3) a linear function:

m

‘
g(x) = Z (djsj Z cwi) 2 =wlz, (4.6)

Jj=1

where
¢
e d.gizs - d
wj = djs;%5, zj = E ciTy. (4.7
i=1

Here, an important benefit is sparsity in the vector of weights w, that follows im-
mediately from sparsity of vector d. In this way, linear multiple kernel learning
algorithms can simultaneously perform regularization and linear feature selec-
tion. Such property is apparently linked to the introduction of the additional
layer in the architecture, since standard kernel machines with one layer are not
able to perform any kind of automatic feature selection.

Recall that standard regularized least squares with the linear kernel boils down
to finite-dimensional Tikhonov regularization [Tikhonov and Arsenin, 1977], also
known as ridge regression [Hoerl and Kennard, 1970]:

ly — Xw|3 | |lwl3
( ox 2 )

min
weR™

where X € Rf*™ denote the matrix of inputs data.

Interestingly, when the input set & is a subset of R™ and basis kernels are
chosen as in (4.5), problem (4.1) produces an algorithm whose regularization
path coincide with that of a scaled version on f;-regularized least squares, as
shown in [Micchelli and Pontil, 2007]. The output of the RLS2 algorithm can
be also used to obtain the following matrix:

I'(d) := diag{s1d1, ..., 8mdm}, (4.8)

whose diagonal elements are proportional to the estimated precisions (inverse
variances) of the weights w;, under a suitable Bayesian model.

49



Chapter 4

Lemma 7. If the basis kernels are chosen as in (4.5), the optimal solution of
(4.1) can be written as in (4.6)-(4.7), where w solves the following problem:

v = XUIHz |wz
Jnin Z . (4.9)

Finally, Lemma 8 below states that problem (4.1) with linear basis kernels on
each feature is also equivalent to a scaled ridge regression problem, in which
the optimal scaling is estimated from the data. For any fixed d, let n(d) be
the number of non-zero coefficients d;, T'(d) € R™®*n(@ denote the diagonal
sub-matrix of I' containing all the strictly positive coefficients. Moreover, let X
denote the scaled sub-matrix of selected features X := XT'.

Lemma 8. If the basis kernels are chosen as in (4.5), the optimal solution of
(4.1) can be written as in (4.6)-(4.7), where Xw = Xw, and (w,d) solve the
following problem:

~Xal2 T1/2 w2
mir(1d) ly 2>\w|\2 + H (Q)MHQ ,  subject to  (4.8). (4.10)
weR™ )|
deeAm

When d is fixed to its optimal value in problem (4.10), the optimal w is given
by the expression:

&= (XTX + Af‘) XTy.

The result of Lemma 8 can be also used to give an interesting interpretation
of linear RLS2. In fact, the coefficient s;d; can be interpreted as a quantity
proportional to the inverse variance of the i-th coefficient w;. Problem (4.10)
can be seen as a Bayesian MAP estimation with Gaussian residuals, Gaussian
prior on the coefficients and uniform prior over a suitable simplex on the vector
of coefficients’s precisions.

It is useful to introduce a notion of “degrees of freedom”, see e.g. [Efron, 2004,
Hastie et al., 2008]. Degrees of freedom is an index more interpretable than
the regularization parameter, and can be also used to choose the regularization
parameter according to tuning criteria such as C, [Mallows, 1973], AIC [Akaike,
1973], BIC [Schwarz, 1978], GCV [Craven and Wahba, 1979]. A general expres-
sion for the effective degrees of freedom of non-linear kernel regression methods,
based on the SURE (Stein’s Unbiased Risk Estimator) approximation [Stein,
1981] has been recently derived in [Dinuzzo and De Nicolao, 2009]. For linear
RLS2, the following quantity is an appropriate approximation of the degrees of
freedom:

N e e =1~
dF(N) = tr (X (XTX + AI‘) XT> . (4.11)
Expression (4.11) corresponds to the equivalent degrees of freedom of a linear

regularized estimator with regressors fixed to X and diagonal regularization AT.
Notice that (4.11) neglects the non-linear dependence of matrix X on the output

50



Regularized least squares with two layers

data and does not coincide with the SURE estimator of the degrees of freedom.
Nevertheless, the property 0 < df(A) < m holds, so that df can be conveniently
used to interpret the complexity of the linear RLS2 model (see subsection 4.5.1
for an example).

4.4 Choice of the scaling and feature selection

The ability of RLS2 to select features or basis kernels is highly influenced by the
scaling S. In this subsection, we analyze certain scaling rules that are connected
with popular statistical indices, often used as “filters” for feature selection, see
[Guyon et al., 2006]. Since the issue of scaling still needs further investigation, it
may happen that rules different from those mentioned in this subsection perform
better on specific problems.

A key observation is the following: according to Lemma 6, RLS2 with heavy
regularization favors basis kernels that maximize the quantity A, = y?KFy,
that represents a kind of alignment between the kernel K* and the outputs.
This means that RLS2 tends to select kernels that are highly aligned with the
outputs. Since each alignment Ay is proportional to the scaling factor si, an
effective way to choose the scaling is one that makes the alignment a meaningful
quantity to maximize. First of all, we discuss the choice of scaling for the linear
RLS2 algorithm introduced in subsection 4.3. The generalization to the case of
non-linear basis kernels easily follows by analyzing the associated feature maps.

In the linear case, we have K* = s,2*2*T, where z* is the k-th feature vector,

so that
Ay = sp(yTak)2
By choosing

sk = (lyll2lla*]12) 7%,

the alignment becomes the squared cosine of the angle between the k-th feature
vector and the output vector:

T, .k 2
Ak:(wk) — cos” .
yll2llz* 12

In particular, when the outputs y and the features 2* are centered to have zero

mean, Ay coincides with the squared Pearson correlation coefficient between the
outputs and the k-th feature, also known as coefficient of determination. This
means that RLS2 with heavy regularization selects the features that mostly
correlate to the outputs. Since the term ||y||3 is common to all the factors, one
can also use

sp = [|2"13%, (4.12)

without changing the profile of solutions along a regularization path (though, the
scale of regularization parameters is shifted). Observe that rule (4.12) makes
sense also when data are not centered or centered around values other than

o1



Chapter 4

the mean. In fact, for some datasets, performances are better without any
centering (this is the case, for instance, of Experiment 1 in subsection 4.5.1).
Notice also that (4.12) only uses training inputs whereas, in a possible variation,
one can replace ¥ with the vector containing values of the k-th feature for
both training and test data (when available). The latter procedure sometimes
works better than scaling using training inputs only, and will be referred to as
transductive scaling in the following. For binary classification with labels 41,
the choice (4.12) with or without centering still makes sense, but other rules
are also possible. Let ¢4 and ¢_ denote the number of samples in the positive
and negative class, respectively, and m% and m” denote the within-class mean
values of the k-th feature:

mizivz =k, m]i:% lef.

1y, =1 1Y =—
By choosing

1

@+ o)

S —
where Ui and o* denote the within class standard deviations of the k-th feature,
one obtain

(Cpm — C_mh )2
(%) + (oF)?

Ap =

When the two classes are balanced (¢ = ¢_ = ¢/2), A, boils down to a quantity
proportional to the classical Fisher criterion (or signal-to-interference ratio):

A _£2 (mi_mli)Z
FT T 02 1 ok

Rules (4.12) and (4.13) can be generalized to the case of non-linear basis kernels,
by observing that non-linear kernels can be always seen as linear upon mapping
the data in a suitable feature space. A rule that generalizes (4.12) is the following
[Rakotomamonjy et al., 2008]:

Y —1
S = <Z IN(k(xl,xl)> 5 (414)
=1

that amounts to scale each basis kernel by the trace of the kernel matrix, and
reduces exactly to (4.12) in the linear case. Also (4.14) can be applied with
or without centering. A typical centering is normalization in feature space,
that amounts to subtract 1/¢ Zi,j Ky (x;,x;) to the basis kernel Ky, before
computing (4.14). A transductive scaling rule can be obtained by extending
the sum to both training and test inputs, namely computing the inverse trace
of the overall kernel matrix, as in [Lanckriet et al., 2004]. Finally, a non-linear

52



Regularized least squares with two layers

generalization of (4.13) is obtained by letting:
1 < ~ 1 ~
(Ui)z =7 Z Ky (i, ;) — N Z Ki(zi,x5)
y;=1 Jiy;=1
1 ¢ ~ 1 ~
(011)2:7 Z Kk(xi,xi)—g— Z 1Kk(xi,xj)

T oiyi=—1 T o jiyi=—

4.5 Experiments

In this section, the behavior of linear and non-linear RLS2 on several learn-
ing problems is analyzed. In subsection 4.5.1, an illustrative analysis of linear
RLS2 is proposed, whose goal is to study the feature selection capabilities and
the dependence on the regularization parameter of the algorithm in simple ex-
perimental settings. Recall that linear RLS2 is input-output equivalent to a
scaled version of the Lasso. Indeed, the following experiments show that the
choice of the scaling crucially affect performances. In this respect, the hier-
archical interpretation of RLS2 is very useful to choose the feature scaling in
a principled way, see section 4.4. RLS2 with non-linear kernels is analyzed
in subsection 4.5.2, where an extensive benchmark on several regression and
classification problems from UCI repository is carried out. Finally, multi-class
classification of microarray data is considered in subsection 4.5.3.

Computations are carried out in a Matlab environment and the sub-problem
(4.4) is solved using an SMO-like (Sequential Minimal Optimization) algorithm
[Platt, 1998]. The current implementation features conjugate gradient to solve
linear systems and a sophisticated variable shrinking technique to reduce gradi-
ent computations. In all the experiments, the stopping criterion for Algorithm
3 is the following test on the normalized residual of linear system (4.2):

| (K+ A e —yll < 6]yl

The choice § = 1072 turns out to be sufficient to make all the coefficients
stabilize to a good approximation of their final values. A full discussion of
optimization details is outside the scope of this chapter. All the experiments
have been run on a Core 2 Duo T7700 2.4 GHz, 800 MHz FSB, 4 MB L2 cache,
2 GB RAM.

4.5.1 Linear RLS2: illustrative experiments

In this subsection, we perform two experiments to analyze the behavior of lin-
ear RLS2. In the first experiment, a synthetic dataset is used to investigate the
ability of linear RLS2 to perform feature selection. The dependence of general-
ization performances of RLS2 and other learning algorithms on the training set
size is analyzed by means of learning curves. The goal of the second experiment
is to illustrate the qualitative dependence of coefficients on the regularization
parameter and give an idea of the predictive potentiality of the algorithm.

53



Chapter 4

Experiment 1 (Binary strings data) In the first experiment, a synthetic
BINARY STRINGS dataset has been generated: 250 random binary strings x; €
{0,1}1% are obtained by independently sampling each bit from a Bernoulli
distribution with p = 0.5. Then, the outputs have been generated as

1 2
yi:xi+$i+l‘?+€i,

where ¢; ~ N(0,0%) are small independent Gaussian noises with zero mean
and standard deviation 0 = 0.01. In this way, the outputs only depend on the
first three bits of the input binary string. The dataset has been divided into a
training set of 150 input output pairs and a test set containing the remaining
100 data pairs. We compare the RMSE (root mean squared error) learning
curves obtained by varying the training set size using five different methods:

1. RLS (regularized least squares) with “ideal” kernel:

K(21,20) = xixs + 2223 + 2323, (4.15)

2. RLS with linear kernel (ridge regression).
3. RLS with Gaussian RBF kernel

K(x1,22) = exp (—0.005||$1 — ac2||g) .

4. RLS2 with linear basis kernels (4.5) and scaling (4.12).

5. Lasso regression.

The goal here is to assess the overall quality of regularization paths associated
with different regularization algorithms, independently of model selection pro-
cedures. To this end, we compute the RMSE on the test data as a function
of the training set size and evaluate the lower bounds of the learning curves
with respect to variation of the regularization parameter. Results are shown in
Figure 4.1, whose top plot reports the lower bounds of learning curves for all
the five algorithms with training set sizes between 1 and 150. Notice that all the
five methods are able to learn, asymptotically, the underlying “concept”, up to
the precision limit imposed by the noise, but methods that exploits coefficients
sparsity are faster to reach the asymptotic error rate. Not surprisingly, the best
method is RLS with the “ideal kernel” (4.15), which incorporates a strong prior
knowledge: the dependence of the outputs on the first three bits only. Though
knowing in advance the optimal features is not realistic, this method can be
used as a reference. The slowest learning curve is that associated to RLS with
Gaussian RBF kernel, which only incorporates a notion of smoothness. A good
compromise is RLS with linear kernel, which uses the knowledge of linearity of
the underlying function, and reaches a good approximation of the asymptotic
error rate after seeing about 100 strings. The remaining two methods (Lasso
and linear RLS2) incorporate the knowledge of both linearity and sparsity. They
are able to learn the underlying concept after seeing only 12 examples, despite
the presence of the noise. Since after the 12-th example, performances of Lasso
and linear RLS2 are basically equivalent, is it interesting to see what happen
for very small sample sizes. The bottom plot of Figure 4.1 is a zoomed version

54



Regularized least squares with two layers

Term RLS2 Best subset LS Ridge Lasso PCR PLS

INTERCEPT  2.452 2.477 2.465 2.452 2468 2497  2.452
LCAVOL 0.544 0.740 0.680 0.420 0.533 0.543 0.419
LWEIGHT 0.207 0.316 0.263 0.238 0.169 0.289 0.344
AGE -0.141  -0.046 -0.152  -0.026
LBPH 0.104 0.210 0.162 0.002 0.214 0.220
SVI 0.170 0.305 0.227 0.094 0.315 0.243
LCP -0.288  0.000 -0.051  0.079
GLEASON -0.021  0.040 0.232  0.011
PGG45 0.064 0.267 0.133 -0.056  0.084
Test error 0.454 0.492 0.521 0492 0479 0.449 0.528

Std error 0.152 0.143 0.179 0.165 0.164 0.105 0.152

Table 4.1: PROSTATE CANCER data: comparison of RLS2 with other subset
selection and shrinkage methods. Estimated coefficients, test error and their
standard error are reported. Results for methods other than RLS2 are taken
from [Hastie et al., 2008]. Blank entries corresponds to variables not selected.

of the top plot with training set sizes between 1 and 30, showing only the learn-
ing curves for the three methods that impose sparsity. Until the 8-th example,
the Lasso learning curve stays lower than the RLS2 learning curve. After the
8-th example, the RLS2 learning curve stays uniformly lower than the Lasso,
indicating an high efficiency in learning noisy sparse linear combinations. Since
the multiple kernel learning interpretation of RLS2 suggests that the algorithm
is being learning the “ideal” kernel (4.15) simultaneously with the predictor, it
might be interesting to analyze the asymptotic values of kernel coefficients d;.
Indeed, after the first 12 training examples, RLS2 sets to zero all the coefficients
d; except the first three, which are approximately equal to 1/3.

Experiment 2 (Prostate Cancer data) Linear RLS2 is applied to the
ProsTATE CANCER dataset, a regression problem whose goal is to predict the
level of prostate-specific antigen on the basis of a number of clinical measures
in men who were about to receive a radical prostatectomy [Stamey et al., 1989).
These data are used in the textbook [Hastie et al., 2008] to compare different
feature selection and shrinkage methods, and have been obtained from the web
site http://www-stat.stanford.edu/ElemStatLearn/. Data have been pre-
processed by normalizing all the inputs to zero mean and unit standard devia-
tion. The dataset is divided into a training set of 67 examples and a test set of 30
examples. To choose the regularization parameter, the 10-fold cross-validation
score has been computed for different values of A in the interval [10_47 104]
on a logarithmic scale. The scaling coefficients s; are chosen as in (4.12), thus
normalizing each training feature to have unit norm. An intercept term equal
to the average of training outputs has been subtracted to the outputs before
estimating the other coefficients. For each of the dataset splits, the MSE (mean
squared error) has been computed on the validation data. Figure 4.2 reports
average and standard error bands for validation MSE along a regularization
path. Following [Hastie et al., 2008], we pick the value of A corresponding to
the least complex model within one standard error of the best validation score.

95


http://www-stat.stanford.edu/ElemStatLearn/

Chapter 4

Dataset Feature standardization Examples Features Kernels
AUTO-MPG Yes 392 7 104
Cpu Yes 209 8 494
SERVO No 167 4 156
HousinGg Yes 506 13 182
HEART Yes 270 13 182
L1vER No 345 6 91
Pima Yes 768 8 117
IONOSPHERE Yes 351 33 442
WpBC Yes 194 34 455
SONAR No 208 60 793

Table 4.2: Data sets used in the experiments. The first four are regression
problems while the last six are classification problems.

Dataset 60/40 70/30
AUTO-MPG 2.79(0.209)  2.72(0.224)
CpU 21.8(11.3)  21.2(11.9)
SERVO 0.755(0.116)  0.696(0.152)
HousinG 3.61(0.465)  3.49(0.558)
HEART 83.8(2.98) 84 (3.28)
LIVER 69(3.57)  69.8(3.79)
Piva 76.7(1.92) 77.1(1.96)
IONOSPHERE 93.3(1.83) 93.5(1.93)
WPBC 76.7(3.71)  76.4(4.63)
SONAR 83.6(3.69)  86.1(4.52)

Table 4.3: RLS2 regression and classification: average and standard deviation
of test performance (RMSE for regression, accuracy for classification) over 100
dataset splits. Results with two different training/test ratio are reported: 60/40
(first two columns), and 70/30 (last two columns).

In a second phase, the whole training set (67 examples) is used to compute
the RLS2 solution with different values of A. Figure 4.3 reports the profile of
RLS2 coefficients w;, see equation (4.7), along the whole regularization path as
a function of the degrees of freedom defined as in (4.11). In correspondence with
the value of A chosen in the validation phase, RLS2 selects 5 input variables out
of 8. Table 4.1 reports the value of coefficients estimated by RLS2 together
with the test error and his standard error. For comparison, Table 4.1 also
reports models and results taken from [Hastie et al., 2008] associated with LS
(Least Squares), Best subset regression, Ridge Regression, Lasso regression,
PCR (Principal Component Regression), PLS (Partial Least Squares). The
best model on these data is PCR, but RLS2 achieves the second lowest test
error by using only 5 variables.

4.5.2 RLS2: regression and classification benchmark

In this subsection, benchmark experiments on four regression and six classi-
fication problems from UCI repository are illustrated (Table 4.2). RLS2 has

56



Regularized least squares with two layers

Dataset Split ratio Kernels Iterations  Time (s)
AUTO-MPG 60/40 21.3(2.64) 78.8(2.16) 7.2(1.22)
70/30  22.1(2.3)  80.6(2.17)  17.4(1.82)
CPU 60/40 30.2(3.65) 46.6(2.42)  26.4(13)
70/30  31.9(3.43)  47(1.97)  29(13.8)
SERVO 60/40  11(1.37)  71(2.26)  1.95(0.214)
70/30  11.4(1.8)  73.6(2.09) 2.37(0.162)
HousING 60/40 37.4(3.95) 90.6(2.73) 38.7(1.81)
70/30  38.7(3.31)  92.4(2.43)  51.9(2.07)
HEART 60/40 13.7(2.03) 75.9(2.33) 4.22(0.234)
70/30  14.3(2.12) 77.8(2.16) 5.83(0.411)
LIVER 60/40 23.5(2.87) 54.6(2.53) 3.56(0.545)
70/30  15.1(2.11)  55.1(2.43) 4.51(0.399)
Pima 60/40 14.6(2.17) 84.7(2.67) 53.6(2.23)
70/30  15.6(2.18) 86.6(2.33)  70.8(4.14)
[ONOSPHERE 60/40  61.6(6.03) 70.7(3.13)  16.7(0.96)
70/30  67.6(6.92) 73.1(2.92)  24.2(2.45)
WPBC 60/40 2.29(0.832) 60.5(3.03) 4.89(0.305)
70/30 2.13(0.906) 60.6(2.42) 6.85(0.198)
SONAR 60/40  45.1(4.45) 60.5(2.18) 9.42(0.191)
70/30  35.9(3.5)  61.6(1.9) 11.4(0.227)

Table 4.4: RLS2 regression and classification: number of selected kernels in
correspondence with the optimal value of A\, number of iterations and training
time in seconds to compute a regularization path.

o7



Chapter 4

been run on 100 random dataset splits with two different training/test ratios:
60/40 and 70/30. For each dataset split, an approximate regularization path
with 30 values of A on a logarithmic scale in the interval [10_6, 106] has been
computed. To speed-up the regularization path computation, a warm-start tech-
nique is employed: the value of A is iteratively decreased, while kernel-expansion
coefficients d; are initialized to their optimal values obtained with the previous
value of A. Performances are measured by accuracy for classification and RMSE
(root mean squared error) for regression. For each dataset split and value of
the regularization parameter, the following quantities are computed: prediction
performance on the test set, number of selected kernels (number of non-zero d;),
training time in seconds and number of iterations to compute the whole regu-
larization path. Datasets have been pre-processed by removing examples with
missing features and converting categorical features to binary indicators. For
some of the datasets (see Table 4.2) input features have been standardized to
have zero mean and unitary standard deviation. For classification, output labels
are +1 and predictions are given by the sign of the predictor. For regression,
an intercept term equal to the mean of training outputs is subtracted to the
training data. Basis kernel matrices are pre-computed and the scaling matrix S
is chosen according to the rule (4.14) with transductive scaling.

To better compare the results to similar benchmarks for multiple kernel learning,
see e.g. [Rakotomamonjy et al., 2008], the same set of basis kernels for all
the datasets has been chosen. We remark that such agnostic approach is not
representative of a realistic application of the algorithm, in which the choice of
basis kernels K should reflect a-priori knowledge about the learning task to be
solved. The set of basis kernels contains the following:

e Polynomial kernels
Ki(z1,29) = (1+ (21, 22)2)*
with d = 1,2, 3.
e Gaussian RBF kernels

K (21, 22) = exp (—7|lz1 — 22]3)

with 10 different values of v chosen on a logarithmic scale between 1073
and 103.

Kernels on each single feature and on all the features are considered, so that the
number of basis kernels is an affine function of the number of features (recall that
categorical features have been converted to binary indicators). More precisely,
we have m = 13(N + 1).

All the profiles of test prediction performance, number of kernels and number
of iterations for the 70/30 dataset split in correspondence with different values
of the regularization parameter are reported in Figures 4.4-4.8. From the top
plots, it can be seen that test performances are relatively stable to variations
of the regularization parameter around the optimal value \*, indicating that
RLS2 is robust with respect to the use of different model selection procedures.
For regression datasets such as CPU, SERVO, or HOUSING, optimal performances

58



Regularized least squares with two layers

seems to be reached in correspondence with the un-regularized solution A — 0%.
Lines in light color are associated with single dataset splits, while thick lines are
the averages over different dataset splits. The vertical dotted line corresponds to
the value of the regularization parameter with best average test performance.
The average number of selected kernels vary quite smoothly with respect to
the regularization parameter. For large values of A, RLS2 chooses only one
basis kernel. For small values of A, the number of selected kernels grows and
exhibits an higher variability. The bottom plots in Figures 4.4-4.8 give an
idea of the computation burden required by alternate optimization for RLS2 in
correspondence with different values of A\. In correspondence with high values
of the regularization parameter, the algorithm converges in a single iteration.
This occurs also for the very first value on the regularization path, meaning that
the initialization rule is effective. With low values of A, RLS2 also converges in
a single iteration.

Test performances for regression and classification are summarized in Table
4.3, where the average and standard deviation with respect to the 100 dataset
splits of either RMSE (regression) or accuracy (classification) in correspondence
with to the best value of A\ are reported. Performances of other kernel learning
algorithms on some of these datasets can be found in [Lanckriet et al., 2004,
Ong et al., 2005, Rakotomamonjy et al., 2008] and references therein. Another
benchmark study that might be useful for comparison is [Meyer et al., 2003].
Observe that comparisons should be handled with care due to the use of different
experimental procedures and optimization problems. For instance, [Lanckriet
et al., 2004] uses an 80/20 dataset split ratio, [Ong et al., 2005] uses 60/40,
while [Rakotomamonjy et al., 2008] uses 70/30. Also, these work use different
numbers of dataset splits. Here, we perform experiment both with a 60/40 rule,
and a 70/30 rule and obtain state of the art results on all the datasets (compare
with the mentioned references). These experiments shows that RLS2 results are
competitive and complexity of the model is well controlled by regularization.
In particular, state of the art performances are reached on SERVO, HOUSING,
HEARTH, PiMA, IONOSPHERE. Finally, it should be observed that, although
multiple kernel learning machines have been used as black box methods, the
use of basis kernels on single features sometimes also selects a subset of relevant
features. Such property is remarkable since standard kernel methods are not
able to perform “embedded” feature selection.

Table 4.4 reports the average and standard deviation of number of selected
kernels in correspondence with the optimal value of A\, number of iterations and
training time needed to compute a regularization path for all the regression and
classification datasets studied in this subsection. From the columns of selected
kernels, it can be seen that a considerable fraction of the overall number of
basis kernels is filtered out by the algorithm in correspondence with the optimal
value of the regularization parameter. By looking at the number of iterations
needed to compute the path with 30 values of the regularization parameter,
one can see that the average number of iterations to compute the solution for a
single value of A is in between 1 and 3, indicating that the warm-start procedure
is rather effective at exploiting the continuity of solutions with respect to the
regularization parameter. As a matter of fact, most of the optimization work
is spent in correspondence with a central interval of values of A, as shown in
the bottom plots of Figures 4.4-4.8. Finally, from the last column, reporting

59



Chapter 4

Method Test errors out of 54  Selected genes

Support Vector Classifier 14.0 16,063
L1-penalized multinomial 13.0 269

Lasso regression (OVA) 12.5 1,429
L2-penalized discriminant analysis 12.0 16,063
Elastic-net penalized multinomial 11.8 384
Linear RLS2 (OVA) 9.8 855

Table 4.5: 14 CANCERS data: average test error (see the text for details) and
number of selected genes for different classification algorithms. For RLS2, the
number of selected genes is relative to the least complex model maximizing
the validation accuracy. Results for methods other than RLS2 are taken from
[Hastie et al., 2008].

average and standard deviation of training times, it can be seen that, with the
current implementation of RLS2, regularization paths for all the datasets in
this subsection can be computed in less than one minute in the average (see the
introduction of this section for experimental details).

4.5.3 RLS2: multi-class classification of microarray data

RLS2 can be applied to multi-class classification problems by solving several
binary classification problems and combining their outcomes. A possible way
to combine binary classifiers is the OVA (one versus all) approach, in which
each class is compared to all the others and test labels are assigned to the class
maximizing the confidence (the real-valued output) of the corresponding binary
classifier.

Linear RLS2 with OVA has been applied to the 14 CANCERS dataset [Ra-
maswamy et al., 2001], a delicate multi-class classification problem whose goal
is to discriminate between 14 different types of cancer, on the basis of microar-
ray measurements of 16063 gene expressions. Gene measurements and type of
cancer (labels) are available for 198 patients, the dataset being already divided
in a training set of 144 patients, and a test set of 54 patients. Another important
goal in this problem is to individuate a small subset of genes which is relevant
to discriminate between the different kind of cancer. [Hastie et al., 2008] re-
ports several results for these data using a variety of classification methods.
Algorithms such as the Support Vector Classifier uses all the genes to compute
the classification boundaries, while others such as Lasso or Elastic Net are also
able to select a subset of relevant genes. Since the feature selection experiment
in subsection 4.5.1 suggests that the algorithm may be very efficient at select-
ing relevant features from noisy examples, a microarray dataset seems to be an
appropriate choice for testing the algorithm.

Gene expressions for each patient have been firstly standardized to have zero
mean and variance one. For each binary classifier, coefficients s; are chosen as
s = (03r + 03)_1/ 2, where ai and o2 are the within-class sample variances
computed using all the training data. Such scaling gives more weight to genes
whose expressions exhibits small within-class variability, and seems to slightly
improve classification performances. A validation accuracy profile has been

60



BIBLIOGRAPHY

computed using stratified 8-fold cross validation, where the folds are organized to
preserve the class proportions. For the final model, we pick the highest value of
A maximizing the validation accuracy. Figure 4.9 reports the profiles of training
accuracy, cross-validation accuracy with corresponding standard error bands,
and test accuracy for 50 logarithmically spaced values of the regularization
parameter. Table 4.5 reports the number of test errors and selected genes in
correspondence with the value of A chosen in the validation phase, for RLS2 and
other methods from [Hastie et al., 2008]. Test errors in Table 4.5 are averages of
test errors for different classifiers associated with all the different values of the
regularization parameter that maximizes the cross-validation score (this explains
the presence of non-integer values). For linear RLS2, such procedure yields a
value of about 9.8. Although the test set size is too small to draw significative
conclusions from this comparison, linear RLS2 seems to work rather well on this
problem and achieve the best test performances. Such good performance confirm
both the effectiveness of the OVA multi-class approach, and the importance of
weight scaling in ¢;1-regularized problems.

4.6 Conclusions

RLS2 is an optimization algorithm to learn convex combination of kernels based
on regularization with the square loss function. Optimization is based on a
combination of alternate minimization, linear conjugate gradient, and sequen-
tial minimal optimization (SMO) techniques. State of the art performances
are achieved on several learning problems, including multi-class classification of
microarray data. An open source set of MATLAB scripts with Graphic User
Interface for RLS2 and linear RLS2 is available at http://www.mloss.org.

Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood prin-
ciple. In B. N. Petrov and F. Cséki, editors, Second International Symposium
on Information Theory. Académiai Kiad6, Budapest, 1973.

P. Craven and G. Wahba. Estimating the correct degree of smoothing by the
method of generalized cross-validation. Numerische Mathematik, 31:377-403,
1979.

F. Dinuzzo and G. De Nicolao. An algebraic characterization of the optimum
of regularized kernel methods. Machine Learning, 74(3):315-345, 2009.

B. Efron. The estimation of prediction error: Covariance penalties and cross-
validation. Journal of the American Statistical Association, 99(14):619-632,
2004.

R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research,
9:1871-1874, 2008.

61


http://www.mloss.org

Chapter 4

G. M. Fung and O. L. Mangasarian. Multicategory proximal support vector
machine classifiers. Machine Learning, 59(1-2):77-97, 2005.

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, editors. Feature FExtraction:
Foundations and Applications. Studies in Fuzziness and Soft Computing.
Springer-Verlag, Secaucus, NJ, USA, 2006.

T. J. Hastie, R. J. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Data Mining, Inference and Prediction. Springer-Verlag, Canada,
2nd edition, 2008.

M. Hengland. Approximate maximum a posteriori with Gaussian process priors.
Constructive Approximation, 26:205-224, 2007.

A. E. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthog-
onal problems. Technometrics, 12:55-67, 1970.

C. Hsieh, K.W. Chang, C.J. Lin, S. S. Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In Proceedings of the
25th Annual International Conference on Machine Learning (ICML 2008),
pages 408-415, Helsinki, Finland, 2008.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD), pages 217-226,
Philadelphia, PA, USA, 2006.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jor-
dan. Learning the kernel matrix with semidefinite programming. Journal of
Machine Learning Research, 5:27-72, 2004.

C. Mallows. Some comments on Cp. Technometrics, 15:661-675, 1973.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test.
Neurocomputing, 55(1-2):169-186, 2003.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization.
Journal of Machine Learning Research, 6:1099-1125, 2005.

C. A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel.
Machine Learning, 66:297-319, 2007.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyper-
kernels. Journal of Machine Learning Research, 6:1043-1071, 2005.

J. Platt. Fast training of support vector machines using Sequential Minimal
Optimization. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA,
USA, 1998.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL.
Journal of Machine Learning Research, 9:2491-2521, 2008.

62



BIBLIOGRAPHY

S Ramaswamy, P Tamayo, R Rifkin, S Mukherjee, C H Yeang, M Angelo,
C Ladd, M Reich, E Latulippe, J P Mesirov, T Poggio, W Gerald, M Loda,
E S Lander, and T R Golub. Multiclass cancer diagnosis using tumor gene
expression signatures. Proceedings of the National Academy of Sciences of the
United States of America, 98:15149-15154, 2001.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. In
Suykens, Horvath, Basu, Micchelli, and Vandewalle, editors, Advances in
Learning Theory: Methods, Model and Applications, volume 190 of NATO
Science Series III: Computer and Systems Sciences, chapter 7, pages 131—
154. VIOS Press, Amsterdam, 2003.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:
461-464, 1978.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. PEGASOS: Primal Estimated sub-
GrAdient SOlver for Svm. In Proceedings of the 24th Annual international
conference on Machine learning (ICML 2007), pages 807-814, New York, NY,
USA, 2007. ACM.

S. Sonnenburg, G. Rétsch, C. Schifer, and B. Schélkopf. Large scale multiple
kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.

T. Stamey, J. Kabalin, J. McNeal, I. Johnstone, F. Freiha, E. Redwine, and
N. Yang. Prostate specific antigen in the diagnosis and treatment of adeno-
carcinoma of the prostate ii radical prostatectomy treated patients. Journal
of Urology, 16:1076-1083, 1989.

C. Stein. Estimation of the mean of a multivariate normal distribution. The
Annals of Statistics, 9:1135-1151, 1981.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B, 58(1):267—288, 1996.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill Posed Problems. W. H.
Winston, Washington, D. C., 1977.

63



Chapter 4

Learning curve

1.4
RLS Ideal
RLS Linear
1.2 ~+0 RLS Gaussian RBF
RLS2 Linear
Lasso
1
0.8
w
0)
=
4
0.6
0.4
o2r/ X
N1 S
0 50 100 150
Training set size
Learning curve
14,
RLS Ideal
RLS2 Linear
1.2¢ Lasso
l |-
0.8r
w
D)
=
14
0.6
0.4r
0.2r
0 R
0 5 10 15 20 25 30

Training set size

Figure 4.1: BINARY STRINGS data: lower bounds of RMSE learning curves.
The top plot shows test RMSE for training set sizes between 1 and 150 with
five different methods: RLS with ideal kernel (see details in the text), RLS with
linear kernel (ridge regression), RLS with Gaussian RBF kernel, linear RLS2
and Lasso. The bottom plot is the “zoomed” version of the top plot for training
set sizes between 1 and 30, for RLS with ideal kernel, linear RLS2 and Lasso.

64



BIBLIOGRAPHY

Validation MSE

Figure 4.2: PROSTATE CANCER data: 10-fold cross-validation prediction error
curves and their standard errors bands for linear RLS2. Model complexity
increases from the right to the left. The vertical line corresponds to the least
complex model within one standard error of the best.

65



Chapter 4

:
Icavol

svi E
pegigbt

Ibph

Coefficients

gleason]

age

Icp,
8

Figure 4.3: PROSTATE CANCER data: profiles of RLS2 coefficients with re-
spect to a continuous variation of the regularization parameter. Coefficients
are plotted versus df (), the approximate degrees of freedom. The vertical line
corresponds to the value of A chosen in the validation phase.

66



BIBLIOGRAPHY

Validation RMSE (100 random splits 70/30)

8’)\ :1.:’46—000 e

10° 10 10

sof

10 10

10 10

45

40

3507

55

4.5

3.5

Validation RMSE (100 random splits 70/30)

1
W =1F4e-005
1

10" 10 10

Selected kernels (100 random splits 70/30)

I
-

I s~

|
&
©
¢l

=
o
=
o

10

10

Figure 4.4: RLS2 on the AuTO-MPG (left) and the CPU (right) dataset: RMSE
on the test data (top), number of selected kernels (center), and number of
iterations (bottom) along a regularization path.

67



Chapter 4

N

18

Validation RMSE (100 random splits 70/30)

P\ =%6.72¢-006

16

14

10

Number of iterations (100 random splits 70/30)

16

14

12

10

10 10 10

10}
N*=1.00e-006 —

Validation RMSE (100 random splits 70/30)

Selected kernels (100 random splits 70/30)

45

10

Number of iterations (100 random splits 70/30)

20

18

16

14

12

10

-5

10 10

Figure 4.5: RLS2 on the SERVO (left) and the HOUSING (right) dataset: RMSE
on the test data (top), number of selected kernels (center), and number of
iterations (bottom) along a regularization path.

68



BIBLIOGRAPHY

0.9F

0.85

R=T37e5002 >

Validation Accuracy (100 random splits 70/30)

10

Number of iterations (100 random splits 70/30)

161

141

12

10 10

0.8

0.75

0.7

0.65F

0.6

0.55

0.5

30

25

20

15

10

h =

Validation Accuracy (100 random splits 70/30)

1 1
7.88¢l004
1

ER e

R e i R S

10"

Selected kernels (100 random splits 70/30)

N W 24 o = 10V 2 g

10°

10 10

10

-5

10

Figure 4.6: RLS2 on the HEART (left) and LIVER (right) dataset: classification
accuracy on the test data (top), number of selected kernels (center), and number
of iterations (bottom) along a regularization path.

69



Chapter 4

Validation Accuracy (100 random splits 70/30) Validation Accuracy (100 random splits 70/30)

0.8
0.78
0.76
0.74
0.72

0.7
0.68
0.66
0.64
0.62

0.6

Selected kernels (100 random splits 70/30)

90

80

10° 10° 10° 10°
A
Number of iterations (100 random splits 70/30) Number of iterations (100 random splits 70/30)
T T T T 12—~ T T
161 1 | 1
I\ 1 111 1
Nl 1
14+ 1 1 101 1
1 1
1 9f1 1
121 1 1 1
1] 8r1 1
107 1 7L : |
1
8r R 61y 1
1
5r 1 1
6l i
1
4T
f 1
4r I ] 30, I 1
ifi 1 I
2r J 9 2 1 I
1 4
10° 10° 10° 10° 10°
A

Figure 4.7: RLS2 on the PIMA (left) and IONOSPHERE (right) dataset: classifi-
cation accuracy on the test data (top), number of selected kernels (center), and
number of iterations (bottom) along a regularization path.

70



BIBLIOGRAPHY

0.86

0.84

0.82

0.8F

0.78

0.76

0.74

0.72

0.7

0.68

0.66

10

M*=6.21e-001

Validation Accuracy (100 random splits 70/30)

10 10

10

10

0.9

601

50

40

30

20

10

11

10

Validation Accuracy (100 random splits 70/30)

Bo=T 117e=004

Selected kernels (100 random splits 70/30)

1
1
1
1
1
1
'\
\

10°

Number of iterations (100 random splits 70/30)

10

10

-5

10

Figure 4.8: RLS2 on the WPBC (left) and SONAR (right) dataset: classification
accuracy on the test data (top), number of selected kernels (center), and number

of iterations (bottom) along a regularization path.

71



Chapter 4

0.9¢

Accuracy
© o o o o
AN o o N

o
w
:

0.2}

= = = Training accuracy
Validation accuracy (8—fold CV)
Test accuracy

-4 -2 0

10 10 10
A

10

Figure 4.9: 14 CANCERS data: profiles of training error, 8-fold validation error
and test error for different values of the regularization parameter. Standard error
bands for the validation error are also shown. The vertical line corresponds to
the least complex model maximizing the validation accuracy.

72



Client-server multi-task learning from
distributed datasets

The solution of learning tasks by joint analysis of multiple datasets is receiving
increasing attention in different fields and under various perspectives. Indeed,
the information provided by data for a specific task may serve as a domain-
specific inductive bias for the others. Combining datasets to solve multiple
learning tasks is an approach known in the machine learning literature as multi-
task learning or learning to learn [Thrun, 1996, Caruana, 1997, Thrun and
Pratt, 1998, Baxter, 1997, Ben-David et al., 2002, Bakker and Heskes, 2003,
Lawrence and Platt, 2004]. In this context, the analysis of the inductive transfer
process and the investigation of general methodologies for the simultaneous
learning of multiple tasks are important topics of research. Many theoretical and
experimental results support the intuition that, when relationships exist between
the tasks, simultaneous learning performs better than separate (single-task)
learning [Schwaighofer et al., 2005, Yu et al., 2005, 2007, Xue et al., 2007, Bonilla
et al., 2007, Argyriou et al., 2007, Bickel et al., 2008, Zhang et al., 2008, Qi et al.,
2008, An et al., 2008]. Theoretical results include the extension to the multi-
task setting of generalization bounds and the notion of VC-dimension [Baxter,
2000, Ben-David and Schuller, 2003, Maurer, 2006] as well as a methodology for
learning multiple tasks exploiting unlabeled data in the semi-supervised setting
[Ando and Zhang, 2005].

Information fusion from different but related datasets is widespread in econo-
metrics and marketing analysis, where the goal is to learn user preferences by
analyzing both user-specific information and information from related users, see
e.g. [Srivastava and Dwivedi, 1971, Arora et al., 1998, Allenby and Rossi, 1999,
Greene., 2002]. The so-called conjoint analysis aims to determine the features of
a product that mostly influence customer’s decisions. In the web, collaborative
approaches to estimate user preferences have become standard methodologies in
many commercial systems and social networks, under the name of collaborative
filtering or recommender systems, see e.g. [Resnick and Varian, 1997]. Pio-
neering collaborative filtering systems include Tapestry [Goldberg et al., 1992],
GroupLens [Resnick et al., 1994, Konstan et al., 1997], ReferralWeb [Kautz
et al., 1997], PHOAKS [Terveen et al., 1997]. More recently, the collabora-
tive filtering problem has been attacked with machine learning methodologies
such as Bayesian networks [Breese et al., 1998], MCMC algorithms [Chen and

73



Chapter 5

George, 1999], mixture models [Hofmann and Puzicha, 1999], dependency net-
works [Heckerman et al., 2000], maximum margin matrix factorization [Srebro
et al., 2005].

Biomedicine is another field in which importance of combining datasets is espe-
cially evident. In pharmacological experiments, few training examples are typi-
cally available for a specific subject due to technological and ethical constraints
[Carson et al., 1983, Jacquez, 1985]. To obviate this problem, the so-called pop-
ulation method has been studied and applied with success since the seventies in
pharmacology [Sheiner et al., 1977, Beal and Sheiner, 1982, Yuh et al., 1994].
Population methods belong to the family of so-called mized-effect statistical
methods [Sheiner and Steimer, 2000], and are based on the knowledge that sub-
jects, albeit different, belong to a population of similar individuals, so that data
collected in one subject may be informative with respect to the others [Vozeh
et al., 1996, Park et al., 1997]. Classical approaches postulate finite-dimensional
nonlinear dynamical systems whose unknown parameters can be determined by
means of optimization algorithms [Beal and Sheiner, 1992, Sheiner, 1994, Da-
vidian and Giltinan, 1995, Aarons, 1999]. Other strategies include Bayesian
estimation with stochastic simulation [Wakefield et al., 1994, Lunn et al., 2002,
Gilks et al.] and nonparametric regression [Fattinger and Verotta, 1995, Magni
et al., 2002, Neve et al., 2005, 2007, Pillonetto et al., 2009].

In the machine learning literature, much attention has been given in the last
years to techniques based on regularization, such as kernel methods [Scholkopf
and Smola, 2001] and Gaussian processes [Rasmussen and Williams, 2006]. The
regularization approach is powerful and theoretically sound, having their math-
ematical foundation in the theory of inverse problems, statistical learning theory
and Bayesian estimation [Aronszajn, 1950, Tikhonov and Arsenin, 1977, Poggio
and Girosi, 1990, Wahba, 1990, Vapnik, 1998, Cucker and Smale, 2001]. The
flexibility of kernel engineering allows for the estimation of functions defined
on generic sets from arbitrary sources of data. The methodology has been re-
cently extended to the multi-task setting. In [Evgeniou et al., 2005], a general
framework to solve multi-task learning problems using kernel methods and regu-
larization has been proposed, relying on the theory of reproducing kernel Hilbert
spaces (RKHS) of vector-valued functions [Micchelli and Pontil, 2005].

In many applications (e-commerce, social network data processing, recommender
systems), real-time processing of examples is required. On-line multi-task learn-
ing schemes find their natural application in data mining problems involving
very large datasets, and are therefore required to scale well with the number of
tasks and examples. In [Pillonetto et al., 2010], an on-line task-wise algorithm
to solve multi-task regression problems has been proposed. The learning prob-
lem is formulated in the context of on-line Bayesian estimation, see e.g. [Opper,
1998, Csat6 and Opper, 2002], and Gaussian processes with suitable covariance
functions are used to characterize a non-parametric mixed-effect model. One
of the key features of the algorithm is the capability to exploit shared inputs
between the tasks in order to reduce computational complexity. However, the
algorithm in [Pillonetto et al., 2010] has a centralized structure in which tasks
are sequentially analyzed, and is not able to address neither architectural issues
regarding the flux of information nor privacy protection.

In this chapter, multi-task learning from distributed datasets is addressed using

74



Client-server multi-task learning from distributed datasets

a client-server architecture. In our scheme, clients are in a one-to-one corre-
spondence with tasks and their individual database of examples. The role of
the server is to collect examples from different clients in order to summarize their
informative content. When a new example associated with any task becomes
available, the server executes an on-line update algorithm. While in [Pillonetto
et al., 2010] different tasks are sequentially analyzed, the architecture presented
in this chapter can process examples coming in any order from different learn-
ing tasks. The summarized information is stored in a disclosed database whose
content is available for download enabling each client to compute its own es-
timate exploiting the informative content of all the other datasets. Particular
attention is paid to confidentiality issues, especially valuable in commercial and
recommender systems, see e.g. [Ramakrishnan et al., 2001, Canny, 2002]. First,
we require that each specific client cannot access other clients data. In addition,
individual datasets cannot be reconstructed from the disclosed database. Two
kind of clients are considered: active and passive ones. An active client sends
its data to the server, thus contributing to the collaborative estimate. A passive
client only downloads information from the disclosed database without sending
its data. A regularization problem with a parametric bias term is considered in
which a mized-effect kernel is used to exploit relationships between the tasks.
Albeit specific, the mixed-effect non-parametric model is quite flexible, and its
usefulness has been demonstrated in several works [Neve et al., 2005, 2007, Lu
et al., 2008, Pillonetto et al., 2010].

The chapter is organized as follows. Multi-task learning with regularized kernel
methods is presented in section 5.1, where a class of mixed-effect kernels is also
introduced. In section 5.2, an efficient centralized off-line algorithm for multi-
task learning is described that solves the regularization problem of section 5.1.
In section 5.3, a rather general client-server architecture is described, which
is able to efficiently solve online multi-task learning from distributed datasets.
The server-side algorithm is derived and discussed in subsection 5.3.1, while the
client-side algorithm for both active and passive clients is derived in subsection
5.3.2. In section 5.4, a simulated music recommendation system is employed
to test performances of our algorithm. The application to the analysis of real
data from a multicentric clinical trial for an antidepressant drug is discussed in
section 5.5. Conclusions (section 5.6) end the chapter.

Notational preliminaries

For all n € N, let [n] :=={1,2,...,n}.

e An (n,p) index vector is an object k € [n]P.

Given a € X" and an (n,p) index vector k, let

ak):=( aw, -+ ar, )€ XP.

Given A € X™ ™ and two index vectors k' and k2, that are (n,p;) and

(0]



Chapter 5

(m, pa), respectively, let

Okt 0 Qrdkz,
Ak k?) = : : € xPrxpz,
a ... a
kL, k3 kL k2,

e Finally, let

A(LEY = A([n], k),  A(K,:) = Ak, [m]).

5.1 Problem formulation

Let m denote the total number of tasks. For each task j, we have access to a
set of £; input-output pairs

(wij,vi5) € (X xR), i=1,...4;.

The aim is to learn m relationships g; : X — R. Task-labeling is a simple
technique to reduce multi-task learning problems to single-task ones. Letting
T ={1,...,m}, a task label is an integer ¢; € T that identify the task to whom
the i-th example belong. The overall available data can be viewed as a set of
triples

(l’i,ti,yi)g(XXTXR), ’L:].,g,

where / := Z;nzl £; denotes the overall number of examples. The correspon-
dence between the individual datasets and the overall dataset can be expressed
by using an (¢,¢;) index vector k? such that

ty=J, i=1,...,4; (5.1)

For instance, k3 denote the position i in the overall dataset of the pair (z32, y32).

In this chapter, predictors are searched within suitable reproducing kernel Hilbert
spaces (RKHS) of functions defined over X x T, by solving a regularization prob-
lem of the form

1

. . (i — g(zi, t:)* | Ngll
g =i <Zl 2w, Tt

where A > 0 is a regularization parameter, and w; >0, (i =1,...,¢).

We focus on a class of mized effect kernels that can be expressed as a convex
combination of a task-independent contribution and a task-specific one:
K((@1,t1), (2,12)) = aK (21, 25) + (1 — ) Y Ki(t1, 1) K7 (1, 22), (5.2)

Jj=1

0 < a < 1. The rationale behind such structure is that predictors for a generic
task j will result in the sum of a common task function and an individual shift,

76



Client-server multi-task learning from distributed datasets

see (5.3) below. Kernels K and K7 can possibly be all distinct. On the other
hand, K7. are positive semi-definite “selector” kernels defined as

. 1, t1=1t2=17;
J = ’ ’
K. (t1,t2) = { 0, otherwhise

The representer theorem gives the following expression for the optimum g*:

14
g*(x’ t) = Z CiK(]:i,tri)(:L‘7 t)'
1=1

The estimate g7 := g*(z,) for the j-th task is defined to be the function ob-
tained by plugging the corresponding task-label ¢ = j in the previous expression.
As a consequence of the structure of K, the expression of g; decouples into two
parts:

g; (@) = g(x) + g;(2), (5.3)
where

14

¢
g(x) = aZCiK(xi,w), gi(z) =(1-0a) Z ¢ K7 (x4, ).

=1 i€k
There exists an optimal coefficient vector ¢ solve the linear system:
(K+A\W)c=y, (5.4)

where W = diag{wy, ..., ws}, and K is the kernel matrix associated with kernel
K and all the input data. From (5.2), it follows that K has the following
structure:

K=|aK+(1-0a)) I(k)K/ K, K, |, (5.5)

Jj=1

where K and K7 are the kernel matrices associated with the kernels K and K7
respectively.

Function g is independent of the task label and can be regarded as the estimate
of an average task, whereas g; is the estimate of an individual shift. The value «
is related to the “shrinking” of the individual estimates toward the average task.
When a = 1, the same function is learned for all the tasks, as if all examples
referred to an unique task (pooled approach). On the other hand, when « = 0,
all the tasks are learned independently (separate approach), as if tasks were not
related at all.

5.2 Complexity reduction

In many applications of multi-task learning, some or all of the input data z; are
shared between the tasks so that the number of different basis functions appear-
ing in the expansion (5.3) may be considerably less than ¢. As explained below,

7



Chapter 5

such feature can be exploited to derive efficient incremental online algorithms
for multi-task learning. Let

= C(kj)a yj = y(kj)v w’ = w(kj)v
where index vectors k7 are defined in equation (5.1).
Introduce the set of unique inputs

X ={#,...,@,} € X", suchthat & #&;, Vi#j

where n < ¢ denote the number of unique inputs. For each task j, a new (n, ¢,)
index vector h? can be defined such that

Tij = Lpi, i=1,...,¢;.

The information contained in the index vectors h/ is equivalently expressed by
a binary matrix P € {0, 1}**" whose entries satisfy

_ 1, €T; = JuUj
Pij = { 0, otherwise. (5.6)

We have the following decompositions:
K =PKP”, K:=LDL”, (5.7)

where L € R™ ", D € R"™™" are suitable rank-r factors, D is diagonal, and
K € R™ " s the kernel matrix associated with K and the set of unique inputs.
If K is strictly positive, then L can be taken as a full-rank lower triangular
Cholesky factor, see e.g. [Golub and Van Loan, 1996]. Letting

¢:=Ple, (5.8)
the optimal estimates (5.3) can be rewritten in a compact form:

ZJ
—ag G K (2, (1-a) K7 xhj,
=1

The following result shows that coefficient vectors ¢ and ¢ can be obtained
by solving a system of linear equations involving only “small-sized” matrices so
that complexity depends on the number of unique inputs rather than the overall
number of examples.

Theorem 15. Coefficient vectors ¢ and ¢, defined in (5.4) and (5.8), can be
computed by Algorithm 4.

Algorithm 4 is an off-line (centralized) procedure whose computational complex-
ity scales with O(n®m). In the next section, we derive a client-server on-line
version of Algorithm 4 that preserves such complexity bound. Typically, this is
much better than O (63), the worst-case complexity of directly solving (5.4).

78



Client-server multi-task learning from distributed datasets

Algorithm 4 Centralized off-line algorithm.

—

: for j=1:m do
. ~ .11
R « [(1 — )KI (7, k) + AW (I, kﬁ)}
end for §
Compute factorization K = LDL”
Y« Z;n:1 LY (:, W) RIy
. . ) -1
H « (D—1 +aY " L7, h)RIL(W, :))
z < Hy
¢ < Solution to (DLT) ¢=z.
for j=1:mdo
10: o« RJ [y — aL(h,:)z]
11: end for

AN R 4

5.3 A client-server online algorithm

The main objective of the present section is to derive an incremental distributed
version of Algorithm 4 having a client-server architecture. It is assumed that
each client is associated with a different learning task, so that the terms “task”
and “client” will be used interchangeably. The role of the server is twofold:

1. Collecting triples (z;,y;, w;) (input-output-weight) from the clients and
updating on-line all matrices and coefficients needed to compute estimates
for all the tasks.

2. Publishing sufficient information so that any client (task) j can indepen-
dently compute its estimate, possibly without sending data to the server.

On the other hand, each client j can perform two kind of operations:

1. Sending triples (z;,y;,w;) to the server.

2. Receiving information from the server sufficient to compute its own esti-
mate.

To preserve privacy, each client can neither access other clients data nor recon-
struct their individual estimates. With reference to matrices y, H, R7, whose
definition is given inside Algorithm 4, we have the following scheme:

e Undisclosed Information: k7,97, w/,R7,j =1,...,m.

e Disclosed Information: X , U, H.

The server update algorithm represents an incremental implementation of lines
1-6 of Algorithm 4, having access to all the information (disclosed and undis-
closed). Server-side computations are described in subsection 5.3.1. The client-
side algorithm represents the computation of lines 7-11 of Algorithm 4 dis-
tributed among the clients, where access to undisclosed information is denied.
Client-side computations are described in subsection 5.3.2.

79



Chapter 5

5.3.1 Server side

In order to formulate the algorithm in compact form, it is useful to introduce
the functions “find” and “ker”. Let

A(z) ={i:z; =2a}.

For any p,ge Nz e X, X € AP, Y € X9, let

find: X x X? — {1,...,p+1}

find(z, X) = { min A(z), A(z) # 0.
ker(-, ~;K) cXP x X1 — RPX4
ker (X, Y5 K);; = K(2i,y)).

The complete computational scheme is reported in Algorithm 5. The initializa-
tion is defined by resorting to empty matrices whose manipulation rules can be
found in [Nett and Haddad, 1993]. In particular, all the matrices and vectors
are all initialized to the empty matrix. It is assumed that function “ker” returns
an empty matrix when applied to empty matrices.

Algorithm 5 is mainly based on the use of matrix factorizations and matrix
manipulation lemmas in the Appendix. The rest of this subsection is an exten-
sive proof devoted to show that the algorithm correctly updates all the relevant
quantities when a new triple (x;,y;, w;) becomes available from task j. Three
cases are possible:

1. The input z; is already among the inputs of task j.

2. The input z; is not among the inputs of task j, but can be found in the
common database X.

3. The input z; is new.

Case 1: repetition within inputs of task j

The input z; has been found in X (h?), so that it is also present in X. Thus,
the flow of Algorithm 5 can be equivalently reorganized as in Algorithm 6. Let
r denote the number of triples of the type (x,y;, w;) belonging to task j. These
data can be replaced by a single triple (x,y,w) without changing the output of
the algorithm. Letting

T -1 T
w = <Zw;1> ; y:Zwai/wu
i=1 i=1

80



Client-server multi-task learning from distributed datasets

Algorithm 5 Server: receive (z;,y;, w;) from client j and update the database.

1: s =find (mi,é\?)

2: if (s=n+1) then
3 n+—n+1,

4: .)é%{.)?,xi},

soae(0):

6: k< ker (xi,QE';F>,

7. 1 < Solution to LDr = k([n —1]),
8 B+ k,—rTDr,

9: H« diag{H, 5}

10 D« diag{D, g8}

L O
11: L<_<rT 1)

12: end if y

13: p = find (33 X(hj))
14: if (p=4; +1) then
15: Ly +1

19: 7<:'<—(1—0z)-ker(xi,/‘\?(hj);f(j)a
o e ((RHIG-)

-1
21: Y = 1/ ()\’LUL — ’LLTE)
220 yuTy,
23 RJ « diag {R7,0}
24: else
25:  u <« RI(:,p),
26: wg — wg;wi/ (wg) + wi),
21yl yl A+ wl (v — y)) wi,
280 v+ — [Aw))?/ (w) —w;) + rg;p]_l,
20: = wh(yi — yp)/ (wi —wh) +yuTy?,
30: end if
31: R7 < RJ + qyuu”
32: v+ LT(:, W)u
33: ¥ < Y+ po,
34: q < Huo,
35: H+ H— (qq7)/(ay)~t +07q).

81



Chapter 5

Algorithm 6 Server (Case 1)
1: s = find (mi,/f)

L p= find (.%‘i, /%(hj))
s u <+ RI(:,p),
: wg; — wfowz/ '(wg + wz)7
Yy, < yp + W (yi — y)) /wi,
. . 1
Dy — ‘[)\(wg,)z‘/ (w) — wz) —|—rép] ;
s wi(ys — yh)/ (wi — w)) +yuly?,
: R+ RY + yuu®
cv+ LT W)
10: ¥ <y + po,
11: q <+ Ho,
12 H e H— (q")/((a7) " + 7).

N

© o N oW

the part of the empirical risk associated with these data can be rewritten as
T

RN R .
S W) L5 (g w7 )

2w;
i=1 T i=1 K2 7 1

(g;(2)? = 2g;(x)y) <~ ¥2
+ -t
2w ' w;

:(y—éq;(x))2 LA

where A is a constant independent of g. To recursively update w and y when a
repetition is detected, notice that

r+1 —1
wrtt = (3L :<1+ ! ) S S C' S
= wi w' Wt W'+ Wy41 wW" + Wri1
r4+1 -1
) 1 1 T . w”
Y=ty <r+ ) (yr+y7+1> =y + —(i—y).
P Wi w Wyr41 w Wyr41 w;

The variations can be expressed as:

(wT)2 (,wr+1)2

Aw ™ = — =
W+ wryy W —wey’
1
. w” N Yro1 — Yyt
Ay7+1:7(yi_y,):wr+1 T+ -
w; Wpyp1 — w't

By applying these formulas to the p-th data of task j, lines 4,5 of Algorithm
6 are obtained. In particular, the variation of coefficients w) and yj, after the
update can be written as follows:
J)2 C_d
Awl = 7(.1%) Ayl = w! YV
D j ) D P j°
Wp — Wy w; —w

82



Client-server multi-task learning from distributed datasets

At this point, we also need to modify matrix R/, since its definition (see Al-

gorithm 4, line 2) depends on the weight coefficient wg. To check that R7 is

correctly updated by lines 3, 6,8 of Algorithm 6 observe that, applying Lemma
9, we have:

J TRJ
R epepR

- PP _RI 4 yuu.
Muwy + eI Rie, K

. 1 -1 A
R/ ((RY) " +aepefdw)) =R

Consider now the update of 3. Since 37 has already been modified, the previous
y) is given by 3/ — epAyZ. Recalling the definition of ¢ in Algorithm 4, and the
update for R7, we have

§ e SOLTCARES + LT () (BRI 4 ) o
ey
Using the definition of x4 and w in Algorithm 6, we have
(R +quu”) y/ = (R +qyuu”) (v — Ayle, + Ayle,)
=R/ (v — Aylep) + (Ay) + "y ) u
=R/ (yj - Aygep) + pu,
so that
¥ ¥4 pLT(;, h9)u.

By defining v as in line 9 of Algorithm 6, the update of line 10 is obtained.
Finally, we show that H is correctly updated. Recall, from Algorithm 4 that

-1

H=|D"'+a) L'(,h)R/L(K,:)
j=1

In view of lines 8 and 9 of Algorithm 6, we have
H «+ (H*1 + a’yv’uT)_l .

Lines 11 and 12 follows by applying Lemma 9 to the last expression.

Case 2: repetition in X.

Since z; belongs to X but not to X (h?), we have
s;én—i—l, p:£J+1

The flow of Algorithm 5 can be organized as in Algorithm 7.

First, vectors h?, 4/ and w’ must be properly enlarged as in lines 3-6. Then,
recalling the definition of R/ in Algorithm 4, we have:

PN (R~ k([ - 1))
®)™ ( (i — )T T, + )

83



Chapter 5

Algorithm 7 Server (Case 2)
1: s = find (mi,/f)
2: p = find (.%‘i, /%(hj))

3: fj%fj—Fl
Sh e h s)

7 k< (1—a)-ker (xi,f(hj);f(j),
9: v+ 1/ ()\wi - uTk).
10: R7 « diag {R7,0} + yuu”

11: v« LT(:, h)u

12: p 4 yuTyl,

13: ¥ < ¥+ po,

14: q < Hv,

15 H  H — (q¢")/((07) " + 7).

The update for R’ in lines 7-10 is obtained by applying Lemma 10.

Consider now the update of §. Recall that A/ and 37 have already been updated.
By the definition of ¢ and in view of line 10 of Algorithm 7, we have

m
7 Z LT, hF)RFyF + LT, W) [diag {Rj,O} + WuuT] V4
k#j
=g +y(u’y )L (W u.

The update in lines 11-13 immediately follows. Finally, the update in lines 14-15
for H follows by applying Lemma 10, as in Case 1.

Case 3: z; is a new input.
Since x; is a new input, we have

s=n+1, p=4{;+1.

The flow of Algorithm 5 can be reorganized as in Algorithm 8. The final part of
Algorithm 8 coincides with Algorithm 7. In addition, the case of new input also
requires updating factors D and L. If K is strictly positive, then D is diagonal
and L can be chosen as a lower triangular Cholesky factor. If K is not strictly
positive, other kinds of decompositions can be used. In particular, for the linear
kernel K (x1,22) = (21, 72)2 over R”, D and L can be taken, respectively, equal

84



Client-server multi-task learning from distributed datasets

Algorithm 8 Server (Case 3)
In+<n+1
2: 2? — {.)E‘,ZL'Z}
: k + ker (;vi,)é;?>7
7+ Solution to LDr = k([n — 1]),
. B+ ky—7rTDr,
: D+ diag{D, 5}

w

o oA

é
/]\

EN|
=
/l\
N
=3

\_/Hr(
= O
N———

9: H + diag {H, 8}
10: Call Algorithm 7.

to the identity and X. Recalling equation (5.7), we have

K ( k([nlfl])T E([n%; K ) - ( k([I;L]D—LS)T k([nE; K >

(5 D))

with r and § as in lines 4-5. Finally, updates for § and H are similar to that of
previous Case 2, once the enlargements in lines 8 and 9 are made.

5.3.2 Client side

It turns out that each client can compute its own estimate fj by only accessing
disclosed data X , ¥, and H. It is not even necessary to know the overall number
m of tasks, nor their kernels K7. First of all, we show that vector ¢ can be
computed by knowing only disclosed data. From Algorithm 4, we have

(DL”) ¢ = Hy.

Apparently, the right-hand side can be computed by just knowing 3 and H.
Moreover, from equation (5.7) one can see that factors L and D can be computed
by knowing matrix K which, in turn, can be computed by just knowing vector
X. In practice, factors L and D can be incrementally computed by lines 1-7 of
Algorithm 9. Notice that ¢ is only needed at prediction time. While it is possible
to keep it updated on the server, this would require solving a linear system for
each new example to compute quantities that are possibly overwritten before
being used. To reduce computation load on the server, it is preferable that each
client computes by itself these quantities, whenever it needs predictions.

As mentioned in the introduction, two kind of clients are considered.

e An active client j, which sends its own data to the server.

85



Chapter 5

e A passive client j, which does not send its data.

Passive clients must run a local version of the update algorithm before obtaining
coefficient vectors, since the information contained into the disclosed database
doesn’t take into account their own data. For such reason, they need to know
matrix H and vector y separately.

Once the disclosed data and vector ¢ have been obtained, each client still needs
the individual coefficients vector ¢ in order to perform predictions. In this
respect, notice that line 10 of Algorithm 4 decouples with respect to the different
tasks:

d R (y —aL(W,:)z2),

so that ¢/ can be computed by knowing only disclosed data together with private
data of task j. This is the key feature that allows a passive client to perform
predictions without disclosing its private data and exploiting the information
contained in all the other datasets. Client side computations are summarized
in Algorithm 9.

Algorithm 9 (Client j) Receive Z, § and H and evaluate ¢ and ¢/

1: fori=1:ndo

20k ker (fi,f([i]);F),

3: 7« Solution to LDr = k([i — 1]),
4: B k; — ’/'T]:)’I“7

5. D+« diag {D, 8},

L O
6: L(*<TT1)7

7: end for

8: if Passive then

9: fori=1:¢;do

10: Run Algorithm 5 with (x5, v, wij).
11:  end for

12: end if

13: z + Hy

14: ¢ < Solution to (DL”) é = z.

15: ¢ « RJ (y? — aL(h?,:)z).

5.4 lllustrative example: music recommendation

In this section, we apply the algorithm presented in the chapter to a simulated
music recommendation problem, which consists in predicting preferences of sev-
eral virtual users for a set of artists. Artist data were obtained from the May
2005 AudioScrobbler Database dump (http://www-etud.iro.umontreal.ca/
~bergstrj/audioscrobbler_data.html) which is the last dump released by
AudioScrobbler/LastFM under Creative Commons license. LastFM is an in-
ternet radio that provides individualized broadcasts based on user preferences.
The database dump includes users playcounts and artists names so that it is

86


http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

Client-server multi-task learning from distributed datasets

Bob Dylan

Figure 5.1: Example of artist tagging

87



Chapter 5

0.02

0.018

0.016

0.014

0.012

0.01

0.0084.

Figure 5.2: Average TOP20HITS and RMSE against « and A.

88



Client-server multi-task learning from distributed datasets

Number of users

10
hits20;

Figure 5.3: Distribution of hits20; in correspondence with o* and A\* achieving

optimal RMSE.

True Top20

1)Bob Dylan |
)Leonard Cohen ]
)Jimi Hendrix ]
)The Doors |
)Eric Clapton ]
)The Rolling Stonek

)Elvis Presley |
)Van Morrison ]
10)Johnny Cash |
11)Grateful Dead ]
l
l

12)Neil Young
13)Eagles
14)The Who |
15)Lynyrd Skynyrd]
16)Led Zeppelin |
17)Fleetwood Mac ]
18)Dire Straits ]
19)Pink Floyd |
0)The Kinks |

)Creedence Clearwater Revival

Estimated Top20

1)Bob Dylan l

)Leonard Cohen |

)Jimi Hendrix ]

)Eric Clapton |
)The Doors ]
)The Rolling Stones]
)Creedence Clearwéter Revival
)Elvis Presley |
)Van Morrison ]
10)Grateful Dead |
11)Eagles l
12)Neil Young ]
f
l

13)The Who
14)Johnny Cash
15)Lynyrd Skynyrd
16)Led Zeppelin__|
17)Fleetwood Mac |
18)Dire Straits l
19)Pink Floyd ]

0)The Kinks |

Figure 5.4: True and estimated Top20 for the “average user”.

89



Chapter 5

True Top20

[D)Eric Clapton
P)Blind Guardian
B)Opeth
#)Sonata Arctica
b)Stratovarius
6)Cradle of Filth
[D)In Flames
B)Children of Bodbm
9)Meshuggah
[L0)Rhapsody
[L1)Soilwork
[12)Symphony X
[3)Therion

L4 Slaier
[15)Mastodon

[16)Strapping Youhg Lad

[L7)Helloween
8)Hilary Duff
[19)Lindsay Lohan]
0)Devin Townsend

True Top20

[L)The Smiths
R)Tears for Fears
BlDuran Duran |
AW.A.S.P.

B)Air Supply |
Bla—ha
[[Morrissey
B)Roxette

B)Eagles

[LO)Peter Gabriel
[L1)Phil Collins
[12)The Cure
L3)Yes

[14)Genesis
5)Slowdive |
6)Billy Joel ]
7)Aerosmith
[L8)Queen

[L9)The Stone Rosé¢s

True Top20

P)Usher
B)Johnny Cash
#@)Frank Sinatra.
E)The Roots
B)Kanye West
[DNelly

B)Miles Davis
PO)Norah Jones
[Ll0\Outkast ]
L1)Jay-Z
[12)2Pac
[L3)Ludacris
[L4)The Game
[[5)Looptroop
[16)D12
[17)Snoop Dogg
[18)50 Cent
[19)Dead Kennedlys
RO)RID2

P0)My Bloody Valéntine

[DAlicia Keys

Estimated Top20

1) The Dillinger Escapk Plan

B)Opeth

@) Sonata Arctica
5)Stratovarius
6)Cradle of Filth
[7)In Flames
S%Children of Bodom
9)Meshuggah
[L0)Rhapsody
[L1)Soilwork
[12)Symphony X
[13)Therion
[14)Slayer
[L5)Mastodon

2)Blind Guardian
Blopeth |

[L7)Helloween
[L8)Hilary Duff
[19)Devin Townsend
[20)Lindsay Lohan

Estimated Top20

MBobDylan ]
[2)Jimi Hendrix
3)Slowdive

@ Leonard Cohen
5)The Smiths
6)Damien Jurado
[Nick Drake ]

9)Eric Clapton
[L0)The Doors
[L1)Elvis Presley
[[2)a-ha
[(3)Morrissey |
[L4)Tears for Fears

[L6)Cat Power

[17)Air Supply
[18)W.A.S.P.

[L9)The Unicorns |
[20)The Rolling Stonés

Estimated Top20

R)Delerium
B)Zero 7
B Enigma

6)Groove Armadla
[7)Johnny Cash
8)Underworld
9)M83

[L1)Faithless
[12)Daft Punk
[L3)Air
[14)Aphex Twin
[L5)Vangelis |
[16)Orbital

18)Boards of Chnada
[19)The Books
[20)New Order

[16)Strapping Young Llad

B)Creedence Clearwater Revival

5)My Bloody Valentine

5)The Chemical Brothers

[L0)Thievery Cotporation

[L7)Apoptygma Berzerk

Figure 5.5: True and estimated Top20 for three representative virtual users.

90



Client-server multi-task learning from distributed datasets

possible to sort artists according to overall number of playcounts. After sorting
according to decreasing playcounts, 489 top ranking artists were selected. The
input set X is therefore a set of 489 items. The tasks are associated with user
preference functions. More precisely, normalized preferences of user j over the
entire set of artists are expressed by functions g; : X — R that are to be learnt
from data.

The simulated music recommendation system relies on music type classification
expressed by means of tags (rock, pop, etc). The i-th artist is associated with
a vector z; € [0,1]* of 19 tags, whose values were obtained by querying the
LastFM web site (http://www.lastfm.com) on September 22, 2008. In Figure
5.1, the list of the tags considered in this experiment, together with an example
of artist tagging are reported. Vectors x; were normalized to lie on the unit
hyper-sphere, i.e. ||x;]l2 = 1. Tag information is used to build a mixed-effect
kernel over X, where

K (2, 2;) = el K(zi,x;) = (w4, 75)2.

These kernels were also used to generate synthetic users. First, an “average user”
was generated by drawing a function h : X — R from a Gaussian process with
zero mean and auto-covariance K. Then, m = 10° virtual user’s preferences
were generated as

gj = 0.25h 4 0.75h;,

where h; were drawn from a Gaussian process with zero mean and auto-covariance

K. For the j-th virtual user, ¢; = 5 artists x;; were uniformly randomly sampled
from the input set, and corresponding noisy outputs y;; generated as

vij = gj(xi5) + €5,

where ¢;; are ii.d. Gaussian errors with zero mean and standard deviation
o = 0.01. Performance is evaluated by both the average root mean squared
error

m | x|

RMSE = i Z |X| Z gj xl g] xz))2a

j=1

and the average number of hits within the top 20 ranked artists, defined as

m

TOP20HITS = Z hits20;,

hits20; = |top20 95) N top20(g;)] ,

where top20 : H — X2° returns the sorted vector of 20 inputs with highest
scores, measured by a function g € H.

Learning was performed for 15 values of the shrinking parameter « linearly
spaced in [0, 1] and 15 values of the regularization parameter A logarithmically
spaced in the interval [10*7, 100], see Figure 5.2. The multi-task approach,
ie. 0 < a < 1 outperforms both the separate (o = 0) and pooled (o =

91



Chapter 5

1) approaches. Interestingly, performance remains fairly stable for a range of
values of a. Figure 5.3 shows the distribution of hits20; over the users in
correspondence with o* and A* achieving the optimal RMSE. Although a* and
A* were selected so as to minimize the RMSE, good performances are obtained
also with respect to the TOP20HITS score which is 9.4175 (meaning that, on
the average, about 9 artists among the top-20 are correctly retrieved). Finally,
true and estimated top-20 hits are reported for the average user (Figure 5.4)
and three representative users chosen so as to give examples of good, average,
and bad prediction performances (Figure 5.5). Artists of the true top-20 that
are correctly retrieved in the estimated top-20 are reported in bold-face.

Concerning the computational burden, it is worth observing that, without ex-
ploiting the presence of repeated inputs and the mixed-effect structure of the
kernel, the complexity of a naive approach would be of the order of the cube of
the overall number of examples, that is (5-10)3. Conversely, the complexity of
the approach proposed in this chapter scales with nm, where n is the number
of unique inputs and m the number of tasks (in our example, n is bounded by
the cardinality of the input set |X| = 489, and m = 10°).

5.5 Multicentric pharmacological experiment

In this section, we consider data coming from a double-blind clinical trial (Study
810) for testing efficacy of paroxetine, an antidepressant drug [Merlo-Pich and
Gomeni, 2008, Gomeni et al., 2009]. In this trial, patients suffering from major
depressive disorder were either treated with placebo (placebo arm) or admin-
istered paroxetine at two different doses (treatment arms) for 10 weeks. Visits
at weeks 0, 1, 2, 3, 4, 6, 8, were planned. During each visit, the patient was
interviewed and a questionnaire filled. Based on the scores of the questionnaire
items, a global score (the so-called HAMD score) which measures the degree of
depression (the higher the score the more severe the depression) was assigned.
In this way, each patient is associated with the time profile of her/his scores. An
effective drug is expected to result in a suitable decrease of the HAMD score,
measured by the difference between the score at the beginning (week 0) and
that at the end of the study (week 10).

In psychiatric trials, dropouts are rather common, meaning that several patients
may abandon the study before its completion. Since dropout occurrences are
usually correlated with the response (e.g. patients whose HAMD score does not
decrease are more likely to drop out), neglecting dropouts from the calculation
of the average HAMD decrease would bias the result of the trial. Hence, it is nec-
essary to reconstruct the missing observations (especially the final one at week
8) of dropouts so that they can be included in the global efficacy assessment.
The conventional approach (LOCF-Last Observation Carried Forward) uses a
heuristic imputation scheme that assigns the last available HAMD score to all
visits following dropout occurrence. Since this solution is far from being satis-
factory [Hu and Sale, 2003], more recent approaches [Gomeni et al., 2009] adopt
a two-step procedure based on a parametric mathematical model of patient re-
sponse: first, individual model parameters are estimated from the whole dataset
and then they are used to compute the complete profile of each individual pa-

92



Client-server multi-task learning from distributed datasets

HAMD

Time (weeks)

Figure 5.6: Pharmacological experiment: training data for 494 patients. Only
a subset of 44 patients has been fully sampled, while for the others only mea-
surements taken before the 4th week are available.

93



Chapter 5

RMSE on test data (50 splits)
11 T T T

10

RMSE
o)
S

v
_—oE o oEm ) omm o omm | wm |

5 1 1 1
10° 10° 107 10°° 10°

Figure 5.7: Pharmacological experiment: RMSE on the test data. The thick
lines are averages over 50 randomly extracted training subsets, using a separate
single-task method (dash-dotted thick line), and the multi-task learning method
(continuous thick line).

94



Client-server multi-task learning from distributed datasets

tient. The main difficulty lies in the choice of the mathematical model of drug
response, especially in the psychiatric field where a physiologically-grounded
mechanistic description of drug effects is hardly possible.

The problem of reconstructing the missing scores of dropout patients is well
suited to be reformulated as a multi-task learning problem, in which the different
tasks correspond to the different patients enrolled in the study. A kernel-based
approach offers two major advantages: it is flexible enough to accommodate a
large variety of response shapes and there is no need to assume a particular
structural model which could be difficult to justify. In the following, our multi-
task learning method is applied to Study 810, in order to assess its ability to
reconstruct responses of dropout patients compared to the use of a single-task
method. This kind of clinical trials are multicentric, with patients enrolled by
many different clinical centers. Therefore, the client-server architecture devel-
oped in the present chapter would allow any clinical center to complete the
responses of its dropouts patients as if all the data were available, but without
actually accessing confidential data of patients enrolled by the other centers.

The overall dataset contains 2855 measurements for 494 different patients. First
of all, we extracted a test set containing 1012 examples which includes all the
measurements taken after the 3th week for a subset of 450 randomly chosen
patients. The remaining 1843 examples are plotted in Figure 5.6. To robustly
assess performances, 50 additional random subsets have been extracted from
the 1843 examples using a 30/70 splitting rule, namely 553 randomly chosen
examples are removed, while the remaining 1290 examples are used for training.
In order to reconstruct the individual response curves, we adopt the multi-task
learning method proposed in this chapter with a mixed-effect kernel of the form
(5.2), where both K and K’ are chosen as linear splines kernels of the type

F(xl,xg) = I?j(xl,ajg) =1 +min{w1,m2},

and « has been fixed to 0.5. For each of the 50 splits, the solution is computed in
correspondence with 10 different values of A on a logarithmic scale in the interval
[10_87 1]. Results are compared with independent learning of the response
curves with a linear spline kernel, which corresponds to fixing @« = 0 in the
mixed-effect kernel. Figure 5.7 reports the RMSE on the test data over the
50 dataset splits for both methods. The multi-task method outperforms the
single-task approach for all the values of the regularization parameter.

5.6 Conclusions

Recent studies have highlighted the potentialities of kernel methods applied to
multi-task learning, but their effective implementation involves the solution of
architectural and complexity issues. In this chapter, emphasis is posed on the
architecture with reference to learning from distributed datasets. For a general
class of kernels with a “mixed-effect” structure it is shown that the optimal solu-
tion can be given a collaborative client-server architecture that enjoys favorable
computational and confidentiality properties. By interacting with the server,
each client can solve its own estimation task while taking advantage of all the
data from the other clients without having any direct access to them. Client’s

95



Chapter 5

privacy is preserved, since both active and passive clients are allowed by the
architecture. The former are those that agree to send their data to the server
while the latter only exploit information from the server without disclosing their
private data. The proposed architecture has several potential applications rang-
ing from biomedical data analysis (where privacy issues are crucial) to web data
mining. The simulated music recommendation system shows that, when the
learning tasks are similar enough and the kernel is chosen well, combining esti-
mates leads to good generalization performances even when a very small number
of examples for each task is available. The use of kernels allows to take advan-
tage of meta-data to improve estimates, and computational complexity scales
favorably with the number of users.

Bibliography

L. Aarons. Software for population pharmacokinetics and pharmacodynamics.
Clinical Pharmacokinetics, 36(4):255-264, 1999.

G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity.
Journal of Econometrics, 89(1):57-78, 1999.

Q. An, C. Wang, 1. Shterev, E. Wang, L. Carin, and D. Dunson. Hierarchical ker-
nel stick-breaking process for multi-task image analysis. In Andrew McCallum
and Sam Roweis, editors, Proceedings of the 25th Annual International Con-
ference on Machine Learning (ICML 2008), pages 17-24. Omnipress, 2008.

R. K. Ando and T. Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:
1817-1853, 2005.

A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regulariza-
tion framework for multi-task structure learning. In J. C. Platt, D. Koller,

Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 25-32. MIT Press, Cambridge, MA, USA, 2007.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337-404, 1950.

N. Arora, G. M. Allenby, and J. Ginter. A hierarchical Bayes model of primary
and secondary demand. Marketing Science, 17(1):29-44, 1998.

B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask
learning. Journal of Machine Learning Research, 4:83-99, 2003.

J. Baxter. A Bayesian/information theoretic model of learning to learn via
multiple task sampling. Machine Learning, 28(1):7-39, 1997.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12:149-198, 2000.

S. Beal and L. Sheiner. NONMEM User’s Guide. NONMEM Project Group,
University of California, San Francisco, 1992.

96



BIBLIOGRAPHY

S. L. Beal and L. B. Sheiner. Estimating population kinetics. Critical Reviews
in Biomedical Engineering, 8(3):195-222, 1982.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task
learning. In Proceedings of Computational Learning Theory (COLT), 2003.

S. Ben-David, J. Gehrke, and R. Schuller. A theoretical framework for learning
from a pool of disparate data sources. In Proceedings of the The FEighth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 443-449, 2002.

S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer. Multi-task learning for
HIV therapy screening. In Andrew McCallum and Sam Roweis, editors, Pro-
ceedings of the 25th Annual International Conference on Machine Learning
(ICML 2008), pages 56—63. Omnipress, 2008.

E. V. Bonilla, F. V. Agakov, and C. K. I. Williams. Kernel multi-task learning
using task-specific features. In Proceedings of the 11th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2007.

J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the 14th Conference
on Uncertainty in Artificial Intelligence, pages 43-52, 1998.

J. Canny. Collaborative filtering with privacy via factor analysis. In SIGIR
’02: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 238-245, New York,
NY, USA, 2002. ACM.

E. R. Carson, C. Cobelli, and L. Finkelstein. The Mathematical Modeling of
Metabolic and Endocrine Systems. New York: Wiley, 1983.

R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.

Y.-H. Chen and E. George. A bayesian model for collaborative filtering. In
Online Proceedings of the Seventh International Workshop on Artificial In-
telligence and Statistics, 1999.

L. Csat6 and M. Opper. Sparse on-line Gaussian processes. Neural Computation,
14(3):641-668, 2002.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin
of the American mathematical society, 39:1-49, 2001.

M. Davidian and D. M. Giltinan. Nonlinear Models for Repeated Measurement
Data. Chapman and Hall, 1995.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615-637, 2005.

K. E. Fattinger and D. Verotta. A nonparametric subject-specific population
method for deconvolution: I. description, internal validation and real data
examples. Journal of Pharmacokinetics and Biopharmaceutics, 23:581-610,
1995.

97



Chapter 5

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo
in Practice. Chapman and Hall, London.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12):61-70,
1992.

G. Golub and C. F. Van Loan. Matriz Computations. The John Hopkins
University Press, Baltimore, 1996.

R. Gomeni, A. Lavergne, and E. Merlo-Pich. Modelling placebo response in de-
pression trials using a longitudinal model with informative dropout. Furopean
Journal of Pharmaceutical Sciences, 36(1):4-10, 2009.

W. Greene. Econometric Analysis. Prentice Hall, 5 edition, 2002.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
Dependency networks for inference, collaborative filtering, and data visual-
ization. Journal of Machine Learning Research, 1:49-75, 2000.

T. Hofmann and J. Puzicha. Latent class models for collaborative filtering.
In IJCAI ’99: Proceedings of the Sizteenth International Joint Conference on
Artificial Intelligence, pages 688—693, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

C. Hu and M. E. Sale. A joint model for nonlinear longitudinal data with
informative dropout. Journal of Pharmacokinetics and Pharmacodynamics,
30(1):83-103, 2003.

J. A. Jacquez. Compartmental analysis in biology and medicine. University of
Michigan Press, Ann Arbor, 1985.

H. Kautz, B. Selman, and M. Shah. Referral web: combining social networks
and collaborative filtering. Communications of the ACM, 40(3):63-65, 1997.

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl. GroupLens: applying collaborative filtering to Usenet news. Com-
munications of the ACM, 40(3):77-87, 1997.

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector
machine. In Proceedings of the 21th International Conference in Machine
Learning (ICML 2004 ), volume 69, page 65, 2004.

Z.Lu, T. Leen, Y. Huang, and D. Erdogmus. A reproducing kernel Hilbert space
framework for pairwise time series distances. In Andrew McCallum and Sam
Roweis, editors, Proceedings of the 25th Annual International Conference on
Machine Learning (ICML 2008), pages 624-631. Omnipress, 2008.

D. J. Lunn, N. Best, A. Thomas, J. C. Wakefield, and D. Spiegelhalter. Bayesian
analysis of population PK/PD models: general concepts and software. Journal
of Pharmacokinetics Pharmacodynamics, 29(3):271-307, 2002.

P. Magni, R. Bellazzi, G. De Nicolao, I. Poggesi, and M. Rocchetti. Non-
parametric AUC estimation in population studies with incomplete sampling:
a Bayesian approach. Journal of Pharmacokinetics Pharmacodynamics, 29
(5/6):445-471, 2002.

98



BIBLIOGRAPHY

A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning
Research, 7:117-139, 2006.

E. Merlo-Pich and R. Gomeni. Model-based approach and signal detection
theory to evaluate the performance of recruitment centers in clinical trials
with antidepressant drugs. Clinical Pharmacology and Therapeutics, 84:378—
384, September 2008.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural
Computation, 17:177-204, 2005.

C. N. Nett and W. M. Haddad. A system-theoretic appropriate realization of
the empty matrix concept. IEEE Transactions on automatic control, 38(5):
T771-775, 1993.

M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of
pharmacokinetic population models via Gaussian processes. In Proceedings
of 16th IFAC World Congress, Praha, Czech Republic, 2005.

M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of pop-
ulation models via Gaussian processes. Automatica, 43(7):1134-1144, 2007.

M. Opper. Online Learning in Neural Networks, chapter A Bayesian Approach
to Online Learning. Cambridge University Press, 1998.

K. Park, D. Verotta, T. F. Blaschke, and L. B. Sheiner. A semiparametric
method for describing noisy population pharmacokinetic data. Journal of
pharmacokinetics and biopharmaceutics, 25(5):615-642, 1997.

G. Pillonetto, G. De Nicolao, M. Chierici, and C. Cobelli. Fast algorithms for
nonparametric population modeling of large data sets. Automatica, 45(1):
173-179, 2009.

G. Pillonetto, F. Dinuzzo, and G. De Nicolao. Bayesian online multitask learning
of Gaussian processes. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 32(2):193-205, 2010.

T. Poggio and F. Girosi. Networks for approximation and learning. In Proceed-
ings of the IEEE, volume 78, pages 1481-1497, 1990.

Y. Qi, D. Liu, D. Dunson, and L. Carin. Multi-task compressive sensing with
Dirichlet process priors. In Andrew McCallum and Sam Roweis, editors, Pro-
ceedings of the 25th Annual International Conference on Machine Learning
(ICML 2008), pages 768-775. Omnipress, 2008.

N. Ramakrishnan, B. J. Keller, B. J. Mirza, A. Y. Grama, and G. Karypis.
Privacy risks in recommender systems. IEEE Internet Computing, 5(6):54—
62, 2001.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

P. Resnick and H. R. Varian. Recommender systems. Communications of the
ACM, 40(3):56-58, 1997.

99



Chapter 5

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In CSCW ’94:
Proceedings of the 1994 ACM conference on Computer supported cooperative
work, pages 175-186, New York, NY, USA, 1994. ACM.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. (Adaptive Computation
and Machine Learning). MIT Press, 2001.

A. Schwaighofer, V. Tresp, and K. Yu. Learning Gaussian process kernels via
hierarchical Bayes. In Advances in Neural Information Processing Systems,
volume 17, pages 1209-1216, 2005.

L. B. Sheiner. The population approach to pharmacokinetic data analysis: ra-
tionale and standard data analysis methods. Drug Metabolism Reviews, 15:
153-171, 1994.

L. B. Sheiner and J. L. Steimer. Pharmacokinetic/pharmacodynamic modeling
in drug development. Annual Review of Pharmacology and Toxicology, 40:
67-95, 2000.

L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population char-
acteristics of pharmacokinetic parameters from routine clinical data. Journal
of Pharmacokinetics and Biopharmaceutics, 5(5):445-479, 1977.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix
factorization. In Advances in Neural Information Processing Systems. MIT
Press, 2005.

V. Srivastava and T. Dwivedi. Estimation of seemingly unrelated regression
equations: A brief survey. Journal of Econometrics, 10:15-32, 1971.

L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS: a
system for sharing recommendations. Communications of the ACM, 40(3):
59-62, 1997.

S. Thrun. Is learning the n-th thing any easier than learning the first. In
Advances in Neural Information Processing Systems, volume 8, pages 640—
646. MIT Press, 1996.

S. Thrun and L. Y. Pratt, editors. Learning To Learn. Kluwer Academic
Publishers, Boston, MA, 1998.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill Posed Problems. W. H.
Winston, Washington, D. C., 1977.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, USA, 1998.

S. Vozeh, J. L. Steimer, M. Rowland, P. Morselli, F. Mentre, L. P. Balant, and
L. Aarons. The use of population pharmacokinetics in drug development.
Clinical Pharmacokinetics, 30(2):81-93, 1996.

G. Wahba. Spline Models for Observational Data. STAM, Philadelphia, USA,
1990.

100



BIBLIOGRAPHY

J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Bayesian
analysis of linear and non-linear population models by using the Gibbs sam-
pler. Applied Statistics, 41:201-221, 1994.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classi-
fication with Dirichlet process priors. Journal of Machine Learning Research,
8:35-63, 2007.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from mul-
tiple tasks. In Proceedings of the 22th Annual international conference on

Machine learning (ICML 2005), pages 10121019, 2005.

S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In
Proceedings of the 24th Annual international conference on Machine learning
(ICML 2007), pages 1103-1110, New York, NY, USA, 2007. ACM.

L. Yuh, S. Beal, M. Davidian, F. Harrison, A. Hester, K. Kowalski, E. Vonesh,
and R. Wolfinger. Population pharmacokinetic/pharmacodynamic methodol-
ogy and applications: a bibliography. Biometrics, 50:566-575, 1994.

J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for
multi-task learning. Machine Learning, 73(3):221-242, 2008.

101



102



Appendix

A.1 Mathematical preliminaries

In this section, we review some concepts and theorems from analysis and linear
algebra, which are used in the proofs. For more details, see [Rockafellar, 1970,
Hiriart-Urruty and Lemaréchal, 2004]. Let E denote an Euclidean space en-
dowed with the standard inner product (1, 7s)2 = 2¥z5 and the induced norm

llzll2 = /(z, x)2.

Set-valued maps

A set-valued map (or multifunction) A : E — 2 is a rule that associate to each
point & € E a subset A(z) C E. Notice that any map A : E — E can be seen as
a specific instance of multifunction such that A(z) is a singleton for all z € E.
The multi-function A is called monotone whenever

(y1 — Y2, @1 — 2)2 >0, Vry,zo € E, y1 € A(z1), y2 € A(z2),
If there exists L > 0 such that
llyr — y2ll2 < Lijz1 — 22]|2, Vy,xp € E, y1 € A(z1), Y2 € A(x2),

then A is single-valued, and is called Lipschitz continuous function with modulus
L. A Lipschitz continuous function is called nonexpansive if L = 1, contractive
if L <1, and firmly non-expansive if

1 —v2l13 < (y1—y2, 21 —22)2, Vap,xe € E, y1 € A(z1), Y2 € A(z2).

In particular, firmly non-expansive maps are single-valued, monotone, and non-
expansive. For any monotone multifunction A, its resolvent J2 is defined for
any a > 0 as JA := (I+aA)”", where I stands for the identity operator.
Resolvents of monotone operators are known to be firmly non-expansive.

Finite-valued convex functions

A function f : E — R is called finite-valued convez if, for any « € [0, 1] and any
x1, T2 € E, it satisfy

—00 < flaxs + (1 —a)z2) < af(x) + (1 —a)f(z2) < +o0

103



Chapter A

The subdifferential of a finite-valued convex function f is a multifunction 9f :
E — 2F defined as

of(x) ={§€E: f(y) — f(x) > ({,y —x)2, VyeE}.

It can be shown that the following properties hold:

1. 0f(z) is a non-empty convex compact set for any z € E.

2. f is (Gateaux) differentiable at x if and only if df(z) = {Vf(z)} is a
singleton (whose unique element is the gradient).

3. 0f is a monotone multifunction.

4. The point z* is a (global) minimizer of f if and only if 0 € 9f (z*).

For any finite-valued convex function f, its Moreau-Yosida regularization (or
Moreau envelope, or quadratic min-convolution) is defined as

fa(@) = min (f(5) + 5y~ all3) .

yeR

For any fixed z, the minimum in the definition of f, is attained at y = p,(z),

where p, = (I + a’laf)fl denotes the so-called prozimal mapping. It can be
shown that the following remarkable properties hold:

1. f, is convex differentiable, and the gradient V f, is Lipschitz continuous
with modulus 1/a.

2. fal@) = f(pal®)) + & pale) — [3.

3. fo and f have the same set of minimizers for all a.

4. The gradient V f, is called Moreau-Yosida regularization of 0 f, and satisfy
V@) = @z~ pa(@) = ala(2),

where J, denote the resolvent of the inverse sub-differential defined as

-1
Jo = (I +a (8f)’1)
Convergence theorems

Theorem 16 (Contraction mapping theorem). Let A : E — E and suppose
that, given ¥, the sequence c* is generated as

If A is contractive with modulus 1, then there exists a unique fixed-point c* such
that c* = A(c*), and the sequence c* converges to ¢* at linear rate:

[*H = c*lle < pll® = €lla,  0<p<1.

104



Appendiz

The following result is know as Zangwill’s convergence theorem [Zangwill, 1969],
see also page 206 of [Luenberger and Ye, 2008].

Theorem 17 (Zangwill’s convergence theorem). Let A : E — 2F denote a

multifunction, and suppose that, given ¥, the sequence c* is generated as
F e A().

Let T' C E called solution set. If the following conditions hold:

1. The graph G4 = {(z,y) e EXE:y € A(x)} is a closed set,
2. There exists a descent function F' such that

o Forallzel, F(A(x)) < F(z),
o Forallz ¢T, F(A(x)) < F(z),

3. The sequence c* is bounded,

then all the cluster points of c* belongs to the solution set.

Some matrix manipulation lemmas

In this subsection, we recall some important matrix manipulation lemmas, all
related to the concept of Shur complement, see [Zhang, 2005] for further details.
Let ST denotes the cone of symmetric positive semi-definite matrices of order
m, and AT denote the Moore-Penrose pseudo-inverse of a square matrix A.

Lemma 9. Let A and B denote two nonsingular matrices. If U and V are
such that (A + UBV) is nonsingular, then matrix

E=B!'+VA~'U
is nonsingular, and
(A+UBV) '=A' — A 'UE"'VA~L

Lemma 10 (Schur Complement). Let
A B
(o &)
where A and C are symmetric matrices. Then, X is non-singular if and only if

1. A is non-singular.

2. The Schur complement D = C — BT A=1'B is non-singular.

If X is non-singular, its inverse is given by

1 A-'+ A" 'BD'BTA-! —A-!BD!
X = _DIBTA-! D! .

105



Chapter A

Finally, we recall the following generalization, due to [Albert, 1969].

Lemma 11 (Generalized Schur Complement). Let
A B
X = ( BT C ) s

where A and C are symmetric matrices. Then, X € ST’m if and only if

1. Aesn.
2. C-BTATB e ST.
3. AATB = B.

A.2 Proofs for fixed-point and coordinate descent algo-
rithms

The following Lemma will prove useful in the subsequent proofs.

Lemma 12. The functional F of problem (2.2) is such that F(c+ u) = F(c),
for any vector u in the nullspace of the kernel matriz.

Proof. Let u denote any vector in the nullspace of the kernel matrix. Then, we
have
(c+u)TK(c+u) c"'Ke

Flc+u)=f(K(c+u)+ 5 = f (Ke) + 5 = F(c).

O

Proof of Theorem 8. Problem (2.2) is a convex optimization problem, where
the functional F' is continuous and bounded below. First of all, we show that
there exist optimal solutions. Observe that minimization can be restricted to
the range of the kernel matrix. Indeed, any vector ¢ € E can be uniquely
decomposed as ¢ = u + v, where u belongs to the nullspace of K and v belongs
to the range. By Lemma 12, we have F'(¢) = F(v). Since F' is coercive on the
range of the kernel matrix (lim,|,— 400 F'(v) = 400), it follows that there exist
optimal solutions.

A necessary and sufficient condition for ¢* to be optimal is
0€0F(c") =K (0f (Kc*) + ") = KG(c"), G(c*):=0f (Kc*) +c.

Consider the decomposition G(¢*) = ug+wvg, where ug belongs to the nullspace
of the kernel matrix and vg belongs to the range. Observe that

vg = G(c") —ug = G(c" —ug).
We have

0€KG(c")=Kvg = 0eG(c"—ug)=vg,

106



Appendiz

so that, for any optimal c*, there exists an optimal ¢ = ¢* — ug such that
0€af (Ke) +ec. (A1)

By introducing the inverse sub-differential, equation (A.1) can be rewritten as
Kce (0f) " (—c).

Multiplying by « > 0 both sides and subtracting ¢, we obtain
aKe—cea(df) ' (—c)—c

Finally, introducing the resolvent J,, as in (2.6), we have
aKe—ce (Jo) (=0

Since J,, is single-valued, equation (2.7) follows. O

Proof of Corollary 2. Let’s start from the sufficient condition for optimality
(A.1). If (2.3) holds, then the subdifferential of f decouples with respect to
the different components, so that there exist optimal coefficients ¢; such that

0 € 0fi (kl'c) + ¢, i=1,...,¢

Equivalently,
ke e (0f) " (—¢).

Multiplying by «; > 0 both sides and subtracting c¢;, we have
aik;‘rc —¢; € oy (afi)fl (=) —q.

The thesis follows by introducing the resolvents Jgi and solving for —c¢;. O

Proof of Theorem 9. We show that a subsequence of ¢* generated by algorithm
(2.10) converges to an optimal solution of Problem (2.2). By Theorem 8, there
exists optimal solutions ¢* satisfying (2.7). We now observe that any other
vector ¢ such that K(c¢* — ¢) = 0 is also optimal. Indeed, we have ¢ = ¢* + u,
where u belongs to the nullspace of the kernel matrix. By Lemma 12, it follows
that F(c) = F(c*). To prove (2.9), it suffices to show that Kr¥ — 0, where

r* .= cF — ¢* can be uniquely decomposed as

k= b 4o, Ku" =0, (u®, k) = 0.
We need to prove that |[v¥||s — 0. Since J, is nonexpansive, we have
PH = [ = [ — |
= || Jo(aKc® — cF) — Ty (aKce* — ¢*)||2
< [laKr® =73

= ||04K11’C - 7”‘”'||§.

107



Chapter A

Observing that v¥ is orthogonal to the nullspace of the kernel matrix, we can
further estimate as follows

Ko —r¥[|3 = +* — o*T (20K — o®K?) v/ <+ — B|[vF|3,
where

= mi (2 — aqy).
B8 iﬂlfilo ao; (2 — aq;)

and «y; denote the eigenvalues of the kernel matrix. Since the kernel matrix is
positive semidefinite and condition (2.11) holds, we have

0<an; < 2.

Since the kernel matrix is not null and have a finite number of eigenvalues,
there’s at least one eigenvalue with strictly positive distance from zero. It follows
that 8 > 0. Since

k
0< A< =8 1073,
j=1
we have, necessarily, that ||v*|s — 0. Finally, observe that ¢* remains bounded
k k
le®ll2 < Ml llz + lle*ll2 < 17°ll2 + e 2,

so that there’s a subsequence converging to an optimal solution. In fact, by
(2.9) it follows that any cluster point of ¢* is an optimal solution. O

Proof of Theorem 10. Algorithm (2.10) can be rewritten as

where the map A : E — E is defined as

Ae) = —Jy (aKe —¢).

Under both conditions (1) and (2) of the theorem, we show that A is contractive.
Uniqueness of the fixed-point, and convergence with linear rate will then follow
from the contraction mapping theorem (Theorem 16). Let

= |[aK =1I|s = mzax|1 — a;al,

where «; denote the eigenvalues of the kernel matrix. Since the kernel matrix
is positive semidefinite, and condition (2.11) holds, we have

0 < <2,
so that g3 < 1. We now show that the following inequality holds:

[ Ja(y1) = Ja(y2)ll2 < p2llyr — y2ll2, (A.2)

108



Appendiz

where

1\ —12
M2 = (1 + L2> )

and L denotes the Lipschitz modulus of Vf when f is differentiable with Lip-
schitz continuous gradient, and L = +oo otherwise. Since J, is nonexpansive,
it is easy to see that (A.2) holds when L = +o0o. Suppose now that f is dif-
ferentiable and V f is Lipschitz continuous with modulus L. It follows that the
inverse gradient satisfies

_ _ 1
IV 1) = (VT (@2)ll2 = Flla1 = 22,
Since (Vf)~! is monotone, we have

15 (1) = I3 @2)l3 = llor — 22 + (V)7 (z1) = (V) 7 (@2)lI3
> |lor — 223 + 1(V) " (1) — (V7 (22)]13

1
> (14 25 ) llos - malf

From this last inequality, we obtain (A.2). Finally, we have

[A(er) — Ale2)llz = [[Jo (@Ker — c1) — Jo (aKeg — c2) [|2
< 2 (@K =T)(c1 — c2) |2
< piller = e2lf2,

where we have set p := puips. Consider the case in which K is strictly positive
definite. Then, it holds that

0 <o <2,

so that py < 1, and A is contractive. Finally, when f is differentiable and
Vf is Lipschitz continuous, we have ps < 1 and, again, it follows that A is
contractive. By the contraction mapping theorem (Theorem 16), there exists a
unique c* satisfying (2.7), and the sequence c* of Picard iterations converges to
c* at a linear rate. O

Proof of Theorem 11. We shall apply Theorem 17 to the coordinate descent
macro-iterations, where the solution set I' is given by

I''={ceE:(2.8) holds}.

Let A denote the algorithmic map obtained after each macro-iteration of the
coordinate descent algorithm. By the essentially cyclic rule, we have

cedl)= |J {(Aio-04) (0},

(i1,...ris)ET

where I is the set of strings of length at most s = T" on the alphabet {1,...,¢}
such that all the characters are picked at least once. Observing that the set

109



Chapter A

I has finite cardinality, it follows that the graph G4 is the union of a finite
number of graphs of point-to-point maps:

Ga= |J {@yeExE:y=(4;0-04;)(x)}.
(i1ye.mis) €l

Now notice that each map A; is of the form

Ai(c) =c+ eiti(c)7 ti(C) = S; Z #Cj — G-
J#i

All the resolvents are Lipschitz continuous, so that functions A; are also Lip-
schitz continuous. It follows that the composition of a finite number of such
maps is continuous, and its graph is a closed set. Since the union of a finite
number of closed sets is also closed, we obtain that G 4 is closed.

Each map A; yields the solution of an exact line search over the i-th coordinate
direction for minimizing functional F' of Problem (2.2). Hence, the function

¢i(t) = F(c+ eit),
is minimized at ¢;(c), that is

0 € 9¢;(ti(c)) = (ei, OF (c + eiti(c)))2 = (ki, Of (KA;(c)) + Ai(c))2.
Equivalently,

—(ki, Ai(c))2 € (ki, Of (KA;(c)))2. (A.3)
By definition of subdifferential, we have

[(KAi(c)) — f(Ke) <ti(c)y, Vv € (ki, 0f (KAi(c)))2.
In particular, in view of (A.3), we have

f(KAi(c) — f(Ke) < —ti(e){ki, Ai(c))2.

Now, observe that

F(A(c) < F(Ai() = Fle+ eiti(c))
k..

= F(O) + B0 1 t(e) ki, )2 + FKAe) — F(Ke)
< F(0) + (055 1 () ki, )2 — 1:(6) (b, Aule))
= F(O) + B0 1 1)k, e~ A
= F(O) + 20— 20k
= P~ B0
Since k;; > 0, the following inequalities hold:
£(0) < - (Fl©) = FA:(0) < - (F(0) ~ F(4(0). (A.4)

110



Appendiz

We now show that F' is a descent function for the map A associated with the
solution set I'. Indeed, if ¢ satisfy (2.8), then the application of the map A
doesn’t change the position, so that

On the other hand, if ¢ does not satisfy (2.8), there’s at least one index 4 such
that ¢;(c) # 0. Since all the components are chosen at least once, and in view
of (A.4), we have

F(A(e)) < F(e).

Finally, we need to prove that the sequence of macro-iterations remains bounded.
In fact, it turns out that the whole sequence ¢ of iterations of the coordinate
descent algorithm is bounded. From the first inequality in (A.4), the sequence
F(c*) is non-increasing and bounded below, and thus it must converge to a
number

Fo = lim F(c*) < F(c°). (A.5)

k—+o00

Again from (A.4), we obtain that the sequence of step sizes is square summable:

= 2 2
D e T (F() = Fuo) < +00.
k=0

In particular, step-sizes are also uniformly bounded:

2

2
£7(ch) = || = |, < min; oy

(F(") = Fx) < +00. (A.6)

Now, fix any coordinate i, and consider the sequence c¥. Let hij denote the

subsequence of indices in which the i-th component is picked by the essentially
cyclic rule and observe that

T hij—1
hij _ S ki ¢ hig—1
C; = D; — ¢ .
Lo
it

Recalling the definition of S;, and after some algebra, the last equation can be
rewritten as

C?ij € —0fi (kl‘TChi'j_l + kiit; (Ch”_l)) .

Since Jf;(x) is a compact set for any z € R, it suffices to show that the argument

of the subdifferential is bounded. For any k, let’s decompose c* as

= uF 4+ oF, Ku* =0, (uk,vk>2 =0.

Letting o1 > 0 denote the smallest non-null eigenvalue of the kernel matrix, we
have

ay|[o¥)2 < FTKokR = FTKE® < 2F(cF) < 2F ().

111



Chapter A

By the triangular inequality, we have

T k
k;c
ki

T .k
k;c

(x3

§M< + |t (c’“)}),

where M := max; |k;;|. The first term can be majorized as follows:

\/ 2F(c0) \/ 2F(c0)
< < 400,
2 a1 a1

while the term |t; (cF)| is bounded in view of (A.6). It follows that c¥ is bounded
independently of i, which implies that ¢* is bounded. In particular, the subse-
quence consisting of the macro-iterations is bounded as well.

T k
k;c
ki

T,k
kv
ki

k.
oz < \ Ll

<

ki
K

%

2

By Theorem 17, there’s at least one subsequence of the sequence of macro-
iterations converging to a limit ¢, that satisfies (2.8), and thus minimizes F.
By continuity of F', we have

F(Coo) = min F(c).
(¢oo) = min F(c)

Finally, in view of (A.5), we have F, = F(cw), which proves (2.9) and shows
that any cluster point of ¢* is an optimal solution of Problem (2.2). O

Proof of Theorem 12. Equation (2.7) can be rewritten as
Jo (Koc) +c¢=0.

Now, let f, denote the Moreau-Yosida regularization of f. From the properties
of f., we have

Vfa(Kac)+ac=0.

Multiplying both sides of the previous equation by o~ 'K, we obtain
a 'K Vi (Kac) + Kye = 0.

Finally, the last equation can be rewritten as

K,

V. |la o (Kac) + =0,

so that the thesis follows. O

A.3 Proofs for kernel machines with two layers

Proof of Theorem 13. By fixing any optimal g;, and letting
Zi ::gl(xi)7 i:17"'a€7
problem (3.2) can be rewritten as a function of only gs:

Jain £ (g2(z1),- - 92(20)) + Qa(llg2llae.)] -

112



Appendiz

By standard representer theorems for vector-valued functions (see [Micchelli and
Pontil, 2005a] and the remark on monotonicity in [Scholkopf et al., 2001] after
Theorem 1), there exists an optimal g in the form

L
92(2) = YO K2 ()

Then, by fixing an optimal go in this form, problem (3.2) can be written as a
function of only g; as

min (F(g(en). (@) + L lgrln))

where

f(2) = f(g2(21), - -, 92(20)) -

Notice that the new function fdepends on go. Again, by the single-layer repre-
senter theorem the finite kernel expansion for g; follows. Finally, it is immediate
to see that the overall input-output relation goog; can be written as in (3.3). O

Proof of Theorem 14. Problem (3.4) is a specific instance of problem (3.2). The
functional to minimize is bounded below, lower semi-continuous and radially-
unbounded with respect to (g1, g2). Existence of minimizers follows by weak-
compactness of the unit ball in H; and Hy. By Theorem 13, there exists an
optimal gy in the form

¢ ¢
gi(x) = ZK;J (z)cj = Zdiag {Kl(x,xj), .. ,Km(x,xj)} c.
j=1

j=1
Introduce the matrix C € R™*¢ whose rows are denoted by (c¢')” and whose

columns are c}. Then, the i-th component of g; can be written as:

‘
gi(x) =) & Ki(x, ).
j=1
By Theorem 13, there exists an optimal g5 such that

¢ ¢ ¢
g2(z) = Z C?Ksl(mj)(z) = Zc?zTSgl(xj) =:'s Zc?gl(:nj) = 2"Sa,

j=1 j=1 j=1

where
¢
a:= Z c?gl(xj).
j=1

Letting matrices K* € S as in (3.6), problem (3.4) can be rewritten as

min [f (Z akchk> + Z 02861 . st aTSa<1.
k
k=1

cl,...cmeRt aeR™

113



Chapter A

Vectors ¢! are optimal if and only if
0 € s;a; KOf (Z akchk) + K¢,
k=1

where 0 is the sub-differential of a convex function [Rockafellar, 1970]. Now,
letting

ce —0f <Z akchk> ,

we obtain the following sufficient condition for optimality:
Ci = S;a;cC.
Letting d; := s;a? and K := Y." | d;K’, problem (3.4) boils down to (3.5)-

(3.6). By Theorem 13 again, the overall input-output relation can be written
as in equation (3.3), where the kernel K satisfy

K(xth) = K2(gl(xl)agl($2)) =01 ( Sgl 1‘2 23291 T gl 1-2)
- Zsl Z Z Cﬂlcﬂ le’xl)Ki(szaCW)
=1 J1=1j2=1

= Y diK;(z1,22),
=1

and K; are as in (3.7). O

Proof of Lemma 2. Assume that (c*,d*) is an optimal pair for problem (3.4).
Without loss of generality, we can assume d* # 0. Indeed, if there’s an optimal
solution with d* = 0, then ¢ = 0, d # 0 is optimal as well. Now, let v := ZZ 1 df,

and notice that 0 < v < 1. Introducing the new pair (¢,d) = (yc*,d*/7), the
value of the objective functional in correspondence with (¢, d) is

cTK(d)e

(@) + =

= () + 1)K ()
< fR(a)er) + S

so that the new pair is optimal as well as satisfy the equality constraint (3.8). O

Proof of Lemma 3. By introducing z = Ke, we have ¢ = K z+u, where Ku = 0,
and problem 3.4 can be rewritten as

min f(z)+ GLSE subject to (3.6), =z € range(K)
2€RLKeS™ 2 ’ J o & '

114



Appendiz

Now, the range constraint can be incorporated into the objective functional
by introducing function h as in the statement of the Lemma. We obtain the
following problem:

i hiz, K bject to (3.6). A7
i, G) 4 (), subjeet to (30 (A7)

The functional of problem (A.7) can be seen to be jointly convex in (z,K). It
suffices to prove that the functional is convex when restricted to the set of pairs
(2,K) such that z € range(K), where we have

KKz = 2.

By the Generalized Schur Complement (Lemma 11), letting A = K, B = z,
C = «, we have

K =z
T, < m+1
2 Klz<a & (ZTCY)ESJr .

It follows that the epigraph of h(z,K) is a convex set. Since f is a convex
function, the overall functional in (A.7) is convex. Since constraints (3.6) are
linear, we have a convex optimization problem. Finally, since K(d) is a linear
function of d, problem (3.9) is also convex. O

Proof of Lemma 4. By Lemma 2, minimization with respect to d can be re-
stricted to the standard simplex A,,. For any fixed d, the functional of problem
(4.1) is a convex quadratic function of c¢. If ¢*(d) satisfy equation (4.2), then
the partial derivative of the objective functional with respect to c is zero at c*,
meaning that ¢* is optimal. Dropping the dependence on d, equation (4.2) can
be rewritten as

y—Kc* = Ac™.
In correspondence with such optimal c¢*, we have

ly —Kc* |2 TKe* A, Lo
: =5 lIe7llz +

C*T (y _ AC*) - yTC*
2A 2 2 '

2 )

O

Proof of Lemma 5. By Lemma 2, minimization with respect to d can be re-
stricted to the standard simplex A,,. In addition, we have

ly — Kl  TKe el TKe
= |lu—-Ke+ 25
o 2 ot TR,
B ||U—KCH§ N e (\e/2 + u)
2 2
Kol | Ty
2A 27

115



Chapter A

where ¢’'y/2 does not depend on K (and thus does not depend on d). Now,
recalling that

K(d) = i 4K,
=1

we have

Ke= i d;Klc = Zm; d;v; = Vd.

Proof of Lemma 6. From equation (4.2), we have

Coo = lim (K(d)+ )"y =0.

A——+oo

Since K(d) is a continuous function of d defined over the compact set A,,, by
fixing any matrix norm || - || there exists a sufficiently large A such that

max ||K(d)|| < A.
deAy,

)

For A\ > ), the expansion

(K(d)/AN+1)" =1 —K(d) /X + o(1/\?),
holds. By Lemma 4, it follows that

d*(A) = arg min y" (K(d)/A+1) 'y
arg min [Aly[3/2 = (y"K(d)y) + o(1/3)]
= arg min [y]3/2 = (y"K(d)y) /A + o(1/X*)]

= arg max [y"K(d)y —o(1/)] .

Hence, doo = limy—, 100 d*(A) solves the following linear program

m

d; (yTKy).
Max 1 i(y" K'y)
=

Then, it is easy to see that d = ey, k € argmax;—1,._,,y’ K'y is an optimal
solution of the linear program, where k is any index maximizing the “kernel
alignment” y” K'y. O

Proof of Lemma 7. When basis kernel are chosen as in (4.5), g(x) can be written
as in (4.6)-(4.7), and we have

K(d) = XrXx7”.

116



Appendiz

Letting z := XT¢, and w := I'z, it follows that
Kc=XT'z = Xw,

and

TKe=c"XTXTe =2z = Z sidiz? = Z sldzzf = Z szcllz

i=1 i:d; #0 i:d; #0
Hence, problem (4.1) can be rewritten as
Ay =Xwlf A &~ W)
=+ = — .t. € I'(d)).
min | Tty 2 g v weranee(T(@)
deA,, i:d; #0

It turns out that optimal coefficients d; can be obtained in closed form by
adapting an argument of [Micchelli and Pontil, 2005b] (Lemma 26). Indeed, by
the Cauchy-Schwartz inequality and the fact that d € A,,, we have

2

£ 55 (o) S (50
K3 A
i:d, 20 sidi idyto VS d i:d, 20 i:d, 20 Vi

")l S
(2 _ 3 — ’L.

Now, letting

d‘ |w7f|

Z

Em:\wﬁ L i=1,...,m,

the equality

m

>

i:d; #0 il

is achieved, and all the constraints on both d; and w; are satisfied. Hence,
coefficients d; can be eliminated from the optimization problem. Since the
objective functional doesn’t depend on d anymore, the range constraint can be
also removed, and problem (4.9) is obtained. O

Proof of Lemma 8. When basis kernel are chosen as in (4.5), g(x) can be written
as in (4.6)-(4.7), and we have

K(d) = XIrXx7”.
Letting z := XT¢, it follows that
Ke= XTIz = X@
TKe=c"XTXe = |TV2%2)2 = [TV %02
Hence, problem (4.1) reduces to problem (4.10). O

117



Chapter A

A.4  Proofs for client-server multi-task learning

Proof of Theorem 15. Let
-1

R:=((1-a) il(:, KK (K RDI(K ) + AW |

Jj=1

and observe that R is a sparse matrix such that

i j Rja 1=7
R(k,kw:{ 0 i#j :

where matrices R7 are defined as in lines 1-3 of Algorithm 4. Introduce the
following matrices and vectors,

F:=oL"P'RPL, y:=L"P'Ry, H:=(D '+ F)*1 . z:=Hy.

By the definition of H, we have

DFH=HFD =D — H.
By the definition of P in equation (5.6), F and ¢ can be rewritten as

F: LY, W)RIL(K ),

o

<.
Il
—_

L7(:, )Ry,

?(
I
NE

<.
Il
—_

From (5.5) and (5.7), we have

K+ MW =oK+R!=aePLDL"P” + R~L.

By applying Lemma 9, we have:

(K+ W)™ = (aPLDL"P” + R"!)"' = R — oRPLHL"P"R.

From (5.4), (5.7), and (5.8), we have
DL”¢ =DL"P7c = DLTPT (K + A\W) 'y
=DL"P” (R — «RPLHL"P'R) y = (D — DFH) j
=Hy = z.
Hence, ¢ solves the linear system DLT¢ = z. Again from (5.4), we have

y=(K+IW)c=aKc+R ¢

118



BIBLIOGRAPHY

so that
c=R [y — aﬁc] =R [y —aPL (DLTPTC)]
=R [y — oPL (DL"¢)] =R[y — aPL].
Finally,

d =c(k?) =R(K,:) [y — aPLz] = R(K, k) [y(k/) — aP(k’,:)Lz]
=R/ [y —aL(l,:)z].

Bibliography

A. Albert. Conditions for positive and nonnegative definiteness in terms of
pseudoinverses. STAM Journal on Applied Mathematics, 17(2):434-440, 1969.

J-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Conver Analysis.
Springer, 2 edition, 2004.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. International
series in operation research and management science. Springer, 2008.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural
Computation, 17:177-204, 2005a.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization.
Journal of Machine Learning Research, 6:1099-1125, 2005b.

R. T. Rockafellar. Convexr Analysis. Princeton University Press, Princeton, NJ,
USA, 1970.

B. Schélkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Neural Networks and Computational Learning Theory, 81:416-426, 2001.

W. Zangwill. Non-linear Programming: A Unified Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1969.

F. Zhang, editor. The Schur Complement and its applications, volume 4 of
Numerical Methods and Algorithms. Springer, 2005.

119



120



General bibliography

L. Aarons. Software for population pharmacokinetics and pharmacodynamics. Clinical
Pharmacokinetics, 36(4):255-264, 1999.

A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821-837, 1964.

H. Akaike. Information theory and an extension of the maximum likelihood princi-
ple. In B. N. Petrov and F. Cséaki, editors, Second International Symposium on
Information Theory. Académiai Kiad6, Budapest, 1973.

A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoin-
verses. SIAM Journal on Applied Mathematics, 17(2):434-440, 1969.

G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity. Journal
of Econometrics, 89(1):57-78, 1999.

Q. An, C. Wang, I. Shterev, E. Wang, L. Carin, and D. Dunson. Hierarchical kernel
stick-breaking process for multi-task image analysis. In Andrew McCallum and
Sam Roweis, editors, Proceedings of the 25th Annual International Conference on
Machine Learning (ICML 2008), pages 17-24. Omnipress, 2008.

R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853,
2005.

A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations of contin-
uously parameterized basic kernels. In Peter Auer and Ron Meir, editors, Learning
Theory, volume 3559 of Lecture Notes in Computer Science, pages 338-352. Springer
Berlin / Heidelberg, 2005.

A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization frame-
work for multi-task structure learning. In J. C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages
25-32. MIT Press, Cambridge, MA, USA, 2007.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathe-
matical Society, 68:337-404, 1950.

N. Arora, G. M. Allenby, and J. Ginter. A hierarchical Bayes model of primary and
secondary demand. Marketing Science, 17(1):29-44, 1998.

A. Auslender. Optimisation Méthodes Numériques. Masson, France, 1976.

F. R. Bach and M. 1. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1-48, 2002.

F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods.
In Proceedings of the 22nd Annual international conference on Machine learning
(ICML 2005), pages 33—40. ACM Press, 2005.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of the 21th Annual international
conference on Machine learning (ICML 2004), page 6, New York, NY, USA, 2004.
ACM Press.

121



G. H. Bakir, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar, and S. V. N. Vish-
wanathan. Predicting Structured Data (Neural Information Processing). The MIT
Press, 2007.

B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning.
Journal of Machine Learning Research, 4:83-99, 2003.

J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple
task sampling. Machine Learning, 28(1):7-39, 1997.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Re-
search, 12:149-198, 2000.

S. Beal and L. Sheiner. NONMEM User’s Guide. NONMEM Project Group, University
of California, San Francisco, 1992.

S. L. Beal and L. B. Sheiner. Estimating population kinetics. Critical Reviews in
Biomedical Engineering, 8(3):195-222, 1982.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning.
In Proceedings of Computational Learning Theory (COLT), 2003.

S. Ben-David, J. Gehrke, and R. Schuller. A theoretical framework for learning from
a pool of disparate data sources. In Proceedings of the The Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 443-449,
2002.

S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer. Multi-task learning for HIV
therapy screening. In Andrew McCallum and Sam Roweis, editors, Proceedings
of the 25th Annual International Conference on Machine Learning (ICML 2008),
pages 56—63. Omnipress, 2008.

E. V. Bonilla, F. V. Agakov, and C. K. I. Williams. Kernel multi-task learning us-
ing task-specific features. In Proceedings of the 11th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2007.

L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors. Large Scale Kernel
Machines. MIT Press, Cambridge, MA, USA, 2007.

J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence, pages 43-52, 1998.

~

Canny. Collaborative filtering with privacy via factor analysis. In SIGIR ’02:
Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 238-245, New York, NY, USA,
2002. ACM.

E. R. Carson, C. Cobelli, and L. Finkelstein. The Mathematical Modeling of Metabolic
and Endocrine Systems. New York: Wiley, 1983.

R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.

K-W. Chang, C-J. Hsieh, and C-J. Lin. Coordinate descent method for large-scale
L2-loss linear support vector machines. Journal of Machine Learning Research, 9:
1369-1398, 2008.

Y-W. Chang, C-J. Hsieh, K-W. Chang, M. Ringgaard, and C-J. Lin. Training and
testing low-degree polynomial data mappings via linear SVM. Journal of Machine
Learning Research, 11:1471-1490, 2010.

122



O. Chapelle, B. Scholkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press,
Cambridge, MA, USA, 2006.

P-H Chen, R-E Fan, and C-J Lin. A study on SMO-type decomposition methods for
support vector machines. IEEE Transactions on Neural Networks, 17(4):893-908,
2006.

Y.-H. Chen and E. George. A bayesian model for collaborative filtering. In Online
Proceedings of the Seventh International Workshop on Artificial Intelligence and
Statistics, 1999.

P. Craven and G. Wahba. Estimating the correct degree of smoothing by the method
of generalized cross-validation. Numerische Mathematik, 31:377-403, 1979.

L. Csaté and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14
(3):641-668, 2002.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the
American mathematical society, 39:1-49, 2001.

M. Davidian and D. M. Giltinan. Nonlinear Models for Repeated Measurement Data.
Chapman and Hall, 1995.

F. Dinuzzo and G. De Nicolao. An algebraic characterization of the optimum of
regularized kernel methods. Machine Learning, 74(3):315-345, 2009.

P. Drineas and M. W. Mahoney. On the Nystrom method for approximating a Gram
matrix for improved kernel-based learning. Journal of Machine Learning Research,
6:2153-2175, 2005.

B. Efron. The estimation of prediction error: Covariance penalties and cross-
validation. Journal of the American Statistical Association, 99(14):619-632, 2004.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615-637, 2005.

R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871-1874,
2008.

R-E Fan, P-H Chen, and C-J Lin. Working set selection using second order information
for training support vector machines. Journal of Machine Learning Research, 6,
2005.

K. E. Fattinger and D. Verotta. A nonparametric subject-specific population method
for deconvolution: I. description, internal validation and real data examples. Journal
of Pharmacokinetics and Biopharmaceutics, 23:581-610, 1995.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representa-
tions. Journal of Machine Learning Research, 2:243-264, 2001.

J. Friedman, T. Hastie, H. Hoefling, and R. Tibshirani. Pathwise coordinate optimiza-
tion. Annals of Applied Statistics, 1(2):302-332, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.

G. M. Fung and O. L. Mangasarian. Multicategory proximal support vector machine
classifiers. Machine Learning, 59(1-2):77-97, 2005.

123



M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal
of Machine Learning Research, 2:299-312, 2001.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-
tectures. Neural Computation, 7(2):219-269, 1995.

T. Glasmachers and C. Igel. Maximum-gain working set selection for SVMs. Journal
of Machine Learning Research, 7:1437-1466, 2006.

T. Gneiting. Compactly supported correlation functions. Journal of Multivariate
Analysis, 83:493-508, 2002.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.

G. Golub and C. F. Van Loan. Matriz Computations. The John Hopkins University
Press, Baltimore, 1996.

R. Gomeni, A. Lavergne, and E. Merlo-Pich. Modelling placebo response in depression
trials using a longitudinal model with informative dropout. European Journal of
Pharmaceutical Sciences, 36(1):4-10, 2009.

W. Greene. Econometric Analysis. Prentice Hall, 5 edition, 2002.

I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, editors. Feature Extraction:
Foundations and Applications. Studies in Fuzziness and Soft Computing. Springer-
Verlag, Secaucus, NJ, USA, 2006.

T. J. Hastie, R. J. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Data Mining, Inference and Prediction. Springer-Verlag, Canada, 2nd edition, 2008.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Depen-
dency networks for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research, 1:49-75, 2000.

M. Hengland. Approximate maximum a posteriori with Gaussian process priors. Con-
structive Approzimation, 26:205-224, 2007.

J-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer,
2 edition, 2004.

A. E. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12:55-67, 1970.

T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAT
’99: Proceedings of the Sizteenth International Joint Conference on Artificial Intelli-
gence, pages 688-693, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

C. Hsieh, K.W. Chang, C.J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th Annual Inter-
national Conference on Machine Learning (ICML 2008), pages 408415, Helsinki,
Finland, 2008.

C. Hu and M. E. Sale. A joint model for nonlinear longitudinal data with informative
dropout. Journal of Pharmacokinetics and Pharmacodynamics, 30(1):83-103, 2003.

124



F-L Huang, C-J Hsieh, K-W Chang, and C-J Lin. Iterative scaling and coordinate
descent methods for maximum entropy models. Journal of Machine Learning Re-
search, 11:815-848, 2010.

D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector
machines. Machine Learning, 51(1):51-71, 2003.

J. A. Jacquez. Compartmental analysis in biology and medicine. University of Michigan
Press, Ann Arbor, 1985.

T. Joachims. Advances in Kernel Methods: Support Vector Machines, chapter Making
large-scale support vector machine learning practical, pages 169-184. MIT Press,
Cambridge, MA, USA, 1998.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the ACM Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 217-226, Philadel-
phia, PA, USA, 2006.

H. Kautz, B. Selman, and M. Shah. Referral web: combining social networks and
collaborative filtering. Communications of the ACM, 40(3):63-65, 1997.

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM
classifier design. Machine Learning, 46(1-3):351-360, 2002.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
Platt’s SMO algorithm for SVM classifier design. Neural Computation, 13:637-649,
2001.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal
of Mathematical Analysis and Applications, 33(1):82-95, 1971.

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl.
GroupLens: applying collaborative filtering to Usenet news. Communications of the
ACM, 40(3):77-87, 1997.

B. Kulis, M. Sustik, and I. Dhillon. Learning low-rank kernel matrices. In Proceedings
of the 23rd Annual international conference on Machine learning (ICML 2006),
pages 505-512, 2006.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan.
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5:27-72, 2004.

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine.
In Proceedings of the 21th International Conference in Machine Learning (ICML
2004), volume 69, page 65, 2004.

C-J. Lin. On the convergence of the decomposition method for support vector ma-
chines. IFEFE Transactions on Neural Networks, 12:1288-1298, 2001.

C-J. Lin. A formal analysis of stopping criteria of decomposition methods for support
vector machines. IEEFE Transactions on Neural Networks, 13:1045-1052, 2002.

N. List and H. U. Simon. A general convergence theorem for the decomposition
method. In John Shawe-Taylor and Yoram Singer, editors, Learning Theory, vol-
ume 3120 of Lecture Notes in Computer Science, pages 363-377. Springer Berlin /
Heidelberg, 2004.

125



N. List and H. U. Simon. General polynomial time decomposition algorithms. Journal
of Machine Learning Research, 8:303-321, 2007.

Z.Lu, T. Leen, Y. Huang, and D. Erdogmus. A reproducing kernel Hilbert space frame-
work for pairwise time series distances. In Andrew McCallum and Sam Roweis, edi-
tors, Proceedings of the 25th Annual International Conference on Machine Learning
(ICML 2008), pages 624-631. Omnipress, 2008.

S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. A convergent decomposition algorithm
for support vector machines. Computational Optimization and Applications, 38:217—
234, 2007.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. International series
in operation research and management science. Springer, 2008.

D. J. Lunn, N. Best, A. Thomas, J. C. Wakefield, and D. Spiegelhalter. Bayesian
analysis of population PK/PD models: general concepts and software. Journal of
Pharmacokinetics Pharmacodynamics, 29(3):271-307, 2002.

P. Magni, R. Bellazzi, G. De Nicolao, I. Poggesi, and M. Rocchetti. Nonparamet-
ric AUC estimation in population studies with incomplete sampling: a Bayesian
approach. Journal of Pharmacokinetics Pharmacodynamics, 29(5/6):445-471, 2002.

C. Mallows. Some comments on Cp. Technometrics, 15:661-675, 1973.
B. Matérn. Spatial Variation. Springer, New York, NY, USA, 1960.

A. Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Re-
search, 7:117-139, 2006.

J. Mercer. Functions of positive and negative type and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society of London,
209:415-446, 1909.

E. Merlo-Pich and R. Gomeni. Model-based approach and signal detection theory to
evaluate the performance of recruitment centers in clinical trials with antidepressant
drugs. Clinical Pharmacology and Therapeutics, 84:378-384, September 2008.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neuro-
computing, 55(1-2):169-186, 2003.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computa-
tion, 17:177-204, 2005a.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal
of Machine Learning Research, 6:1099-1125, 2005b.

C. A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel.
Machine Learning, 66:297-319, 2007.

C. N. Nett and W. M. Haddad. A system-theoretic appropriate realization of the
empty matrix concept. [EEE Transactions on automatic control, 38(5):771-775,
1993.

M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of pharma-
cokinetic population models via Gaussian processes. In Proceedings of 16th IFAC
World Congress, Praha, Czech Republic, 2005.

M. Neve, G. De Nicolao, and L. Marchesi. Nonparametric identification of population
models via Gaussian processes. Automatica, 43(7):1134-1144, 2007.

126



C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive kernels.
In Proceedings of the 21th Annual international conference on Machine learning
(ICML 2004), page 81, New York, NY, USA, 2004. ACM.

C. S. Ong, A. J. Smola, and R. C. Williamson. Learning the kernel with hyperkernels.
Journal of Machine Learning Research, 6:1043—-1071, 2005.

M. Opper. Online Learning in Neural Networks, chapter A Bayesian Approach to
Online Learning. Cambridge University Press, 1998.

J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. Classics in Applied Mathematics. STAM, 2000.

E. Osuna, Freund. R., and F. Girosi. Training support vector machines: An application
to face detection. In Proceedings of Computer Vision and Pattern Recognition, pages
130-136, 1997.

L. Palagi and M. Sciandrone. On the convergence of a modified version of the svmlight
algorithm. Optimization Methods and Software, 20:315-332, 2005.

K. Park, D. Verotta, T. F. Blaschke, and L. B. Sheiner. A semiparametric method
for describing noisy population pharmacokinetic data. Journal of pharmacokinetics
and biopharmaceutics, 25(5):615-642, 1997.

G. Pillonetto, G. De Nicolao, M. Chierici, and C. Cobelli. Fast algorithms for nonpara-
metric population modeling of large data sets. Automatica, 45(1):173-179, 2009.

G. Pillonetto, F. Dinuzzo, and G. De Nicolao. Bayesian online multitask learning of
Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(2):193-205, 2010.

J. Platt. Fast training of support vector machines using Sequential Minimal Opti-
mization. In B. Schélkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge, MA, USA, 1998.

T. Poggio and F. Girosi. Networks for approximation and learning. In Proceedings of
the IEEE, volume 78, pages 1481-1497, 1990.

Y. Qi, D. Liu, D. Dunson, and L. Carin. Multi-task compressive sensing with Dirichlet
process priors. In Andrew McCallum and Sam Roweis, editors, Proceedings of the
25th Annual International Conference on Machine Learning (ICML 2008), pages
768-775. Omnipress, 2008.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1177-1184. MIT Press, Cambridge, MA, USA, 2008.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491-2521, 2008.

N. Ramakrishnan, B. J. Keller, B. J. Mirza, A. Y. Grama, and G. Karypis. Privacy
risks in recommender systems. IEEE Internet Computing, 5(6):54—-62, 2001.

S Ramaswamy, P Tamayo, R Rifkin, S Mukherjee, C H Yeang, M Angelo, C Ladd,
M Reich, E Latulippe, J P Mesirov, T Poggio, W Gerald, M Loda, E S Lander, and
T R Golub. Multiclass cancer diagnosis using tumor gene expression signatures.
Proceedings of the National Academy of Sciences of the United States of America,
98:15149-15154, 2001.

127



C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM,
40(3):56-58, 1997.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open
architecture for collaborative filtering of netnews. In CSCW ’94: Proceedings of
the 1994 ACM conference on Computer supported cooperative work, pages 175—186,
New York, NY, USA, 1994. ACM.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. In Suykens,
Horvath, Basu, Micchelli, and Vandewalle, editors, Advances in Learning Theory:
Methods, Model and Applications, volume 190 of NATO Science Series III: Com-
puter and Systems Sciences, chapter 7, pages 131-154. VIOS Press, Amsterdam,
2003.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, USA,
1970.

W. Rudin. Fourier Analysis on Groups. Wiley-Interscience, New York, NY, USA,
1994.

S. Saitoh. Theory of Reproducing Kernels and its Applications, volume 189 of Pitman
Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow,
1988.

R. Schaback. Creating surfaces from scattered data using radial basis functions. In
T. Lyche M. Dhlen and L.L. Schumaker, editors, Mathematical Methods in Computer
Aided Geometric Design III, pages 477-496. Vanderbilt Univ. Press, 1995.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. (Adaptive Computation and Machine
Learning). MIT Press, 2001.

B. Schélkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. Neural
Networks and Computational Learning Theory, 81:416—426, 2001.

A. Schwaighofer, V. Tresp, and K. Yu. Learning Gaussian process kernels via hierar-
chical Bayes. In Advances in Neural Information Processing Systems, volume 17,
pages 1209-1216, 2005.

L. Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux as-
sociés (noyaux reproduisants). J. Analyse Math., 13:115-256, 1964.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464,
1978.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. PEGASOS: Primal Estimated sub-
GrAdient SOlver for Svm. In Proceedings of the 24th Annual international confer-
ence on Machine learning (ICML 2007), pages 807-814, New York, NY, USA, 2007.
ACM.

L. B. Sheiner. The population approach to pharmacokinetic data analysis: rationale
and standard data analysis methods. Drug Metabolism Reviews, 15:153—171, 1994.

L. B. Sheiner and J. L. Steimer. Pharmacokinetic/pharmacodynamic modeling in drug
development. Annual Review of Pharmacology and Tozicology, 40:67-95, 2000.

128



L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population char-
acteristics of pharmacokinetic parameters from routine clinical data. Journal of
Pharmacokinetics and Biopharmaceutics, 5(5):445-479, 1977.

A. J. Smola and B. Schélkopf. Sparse greedy matrix approximation for machine learn-
ing. In Proceedings of the 17th Annual international conference on Machine learning
(ICML 2000), pages 911-918, 2000.

S. Sonnenburg, G. Rétsch, C. Schéfer, and B. Scholkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7:1531-1565, 2006.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization.
In Advances in Neural Information Processing Systems. MIT Press, 2005.

V. Srivastava and T. Dwivedi. Estimation of seemingly unrelated regression equations:
A brief survey. Journal of Econometrics, 10:15-32, 1971.

T. Stamey, J. Kabalin, J. McNeal, I. Johnstone, F. Freiha, E. Redwine, and N. Yang.
Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the
prostate ii radical prostatectomy treated patients. Journal of Urology, 16:1076-1083,
1989.

C. Stein. Estimation of the mean of a multivariate normal distribution. The Annals
of Statistics, 9:1135-1151, 1981.

I. Steinwart, D. R. Hush, and C. Scovel. An explicit description of the reproducing
kernel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions on Information
Theory, 52(10):4635-4643, 2006.

L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS: a system for
sharing recommendations. Communications of the ACM, 40(3):59-62, 1997.

S. Thrun. Is learning the n-th thing any easier than learning the first. In Advances in
Neural Information Processing Systems, volume 8, pages 640—-646. MIT Press, 1996.

S. Thrun and L. Y. Pratt, editors. Learning To Learn. Kluwer Academic Publishers,
Boston, MA, 1998.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B, 58(1):267-288, 1996.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill Posed Problems. W. H. Winston,
Washington, D. C., 1977.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of optimization theory and applications, 109(3):475-494, June
2001.

P. Tseng and S. Yun. A coordinate gradient descent method for linearly constrained
smooth optimization and support vector machines training. Computational Opti-
mization and Applications, pages 1-28, 2008.

I. Tsochantaridis. Large margin methods for structured and interdependent output
variables. Journal of Machine Learning Research, 6:1453-1484, 2005.

V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, USA, 1998.

S. Vozeh, J. L. Steimer, M. Rowland, P. Morselli, F. Mentre, L. P. Balant, and
L. Aarons. The use of population pharmacokinetics in drug development. Clin-
ical Pharmacokinetics, 30(2):81-93, 1996.

129



G. Wahba. Spline Models for Observational Data. STAM, Philadelphia, USA, 1990.

J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Bayesian
analysis of linear and non-linear population models by using the Gibbs sampler.
Applied Statistics, 41:201-221, 1994.

H. Wendland. Piecewise polynomial, positive definite and compactly supported radial
basis functions of minimal degree. Advances in Computational Mathematics, pages
389-396, 1995.

C. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines.
In Proceedings of the 13th Annual Conference on Neural Information Processing
Systems, pages 682—688, Whistler, BC, Canada, 2000.

Q. Wu, Y. Ying, and D. Zhou. Multi-kernel regularized classifiers. Journal of Com-
plexity, 23(1):108-134, 2007.

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
Annals of Applied Statistics, 2(1):224-244, 2008.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification
with Dirichlet process priors. Journal of Machine Learning Research, 8:35—63, 2007.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multi-
ple tasks. In Proceedings of the 22th Annual international conference on Machine
learning (ICML 2005), pages 1012-1019, 2005.

S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In Proceedings
of the 24th Annual international conference on Machine learning (ICML 2007),
pages 1103-1110, New York, NY, USA, 2007. ACM.

L. Yuh, S. Beal, M. Davidian, F. Harrison, A. Hester, K. Kowalski, E. Vonesh, and
R. Wolfinger. Population pharmacokinetic/pharmacodynamic methodology and ap-
plications: a bibliography. Biometrics, 50:566—-575, 1994.

S. Yun and K.-C. Toh. A coordinate gradient descent method for ¢;-regularized convex
minimization. Computational Optimization and Applications, pages 1-35, 2009.

W. Zangwill. Non-linear Programming: A Unified Approach. Prentice-Hall, Englewood
Cliffs, NJ, 1969.

F. Zhang, editor. The Schur Complement and its applications, volume 4 of Numerical
Methods and Algorithms. Springer, 2005.

J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for multi-task
learning. Machine Learning, 73(3):221-242, 2008.

130



	Machine learning and kernel methods
	Learning functions from data
	Supervised learning
	Unsupervised learning
	Semi-supervised learning

	Kernels
	Reproducing Kernel Hilbert Spaces

	Regularization
	Feature maps
	RKHS feature map
	Spectral feature maps
	Stochastic process feature map
	Fourier map for translation invariant kernels

	Extensions
	Learning with structured outputs
	Learning vector-valued functions
	Learning the kernel
	Indefinite kernels

	Techniques for large scale problems
	The kernel matrix may not fit into the memory
	Exact kernel factorizations
	Approximate kernel factorizations
	Sparse kernels
	Decomposition methods

	Contribution of this thesis
	Optimization for large scale kernel methods
	Kernel machines with two layers
	Kernel methods for multi-task learning

	Bibliography

	Optimization for large scale regularized kernel methods
	Solution characterization
	Fixed-point algorithms
	Convergence

	Coordinate-wise iterative algorithms
	Coordinate descent methods
	Convergence

	A reformulation theorem
	Conclusions
	Bibliography

	Kernel machines with two layers
	Kernel machines with two layers
	MKL as a kernel machine with two layers
	Conclusions
	Bibliography

	Regularized least squares with two layers
	Regularized least squares with two layers
	A Bayesian MAP interpretation of RLS2
	Linear regularized least squares with two layers
	Choice of the scaling and feature selection
	Experiments
	Linear RLS2: illustrative experiments
	RLS2: regression and classification benchmark
	RLS2: multi-class classification of microarray data

	Conclusions
	Bibliography

	Client-server multi-task learning from distributed datasets
	Problem formulation
	Complexity reduction
	A client-server online algorithm
	Server side
	Client side

	Illustrative example: music recommendation
	Multicentric pharmacological experiment
	Conclusions
	Bibliography

	Appendix
	Mathematical preliminaries
	Proofs for fixed-point and coordinate descent algorithms
	Proofs for kernel machines with two layers
	Proofs for client-server multi-task learning
	Bibliography

	General bibliography

