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Motivation

• Humans are good at grasping
• Easier to demonstrate movements than code them

• Transfer by imitation learning

• Give robots positive traits

• How to generalize?

• Task’s variables change

• Task’s objects change



Aims

• Suitable representation of movements
• Generalize to new object locations and orientations
• Robust and adaptive motor primitives

• Learn adaptation of movement to new object
• Use robot’s experiences to improve grasp
• Optimize grasp for new object
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Dynamical Systems 
Motor Primitives (DMPs) 

• Provide adaptive movement encodings

• Transformed System:

• Canonical System:

• Phase shifts from 1 to 0

• Synchronizes DMPs
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Goal  state

Start state

Current State

SpringDamper

External Force
f(x)

Dynamical Systems 
Motor Primitives (DMPs) 

• Critically damped passive system

• Arbitrary trajectory with force

• Easy to learn by imitation

• DMPs are inherently stable 

• Amplitude set to maintain shape
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Dynamical Motor 
Primitives for Grasping

• Stable and always reach goal if possible

• Adapt to different goal points 

• Straightforward to learn from demonstration

• Allow for preshaping the hand

• Synchronize fingers with reaching motion

• Grasps are generally more stable and controlled

• Finger goals obtained from target object’s geometry

• Foundation of robust and adaptive representations
7



Generalizing  Movements 
to New Grasps

• Generalize to new grasps

• Depends on task’s 
coordinate system

• Need specific approach 
direction

• Task-specific frame 

• Need new amplitude:
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Conservative  DMP 
Generalization
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Generalized Trajectories
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Adapting to New Objects

• Can predict/acquire new grasps on new objects

• Shape similarity, morphing, wand, etc.

• Lose grasp quality due to change of object

• Local changes: different geometry, texture, friction, etc.

• Global changes: different center of mass, support plane, etc. 

• Aim to quickly regain lost quality

• Automatically improve grasps using robot’s experiences

• Optimize grasp using Continuum-Armed Bandits 
15



Continuum-Armed Bandits

• Problem interpreted from RL as a  “bandits” problem

• Action = Choose 6D grasp location

• Reward = Quality of resulting grasp

• Continuum-Armed Bandit variant

• Upper Confidence Bound (UCB) Policies

• Incorporate expected reward and confidence bound

• Successful in discrete bandits scenario

• Current implementations rely on discretizing space!
16



Initial Situation
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Gaussian Process Model
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UCB Merit Function
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Choosing the Next Action

• Infinite number of possible actions

• Focus on a small set of actions

• Want to find candidates for maximum

• Focus on Local Maxima close to the data points!

• Mean Shift inspired method to find local maxima

• Iterative procedure to find local maximum of a point

• Initialize iterative procedure with all previous points

• Back to our example...
20



Detecting Maxima
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Detecting Maxima
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Evaluate  Candidate
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Another Trial ...
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Another Trial ...
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Experimental Procedure 

• Determine pose of object

• Approach object with preshaping of hand

• Grasp and lift object

• Reward given for little finger movement during lifting
27



• VICON system used to acquire grasping movements

• Applied markers only to fingers and hand

• Acquired only a single grasping movement

• Grasping movement demonstrated on a ball

• Robot learned to grasp:

Initialization and 
Generalization
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Range of Motion

• Only needed a single demonstration

• Adapt to different approach directions

• Right-handed robot

29



Preshaping of the Hand
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Adapting to Objects 
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Summary

• Imitation learning is intuitive for programming robots

• Need to generalize demonstrated actions

• Used task-specific motor primitives as adaptive action 
representations

• Optimize grasps for new objects using the 
continuum-armed bandits framework

• Future work

• Apply concepts to wider range of actions
33


