Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Grasping with Vision Descriptors and Motor Primitives

MPG-Autoren
/persons/resource/persons84027

Kroemer,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kroemer, O., Detry, R., Piater, J., & Peters, J. (2010). Grasping with Vision Descriptors and Motor Primitives. In J. Filipe, J. Andrade-Cetto, & J.-L. Ferrier (Eds.), 7th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2010) (pp. 47-54). Lisboa, Portugal: SciTePress.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BF9E-A
Zusammenfassung
Grasping is one of the most important abilities needed for future service robots. Given the task of picking up
an object from betweem clutter, traditional robotics approaches would determine a suitable grasping point and
then use a movement planner to reach the goal. The planner would require precise and accurate information
about the environment and long computation times, both of which may not always be available. Therefore,
methods for executing grasps are required, which perform well with information gathered from only standard
stereo vision, and make only a few necessary assumptions about the task environment. We propose techniques
that reactively modify the robot’s learned motor primitives based on information derived from Early Cognitive
Vision descriptors. The proposed techniques employ non-parametric potential fields centered on the Early
Cognitive Vision descriptors to allow for curving hand trajectories around objects, and finger motions that
adapt to the object’s local geometry. The methods were tested on a real robot and found to allow for easier
imitation learning of human movements and give a considerable improvement to the robot’s performance in
grasping tasks.