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What’s the course about?

A ≈ Â

Given an input matrix A compute a matrix Â that satisfies
certain desired properties, e.g.,

symmetry, Â
T = Â

sparsity, # nnz(Â) is small

positive definiteness, Â � 0

low-rank, Â = BC
constraints, Â ∈A
…
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Today’s lecture touches
1 Matrix Analysis

2 Numerical linear algebra

3 Computer Science

4 High-performance computing

5 Numerical optimization

6 Statistics

7 Data mining & machine learning

8 Image Processing, Astronomy, etc.
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Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:



What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

Reduce storage

Numerical benefits

Expose structure

Enable visualization

Easier analysis

E.g., for face recognition
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Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

Hires (3MB) Lores (3KB!)
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Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!
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Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖
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Digression: Matrix Norms

An (operator) norm of a matrix A is defined as

‖A‖ =max‖x‖=1 ‖Ax‖

Example: Maximum singular value, σ1(A) = ‖A‖2

The Frobenius norm ‖A‖F is defined as

‖X‖F =
√∑

ij x2
ij

I. Exercise: prove ‖X‖2
F = Tr(X T X) where Tr(�) Õ

∑
i �ii II.

Bonus: verify that σ1(A) = ‖A‖2

We will mostly use the Frobenius norm for convenience
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Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT )/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.
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Â = (A+AT )/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F
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More challenging example

Suppose A ∈ Rm×n (we assume throughout m ≥ n). What is
the nearest rank-k matrix, where k < r = rank(A)?

Let B ∈ Rm×k and C ∈ Rk×n . Then, rank(BC) ≤ k. And we
have the formula from the title slide:

A ≈ BC

“Factors” B, C can be computed by solving

min 1
2‖A− BC‖2

F

But How??
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The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let A ∈ Rm×n. There exist orthogonal matrices U and V

UT AV = Diag(σ1, . . . , σp), p =min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ 0.

Am×n = Um×m

[
Σn×n

0

]
V T

n×n

Exercise: A =
∑

i σiuiv T
i (U = [ui] and V = [v i])
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Approximation example: truncated SVD

Reveals a lot about the structure of matrix

Makes explicit (algebraically, and numerically) the
notions of rank, range space, null space of A.

Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let A have the SVD UΣV T . If k < rank(A) and

Ak =
∑k

i=1
σiuiv T

i , then,

‖A−Ak‖2 ≤ ‖A− B‖2, s.t. rank(B) ≤ k

‖A−Ak‖F ≤ ‖A− B‖F, s.t. rank(B) ≤ k.
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Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2
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TSVD – Message
If we are seeking a rank-k approximation to A
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2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF
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5 Matrix Completion
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7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....
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PCA computes top-k eigenvectors (principal components)

Dimensionality reduction; exploratory data analysis;

Principal components account for variance (spread)
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Original matrix

a + a + +
z ◦ z ◦ ◦
a + a + +
− * − * *
− * − * *
z ◦ z ◦ ◦
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Problems

Clustering, Co-clustering

Let X ∈ Rm×n be the input matrix.

We cluster columns of X

Well-known k-means clustering problem can be written as

min
B,C

1
2‖X − BC‖2

F s.t. CT C = Diag(sizes)

where B ∈ Rm×k , and C ∈ {0,1}k×n.



Problems

Clustering, Co-clustering

Let X ∈ Rm×n be the input matrix.

We cluster columns of X

Well-known k-means clustering problem can be written as

min
B,C

1
2‖X − BC‖2

F s.t. CT C = Diag(sizes)

where B ∈ Rm×k , and C ∈ {0,1}k×n.

Teaser: How would you write a co-clustering problem?
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Matrix Completion

Recall the Netflix example.

The general matrix completion task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself – no time to cover today.

One recent result:

Can perfectly recover most low-rank matrices!
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Problems

Nearest positive definite

Sometimes one needs to find for a symmetric A

min ‖A− Â‖F s.t. Â � 0

Solution: BoXi06

A = A+−A−, A+ = AT
+ � 0, A− = AT

− � 0, A+A− = 0. Moreover

‖A−A+‖F = ‖A−‖F ≤ ‖A− X‖F

for any X � 0. (Observe, computing A− enough)

Modified Cholesky: A+ E with ‖E‖2 = O(n)
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Nonnegative matrix approximation (aka NMF)
Say we are seeking a low-rank approx A ≈ BC

We could invoke SVD – but sometimes not desirable:

SVD yields dense B and C

B and C full of negative numbers, even if A ≥ 0

SVD decomposition might not be that easy to interpret

So why not impose B ≥ 0, C ≥ 0?
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Problems

Nonnegative matrix approximation (aka NMF)

Examples from original Lee/Seung paper on NMA



Problems

Other Variants of NMA

KL-NMA – very interesting variant – more popular for
modeling “co-occurrence” data

Bregman NMA – examples from literature – spam filtering

Sparsity constrained NMA (Hoyer, etc.)

Local NMA

Numerous other variations



Problems

Sparsity Constrained Versions

Sparse PCA

Semi-discrete decomposition

Discrete basis problem

Lasso for variable selection

Sparse generalized eigenvalue problem

Other variants



NMA Algorithms

Algorithms & Theory



NMA Algorithms

Algorithms: NMA

We consider the NMA problem:

A ≈ BC s.t. B,C ≥ 0.
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D(A,BC) – Bregman divergence NMA
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Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable?

Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!
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Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!
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NMA Algorithms

Hack: “Zero-out” TSVD

Alternating methods

Directly optimizing (won’t cover)

Online algorithms (won’t cover)



NMA Algorithms

NMA Algorithm: Zero-out SVD

Input: A, k

1 [U ,Σ,V] = SVD(A,k)
2 B ← UkΣk , C ← V T

k

3 B ←max(0,B), C ←max(0,C)
Advantages: Simple, deterministic
Disadvantages: could be slow, no theoretical guarantees,
solution can be really bad!
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NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize B0, t ← 0

2 Compute C t+1 s.t. ∆(A,BtC t+1) ≤ ∆(A,BtC t)
3 Compute Bt+1 s.t. ∆(A,Bt+1C t+1) ≤ ∆(A,BtC t+1)
4 t ← t + 1, and repeat until stopping criteria met.

For least-squares NMA

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F
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C = argmin
C

‖A− BtC‖2
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C t+1 ←max(0,C)
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B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)
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Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

ALS is fast, simple, often effective, but ...

Bad News!

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

is NOT guaranteed!
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Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0
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Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

Advantages: Descent is guaranteed; even convergence to
local-min!
Disadvantages: More complicated optimization problem,
slower than ALS

How to solve the “argmin”??
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Alternating NNLS – subproblem

The nonnegative least squares (NNLS) subproblem is

minC≥0
1
2‖A− BC‖2

F

Essentially the same as solving

minc≥0 f (c) = 1
2‖a − Bc‖2

2

Nice, convex optimization problem

Numerous algorithms for solving

Let us look at the simplest
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Background – Gradient Methods

Consider first the unconstrained problem

min f (c) = 1
2‖a − Bc‖2
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∇f (c∗) = 0

ck

ck+1

· · ·

Familiar gradient descent
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Background – Gradient Methods

Gradient descent: Vector ck+1 is chosen as

ck+1 = ck −αk∇f (ck), k = 0,1, . . .

Step-size αk ≥ 0

Descent direction −∇f (ck)

More generally, Gradient methods iterate as

ck+1 = ck +αkdk , k = 0,1, . . .

where the descent direction is

dk such that 〈dk , ∇f (ck)〉 < 0
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Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)



NMA Algorithms

Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)



NMA Algorithms

Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)



NMA Algorithms

Gradient Methods – Illustration

c
c + α1d

c + α2d

−∇f(c)

d

c− δ1∇f(c)

f(c
) = l2 <

l1
f(c)

= l1

l3 <
l2

∇f(c)
c− α1∇f(c)

(adapted from Bertsekas, Nonlinear Programming)



NMA Algorithms

Gradient Methods – Handling constraints

Our problem is constrained

minc≥0 f (c) = 1
2‖a − Bc‖2

F

Recall gradient-descent iteration

ck+1 =

P+(

ck −αk∇f (ck)

)

, k = 0,1, . . .

P+x =max(0,x): projection to ensure non-negativity

Note: Step-size αk selected to ensure descent

f (ck+1) < f (ck)
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NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?
How to compute ∇F(Ck)?
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∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

I. Compute ∂Tr(XY )/∂X
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Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

II. Verify that: ∂‖X‖2
F/∂X = 2X

Solution:

Recall that ‖X‖2
F = Tr(X T X). So,

∂‖X‖2
F

∂X
= ∂Tr(X T X)

∂xpq
=
∂(
∑

ij x2
ij )

∂xpq
= 2xpq.
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Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

III. Verify that: ∂Tr(X T AX)/∂X = (A+AT )X
Solution: Brute force

Tr(X T AX) =
∑

ij
xij(AX)ji =

∑
ijk

xijajkxki
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Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

Exercise: IV.

Let F(C) = 1
2‖A− BC‖2

F ; compute ∂F/∂C

Solution:

F(C) = ‖A‖2
F − 2 Tr(CAT B)+ Tr(CT BT BC)

∂F(C)
∂C

= −2BT A+ 2BT BC .
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In passing: The Fréchet derivative

Given f : V → W , the Fréchet differential at point X is the
linear-mapping L that satisfies for all E ∈ V the relation

f (X + E)− f (X)− L(X ,E) = o(‖E‖)

The Fréchet derivative Df (X) (of f at point X ) identified via:

L(X ,E) = Df (X)(E)

Can be used to develop matrix calculus formally.



NMA Algorithms

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity

What is the computational complexity per (major) iteration?

Solution:

A lot! Especially since there might be many (inner) gradient
projection iterations for each major iteration.

What to do?
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Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!
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Multiplicative Updates



NMA Algorithms

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following “algorithm”

C ′ ← C � BT A

BT BC

B′ ← B � AC ′T

BC ′C ′T
.

This algorithm’s simplicity made NMA popular.

Note: A� B = [aijbij] – elementwise multiplication

Easy to see that nonnegativity respected

Somewhat harder to prove descent

‖A− B′C ′‖2
F ≤ ‖A− BC ′‖2

F ≤ ‖A− BC‖2
F
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Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)

def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct)

def= f (ct)



NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)



NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts
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λij =
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= bij c̃j

bT
i c̃

Exercise: Aux function

Verify that g(c, c) = f (c);

Exercise: Richardson-Lucy

Let f (c) =
∑

i ai log(ai/(Bc)i)− ai + (Bc)i .
Derive an auxiliary function g(c, c̃) for this f (c)
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Minimizing g
Recall,core step: ct+1 = argmin g(c, ct)
Solve ∂g(c, ct)/∂cp = 0

∂g/∂cp = −
∑

i
aibip +

∑
i
bip(bT

i ct)cp/ct
p

Which yields (verify!) : cp = ct
p
[BT a]p
[BT Bct]p

Extending to matrices, we obtain Lee & Seung’s update

C t+1 = C t � BT A

BT BC t
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Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!
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Summary

We looked at least-squares NMA

min 1
2‖A− BC‖2

F , s.t. B,C ≥ 0.

We derived two algorithms: (i) Gradient-Projection; (ii)
multiplicative updates

Take home message: The methods, techniques that we saw,
are general. You can use them for many other problems!
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Applications & Practical
Concerns



TSVD NMA

Applications – example areas

1 Statistics

2 Data mining, Machine learning

3 Signal processing (images, speech, music, etc.)

4 Computer graphics

5 Chemometrics

6 Remote Sensing

7 Scientific computing

8 …
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TSVD

Statistics

Psychometrics

Data Mining, Machine learning

Information Retrieval

Biology, Bioinformatics

In general, exploratory data analysis



TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).
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TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).
Activity recorded using gene microarray
Activities across numerous “conditions” or experiments

We measure an m × n (m� n) genes × array matrix.

Some “cleaning” (pre-processing) etc. needed.

Truncated SVD on this gene-expression matrix is performed.
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Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).

Significant “eigengenes” =⇒ independent biological
processes and experimental artifacts.

Figure taken from: http://www.bme.utexas.edu/research/orly/teaching/BME341

http://www.bme.utexas.edu/research/orly/teaching/BME341
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NMA

Chemometrics

Document modeling, text-analysis

Spam modeling

Bioinformatics

Music analysis

Computer Vision

Image processing

Remote sensing (hyperspectral imaging)

Dimensionality reduction

Computer graphics

Collaborative filtering

Multiframe blind deconvolution
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NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell
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TSVD NMA

Image analysis – toy example

“Swimmer” database – 256, 32 x 32 images [DoSt03]

Stick figures showing different configurations of the
limbs of a swimmer

Data matrix of size 1024× 256

Decompose the matrix into 1024× 17 (17 seemed to be
the “true” nonnegative rank)
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“Swimmer” database – 256, 32 x 32 images [DoSt03]

Stick figures showing different configurations of the
limbs of a swimmer

Data matrix of size 1024× 256

Decompose the matrix into 1024× 17 (17 seemed to be
the “true” nonnegative rank)
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Image analysis – toy example

Rank-17 decomposition via Lee/Seung’s algo
Time: 182.4 seconds, Objective: 2.41× 107
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Image analysis – toy example

Via more advanced projection algorithm
Time: 62.3 seconds, Objective: 6.85× 10−4
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Part of a face recognition system

143 images from MIT face image database

Input matrix A ∈ R9216×143
+
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Part of a face recognition system

A rank-20 approximation to the input

The basis vectors (columns of B) approximately
correspond to important “parts” describing the faces.
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Multiframe blind deconvolution – astronomy

long-time exposure (approx. 1 s)
Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia
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Multiframe blind deconvolution – astronomy

short-time exposure (approx. 10ms)
Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia
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Multiframe blind deconvolution – astronomy

real-time video (15 fps)
Problem: Atmospheric turbulences

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia
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Our model of the video

time t y t = at ? x + nt

0 = ? + n0

1 = ? + n1

2 = ? + n2

k = ? + nk
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
|

... |
y 1 | y n

|
... |

 ≈

|

... |
a1 | at

|
... |

? x

Convolution operation may be written as

a ? x = Ax = Xa
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
|

... |
y 1 | y n

|
... |

 ≈

|

... |
a1 | at

|
... |

? x

Convolution operation may be written as

a ? x = Ax = Xa


y 1
...

y t

 ≈
A1

· · ·
At

x

[
y 1 y 2 · · · y t

]
≈ X

[
a1 a2 · · · at

]
Y ≈ XA
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Multiframe blind deconvolution

We seek to minimize

1
2‖Y − XA‖2

F s.t. X ,A ≥ 0

Note 1: X and A are the unknowns
Note 2: Additional constraints may be present on X or A
Note 3: Looks like an NMA problem (except X or A have
special structure due to the convolution a ? x )
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Double star epsilon lyrae

time t y t = x t

1 =
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Double star epsilon lyrae

time t y t ≈ at ? x t

40 ≈ ?
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MFBD Video

Video example
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Summary

1 Introduction to matrix approximation problems
Background, motivation
Truncated SVD; its properties
List of some popular problems, e.g., NMA

2 Algorithms for NMA
Alternating minimization
Alternating descent
Gradient Projection
Multiplicative updates

3 Applications
Bioinformatics app of SVD
Image processing, astronomy, etc. of NMA
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Challenges, other stuff

Theoretical: Non-convex optimization

Analysis, new algorithms, new problems

Practical: Large-scale, sparse data

Cluster, multi-core, GPU, etc.

Efficient SVD (PROPACK, SLEPc, etc.)

Methods based on random projections

Numerous other matrix nearness problems exist

Tensor approximations
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Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data

Analysis on MapReduce by Chao Liu et al.

Input matrix A of size 43.9M × 769M; total 4.38× 109

nonzeros (1.2× 10−7 - density)

7 hours per iteration (dedicated cluster of 8 comps)

http://research.microsoft.com/pubs/119077/DNMF.pdf

I think YOU can do better!

http://research.microsoft.com/pubs/119077/DNMF.pdf
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