
Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 192

Generalized Proximity and
Projection with Norms and

Mixed-norms

Suvrit Sra1

May 5, 2010

This Technical Report has been approved by:

Director at MPIK Postdoc at MPIK

Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 192

Generalized Proximity and
Projection with Norms and

Mixed-norms

Suvrit Sra1

May 5, 2010

1 MPI für biologische Kybernetik

This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/projectionsTR.pdf.
The complete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/techreports.html

Generalized Proximity and Projection with Norms
and Mixed-norms

Suvrit Sra

Abstract. We discuss generalized proximity operators (GPO) and their associated generalized projection prob-
lems. On inputs of size n, we show how to efficiently apply GPOs and generalized projections for separable
norms and distance-like functions to accuracy ε in O(n log(1/ε)) time. We also derive projection algorithms that
run theoretically in O(n log n log(1/ε)) time but can for suitable parameter ranges empirically outperform the
O(n log(1/ε)) projection method. The proximity and projection tasks are either separable, and solved directly, or
are reduced to a single root-finding step. We highlight that as a byproduct, our analysis also yields anO(n log(1/ε))
(weakly linear-time) procedure for Euclidean projections onto the `1,∞-norm ball; previously only an O(n log n)
method was known. We provide empirical evaluation to illustrate the performance of our methods, noting that
for the `1,∞-norm projection, our implementation is more than two orders of magnitude faster than the previously
known method.

1 Introduction

The focus of this paper is on the following two related problems:

(Generalized proximity operator) min
x

F (x,y) + λ‖x‖, (GPO)

(Generalized projection problem) min
x

F (x,y) s.t. ‖x‖ ≤ γ, (GPP)

where λ, γ > 0, and F : X × Y → R+, where X ,Y ⊆ Rn, is a “distance-like” function defined as

F (x,y) =
∑n

i=1
fi(xi, yi). (1.1)

Each fi : Xi × Yi → R+ (for Xi,Yi ⊆ R) is a differentiable, strictly convex function (over Xi), that satisfies the
key “distance-like” property

fi(x, y) ≥ 0, with equality if and only if x = y. (1.2)

Notable examples of (1.2) are: `pp functions, fi(x, y) = (1/pi)|x−y|pi (pi > 1); Bregman divergences, fi(x, y) =
ϕi(x) − ϕi(y) − ϕ′i(y)(x − y), where ϕi is a differentiable, strictly convex function [1, 2]. For the special case
fi(x, y) = 0.5|x− y|2, (GPO) reduces to a (Euclidean) proximity operator for λ‖·‖ [3], while (GPP) reduces to a
Euclidean projection onto the ‖·‖-norm ball; this explains our choice of nomenclature.

1.1 Related Work

Efficiently solving separable convex optimization problems such as (GPO) and (GPP) has long captured the at-
tention of many researchers. For a comprehensive listing of references we refer the reader to the tech-report
by Patriksson [7].

2 Efficiently solving (GPO)

The main difficulty in solving (GPO) or (GPP) comes from the nonsmooth term ‖x‖. When this norm is separable,
then Lemma 1 below (which holds for arbitrary norm though) can prove helpful for simplifying the problem.

Lemma 1. If x∗ is the optimal solution to (GPO) or (GPP), then: (i) x∗i yi ≥ 0, and (ii) |x∗i | ≤ |yi|.

1

Proof. (i): We describe the proof only for the (GPP) setup, because for an appropriate γ(λ) > 0, (GPO) can be
recast as a (GPP) problem. The proof is by contradiction; so we assume that there exists an index j for which
x∗jyj < 0. Now choose a vector x̂ = x∗, except for x̂j = 0. Then, the difference F (x∗,y)− F (x̂,y) is∑

i

(
fi(x∗i , yi)− fi(x̂i, yi)

)
= fj(x∗j , yj)− fj(0, yj) > x∗jf

′
j(0, yj), (2.1)

where the inequality follows as fj is strictly convex. If x∗j > 0, then yj < 0, whereby the strict monotonicity
of f ′j implies that f ′j(yj , yj) < f ′j(0, yj). Property (1.1) then allows us to conclude 0 < f ′j(0, yj), and thereby
x∗jf

′
j(0, yj) > 0. A similar argument for x∗j < 0 yields x∗jf

′
j(0, yj) > 0. But these inequalities imply that (2.1) is

positive, which contradicts the optimality of x∗ since x̂ is also feasible.
(ii): This part also follows by contradiction, using x̂ = x∗ except for x̂j = yj .

Remark 1: It is easy to see that Lemma 1 also holds for constraints of the form h(x) ≤ γ, where h is a non-
decreasing function that satisfies h(x) ≤ h(z), whenever ‖x‖ ≤ ‖z‖ for some norm or quasi-norm.
Remark 2: It is interesting to note that Lemma 1 also holds for the `0-norm.1

2.1 GPO with the `1-norm
Here we consider (GPO) with ‖x‖ = ‖x‖1. In this case we need to compute the GPO

minx F (x,y) + λ‖x‖1. (2.2)

Lemma 1 suggests that (2.2) may be rewritten as

minx F (x,y) + λsTx, s.t. sixi ≥ 0 for 1 ≤ i ≤ n, (2.3)

where si = sgn(yi). Problem (2.3) separates into n problems of the form

min
sixi≥0

fi(xi, yi) + λsixi. (2.4)

To solve (2.4), we distinguish between two cases: x∗i = 0, and six∗i > 0. Which one of these two is chosen for x∗i
depends on which leads to a lower objective. The following simple lemma makes this choice explicit.

Lemma 2. Let x̂i(λ) solve f ′i(xi, yi) + λsi = 0, where si = sgn(yi). Then, the solution to (2.4) is given by

x∗i (λ) =

{
0, if |f ′i(0, yi)| ≤ λ,
x̂i(λ), if |f ′i(0, yi)| > λ.

(2.5)

Proof. Assuming the second case in (2.5) holds, by direct calculation we see that x̂i(λ) is the desired solution.
We merely need to verify the first case. Thus, assume |f ′i(0, yi)| ≤ λ and divide the analysis into two cases: (i)
f ′i(0, yi) ≥ 0 and (ii) f ′i(0, yi) < 0. For Case (i), Property (1.1) implies that yi ≤ 0, so that any potentially
optimal x̂i must be ≤ 0, whereby f ′i(0, yi) ≤ λ =⇒ x̂if

′
i(0, yi) ≥ x̂iλ. But since fi is convex, inequality

x̂if
′
i(0, yi) < fi(x̂i, yi) − fi(0, yi) holds, which implies that fi(x̂i, yi) − x̂iλ = fi(x̂i, yi) + |x̂i|λ > fi(0, yi).

Hence, x∗i = 0 must hold. When f ′i(0, yi) < 0, we can similarly argue that x∗i = 0, completing the proof.

Remark: For the Euclidean case fi(x, y) = (1/2)(x − y)2, equation (2.5) reduces to the familiar soft-
thresholding: x∗i (λ) = sgn(yi) max(|yi| − λ, 0),

2.2 GPO with the `∞-norm
Now we consider ‖x‖ = ‖x‖∞; here we need to solve

minx F (x,y) + λ‖x‖∞. (2.6)

Using Lemma 1 and introducing an auxiliary variable t = ‖x‖∞, we rewrite (2.6) as

minx,t F (x,y) + λt, s.t. 0 ≤ sixi ≤ t, (2.7)

1The `0-norm ‖x‖0 which counts the number of nonzero entries in a vector x, is actually not really a norm because it fails
to satisfy the positive homogeneity property: ‖αx‖ = |α|‖x‖.

2

where si = sgn(vi) as before. The Lagrangian for (2.7) is

L(x,α,β) = F (x,y) + λt−
∑

i
αisixi +

∑
i
βi(sixi − t), (2.8)

from which we get the optimality conditions (1 ≤ i ≤ n):

f ′i(xi, yi)− αisi + βisi = 0, λ−
∑

i
βi = 0, αi(sixi) = 0, βi(sixi − t) = 0, αi, βi ≥ 0. (2.9)

If the optimal t = t∗ were known, we could use the conditions (2.9) to compute the optimum x∗i via

x∗i (t
∗) = sit

∗ if |yi| ≥ t∗; x∗i = yi otherwise. (2.10)

The following lemma makes this claim explicit.

Lemma 3. The optimality conditions (2.9) are satisfied by the solution (2.10).

Proof. Consider the three simple cases: (i) yi = 0; (ii) |yi| < t∗; and (iii) |yi| ≥ t∗. Case (i): If yi = 0, then
Lemma 1-(ii) implies that xi = 0.
Case (ii): If |yi| < t∗, then setting x∗i = yi satisfies (2.9) (αi = βi = 0).
Case (iii): If |yi| ≥ t∗, then we have two possibilities. Either sixi < t∗, or sixi = t∗. For the former case
βi = 0, and we have two further possibilities: xi = 0 or |xi| > 0. If |xi| > 0, then αi = 0, and (2.9) implies that
f ′i(xi, yi) = 0, a contradiction because xi 6= yi. If xi = 0, then (2.9) implies that f ′i(xi, yi) = αisi, which again
cannot hold because both sides differ in signs. Thus, the only possibility that remains is sixi = t∗.

We now show how compute the optimum t∗, by “searching” for it. To this end, recall the optimality condition
λ −

∑
i βi = 0. To contribute to this sum βi must be positive, which occurs when sixi = t, which itself occurs

when |yi| ≥ t. In such a case (2.9) implies βi = −sif ′i(xi, yi). Thus, we define the function

g(t) = λ−
∑

i
βi = λ+

∑
i:|yi|≥t

sif
′
i(xi(t), yi), (2.11)

where xi(t) is obtained by (2.10) with t instead of t∗. This functions is a (piecewise continuous) monotonically
increasing function of t with g(0) = λ − ‖f ′(0,y)‖1 < 0, where f ′(0,y) = [f ′1(0, y1), . . . , f ′n(yn)]; also note
that g(‖y‖∞) = λ > 0. The former inequality holds, otherwise ‖f ′(0,y)‖1 ≤ λ implies x∗ = 0 to be the (trivial)
solution. Thus, we conclude that g is invertible, and has a unique root in the range [0, ‖y‖∞], which can be found
in (effectively) linear time using bisection. Note this unique root, say t̂, must equal t∗, because g(t∗) = 0 as
xi(t∗) = sit

∗.

For certain parameter ranges we can exploit the structure
of g(t) to narrow down its root t∗ faster. To that end, no-
tice that g is piecewise continuous, and its pieces are de-
fined by the ‘breakpoints’ |y1|, |y2|, . . . , |yn|. If we sort the
breakpoints in decreasing order, say π1 ≥ π2 ≥ · · ·πn,
then we just need to find an index ρ for which g′(|πρ|) > 0
but g′(|πρ+1|) < 0; this ρ then yields the desired interval
bracketing t∗. The details are summarized in Algorithm 1,
wherein the call to ROOT refers to any root-finder (e.g.,
fzero in MATLAB) that is invoked to compute t∗ once
an interval ([πρ, πρ+1]) has been determined.

Input: Vector y; scalar λ > 0
Output: t∗
π ← SORT(|yi|, ↓, 1 ≤ i ≤ n);
ρl ← 1, ρh ← n;
while ρl ≤ ρh do

ρ← b(ρl + ρh)/2c
if g′(πρ) > 0 then

ρh ← ρ− 1
else

ρl ← ρ+ 1
end

end
if S ≥ 0 then ρ← ρ− 1;
t∗ ← ROOT(g′(t), [πρ, πρ+1]);

Algorithm 1: Binary-search for ρ.

Note that sorting step takes O(n log n) time, while the binary search requires O(log n) steps, each of which costs
O(ρ) time: so overall cost is O(n log n). Further, we observe that if f ′i(xi, yi) is linear, then Algorithm 1 can be
reimplemented as an O(n) median-finding algorithm.

2.3 GPO with the `1,∞ mixed-norm
First we need to define the `1,∞ mixed-norm.

3

Definition 4 (Mixed-norm). Let matrix X ∈ Rd×n. We define the `1,∞ mixed-norm of X as the `1-norm of the
`∞-norms of the rows. Thus, letting xi denote the i-th row of x, we define2 the `1,∞ norm as

‖X‖1,∞ =
∑d

i=1
‖xi‖∞ (2.12)

With Definition (2.12) in hand, we see that the `1,∞-norm GPO is

min
X

F (X,Y) + λ‖X‖1,∞. (2.13)

Since both the norm and the objective function are separable, this problem splits into d independent subproblems:

min
∑d

i=1
F (xi,yi) + λ

∑d

i=1
‖xi‖∞, (2.14)

each of which can be then solved either in O(n) time (bisection) or via Algorithm 1 in O(n log n) time. Thus, the
overall GPO problem can be solved in O(dn) time (bisection) or O(dn log n) (Algorithm 1).

2.4 Box-constrained proximity
In some situations, one may need to consider a box-constrained version of the proximity operation (GPO). Here
the optimization problem is

minx F (x,y) + λ‖x‖, s.t. l ≤ x ≤ u, (2.15)

where l, u ∈ Rn, and inequalities are componentwise. An important special case of (2.15) is the trust-region
subproblem [5]

minx
1
2‖x− y‖

2
2 + λ‖x‖1, s.t. ‖x‖∞ ≤ ∆. (2.16)

This problem is a special case because the constraint ‖x‖∞ ≤ ∆ can be rewritten as −∆ ≤ xi ≤ ∆ for 1 ≤ i ≤ n.
Because of separability, one sees that Problem (2.15) is solved by following obvious steps:

1. Compute unconstrained solution x via (2.5);
2. Ensure feasibility by setting x← min(max(x, l),u)

Example 5 (`1-proximity). For (2.15) with ‖x‖ = ‖x‖1, we obtain the solution

x∗i = min(max(x̂i, li), ui),

where x̂i = sgn(yi) max(|yi| − λ, 0).

3 Efficiently solving (GPP)

Now we come to the generalized projection problems. These seem to be slightly more difficult than their proximity
counterparts (intuitively because GPP can be cast as a GPO task, if we knew the “true” Lagrange multiplier).
However, it turns out that one can still solve GPP efficiently. Details follow.

3.1 GPP with `1-norm
Lemma 1 provides one method for easily tackling the non-differentiability of the constraints, and provides a method
to reduce the problem to a standard setup where one only needs to compute a single Lagrange multiplier.

Notice that if ‖y‖1 ≤ γ, then x = y solves (GPO), so we assume that ‖y‖1 > γ. Then, the optimal x∗ must
satisfy ‖x∗‖1 = γ, or equivalently, by Lemma 1, sTx∗ = γ, and six∗i ≥ 0. Under these constraints, and assuming
strong-duality, the optimal x∗ is given by

x∗ = argmin∀i,sixi≥0 L(x, θ∗) = F (x,y) + θ∗(sTx− γ), (3.1)

2Definition (2.12) can be generalized in numerous ways, e.g., by (i) computing an `p norm of `q norms (ii) letting each
xi be of a different length; (iii) computing a possibly different `q-norm for each xi; and (iv) grouping components of x into
arbitrary overlapping vectors and then computing mixed-norms. Generalization (iii) is discussed in [9] for studying `p-nested
symmetric distributions, while (iv) is discussed in [11] under the name Composite Absolute Penalties.

4

where L(x, θ) is the partial Lagrangian, and θ∗ the optimal dual-solution. Since F (x,y) is separable, (3.12)
reduces to n sub-problems of the form

x∗i = argminsixi≥0 fi(xi, yi) + θ∗sixi, for 1 ≤ i ≤ n. (3.2)

Hence, if we knew θ∗, we could solve (3.2) by simply invoking (2.5) with λ = θ∗. Thus, all that remains is to
compute the optimum value θ∗. For this we invoke the constraint ‖x∗‖1 =

∑
i six

∗
i = γ, and use it to define the

function3

g′(θ) = −γ +
∑n

i=1
six
∗
i (θ), (3.3)

Now define θmax = max1≤i≤n |f ′(0, yi)|, and consider the interval [0, θmax]. On this interval g′ is continuous
and also changes sign since g′(0) = ‖y‖1 − γ > 0 and g′(θmax) = −γ < 0. Thus, g′ has a root in this interval.
Moreover, since g′ is monotonic, this root is unique. Let this root be θ̂. But the solution (2.5) implies that even
g′(θ∗) = 0. Thus, θ∗ must equal θ̂, where the latter can be computed using a root-finding method for (3.3).

Complexity: Assuming the root-finding procedure takes IR iterations (e.g., IR = log(θmax/ε) for bisection) to
solve (3.3) within ε accuracy, the overall complexity of computing x∗ is easily seen to be O(IR · n): theoretically
linear in the problem size, assuming IR to be constant.

Binary-search: Can we further speed up the method suggested in the previous section? The answer is ‘yes,’
because the empirical performance of a root-finding method can be significantly improved if we can narrow down
the interval to which θ∗ belongs. In fact we already have all the ingredients for determining such an interval
thanks to our identification of the solution via (2.5) and (3.3). The general idea has appeared previously in several
contexts4, though, to our knowledge, only for differentiable constraints. Below we explain the details of the faster
method that is based on deriving a tighter interval bracketing θ∗.

To determine an interval bracketing θ∗ we exploit the structure
of g′(θ). This function is piecewise continuous with ‘break-
points’ θ1, . . . , θn, which, as per (2.5) are given by θi =
|f ′i(0, yi)|, for 1 ≤ i ≤ n. But g′(θ) is also monotonically
decreasing, so if we sort the breakpoints in decreasing order,
then we just need to find an index ρ for which g′(θρ) < 0 but
g′(θρ+1) > 0; this ρ then yields the desired interval (θρ+1, θρ)
containing θ∗. The details are summarized in Algorithm 2,
wherein the call to ROOT refers to any root-finder (e.g., fzero
in MATLAB) that is invoked to compute θ∗ ∈ (θρ+1, θρ).

Input: Vector y; scalar γ > 0;
Output: θ∗
θ ← SORT(|f ′i(0, yi)|, ↓, 1 ≤ i ≤ n);
ρl ← 1, ρh ← n;
while ρl ≤ ρh do

ρ← b(ρl + ρh)/2c
if g′(θρ) > 0 then

ρh ← ρ− 1
else

ρl ← ρ+ 1
end

end
if S ≥ 0 then ρ← ρ− 1;
θ∗ ← ROOT[g′(θ), (θρ+1, θρ)];

Algorithm 2: Binary-search for ρ

3.2 GPP with `∞-norm

GPP with `∞ requires solving

min F (x,y) s.t. ‖x‖∞ ≤ γ. (3.4)

Once again Lemma 1 allows us to replace (3.4) by

min F (x,y) s.t. 0 ≤ sixi ≤ γ. (3.5)

But we have already used the machinery needed for solving (3.5), namely when solving (2.7), whereby

x∗i = siγ, if |yi| > γ, and x∗i = yi, otherwise. (3.6)

3This function is merely the derivative of the dual function g(θ) = −θγ +
∑

i
minsixi≥0 fi(xi, yi).

4In fact, the author “discovered” this general idea himself while writing this paper, but fortunately before submitting the
paper, recognized the “discovery” to be a rediscovery thanks to the useful survey by Patriksson [7].

5

3.3 GPP with `1,∞-norm
The `1,∞ GPP setup is slightly more involved. Previously somewhat complicated approaches have been proposed
for the Euclidean projection [8]. We present a much simpler, and more general approach, which essentially follows
from a combination of the `∞-norm GPO with our `1-norm GPP solution. Specific details are outlined below.

For the `1,∞-norm GPP, we have as input a matrix Y ∈ Rd×n, and the task is to solve

min F (X,Y) s.t. ‖X‖1,∞ ≤ γ. (3.7)

As before, we assume ‖Y ‖1,∞ > γ, so that the inequality constraint gets replaced by the equality ‖X‖1,∞ = γ.
Now introduce the Lagrangian L(X, θ) so that we have (assuming strong-duality)

X∗ = argminX L(X, θ∗) = F (X,Y) + θ∗(‖X‖1,∞ − γ), (3.8)

where θ∗ is the optimal value of the dual variable corresponding to the `1,∞ constraint. Note that for a given value
θ, we can compute a corresponding optimal solutionX(θ) by solving

X(θ) = argminX F (X,Y) + θ‖X‖1,∞.

This problem is nothing but the `1,∞-norm version of GPO (2.13), and can be thus solved efficiently. All that
remains is to then determine the optimal value θ∗. This can be done, as for the `1-GPP case by defining an
associated (derivative of the dual) function

g′(θ) = −γ + ‖X(θ)‖1,∞. (3.9)

It is easy to see that g is a piecewise continuous and monotonically decreasing function that changes sign in the
interval [0, θmax] (since g(0) = ‖Y ‖1,∞ − γ > 0, and g(θmax) = −γ < 0), so it must have a unique root in
this interval. This root can be found by bisection, which requires IR = O(log θmax/ε) iterations to converge to a
solution of accuracy ε. Since computingX(θ) requires O(nd) time, the overall projection can be computed linear
(in the input size) time.

What remains to be computed is the upper bound θmax. For this, consider an arbitrary subproblem of (3.8)

x(θ) = argminx F (x,y) + θ‖x‖∞. (3.10)

For (3.10) too, we follow an argument similar to Lemma 2 and conclude that the optimal solution x∗(θ) satisfies

x∗(θ) = 0, if ‖f ′(0,y)‖1 ≤ θ, (3.11)

which implies that
θmax = max

1≤i≤d
‖f ′(0,yi)‖1, (3.12)

where yi denotes the i-th row of the matrix Y .

3.3.1 Implication for the Euclidean case
Our analysis above has a direct implication for the Euclidean case. Previously, Quattoni et al. [8] presented a

nontrivial algorithm based on median-finding and merge-sort to compute the Euclidean projection

min 1
2‖X − Y ‖

2
F s.t. ‖X‖1,∞ ≤ γ. (3.13)

Their algorithm had a running time complexity of O(nd log nd) for input matrices Y ∈ Rd×n. Our analysis above
immediately yields a (weakly) linear-time algorithm. We conjecture that a strongly linear time algorithm does not
exist for this problem.5

Our observation is not only theoretically interesting, because previously reported algorithms for (3.13) were
not linear, but also because it immediately leads to actual improvement in running times. The improvement is
also nontrivial, especially when viewed in light of the linear running time required by the GPO version. From
a computational perspective, even more important is the decomposition offered by our approach. The overall

5Our conjecture is grounded in the observation made in [10, §7.2].

6

projection task is reduced to a IRd (recall IR is number of bisection iterations) calls to individual projection tasks
of the form

min 1
2‖x− y‖

2
2 + θ‖x‖∞, (3.14)

whose solution can be computed using Moreau’s decomposition (see [3] for a proof). Formally, the solution x∗

to (3.14) is given by
x∗ = y − x̂(θ), (3.15)

where x̂(θ) denotes the `1-norm projection: P‖·‖1≤θ(y). This projection can be computed by using the specialized
root-finding procedure of [6], or simply the median-finding algorithm of [4]. We note in passing that one could
also invoke a “pegging” method (see [7]), as for appropriate parameter ranges it has been noted to be the fastest.

4 Further extensions

Numerous useful extensions to both (GPO) and (GPP) can be considered. We list them below in roughly increasing
order of difficulty:

1. using general, differentiable, (separable) convex functions (this extension is minor);
2. deriving variable fixing (aka pegging) methods (slightly tedious);
3. accelerating the root-finding steps (challenging); and
4. allowing non-separable norms: e.g., `2-norm, nested-norms [9], or composite absolute penalties [11] (hard).

5 Numerical Results

We show numerical results for the following two problems:

1. `1-norm generalized projection; and
2. `1,∞-norm Euclidean projections.

Notice that `1-GPO is a subproblem of `1-GPP, while `1,∞-GPP reduces to solving `∞-GPO problems: thus, for
these problems we omit verbose experimental details. Further since computing `∞-norm generalized proximity
(Algorithm 1) is similar to `1-GPP (Algorithm 2), we present results only for the latter. Furthermore, to highlight
the merits of our approach for `1,∞-projections, we compare it against the `1,∞ (Euclidean) projection algorithm
of Quattoni et al. [8].

Experimental setup. For all our experiments with non-Euclidean functions, we tested our algorithms with the
following choices of F (suitably extended to matrices when needed):

1. `44 distance, F (x,y) =
∑
i(1/4)|xi − yi|4—note, since F (−x,−y) = F (x,y), if we wish we may assume

y ≥ 0 without loss of generality;

2. Bregman divergence generated by (1/4)|xi|4, so F (x,y) =
∑
i(1/4)(|xi|4−|yi|4)−sgn(yi)|yi|3(xi−yi)—

in this case too, F (−x,−y) = F (x,y);

3. Bregman divergence generated by

ϕ(x) =

{
(1/5)x5, x ≥ 0,
(1/3)|x|3 x < 0.

Note that in this case F (−x,−y) 6= F (x,y).

For all our tests, we used MATLAB to implement Algorithm 2, as well as for associated the root-finding.

5.1 `1-GPP

We show numerical results of solving the `1-GPP problem

min F (x,y) s.t. ‖x‖1 ≤ γ.

7

5.1.1 Experiment 1: Scalability
We first show running time results for computing the generalized projections for y ∈ Rn, where n of ranges

from 101 to 107 (in powers of 10). For this experiment, we generated random vectors y with entries drawn from the
normal distribution N (0, 1). To simulate various sparsity level requirements on the solution, we used γ = α‖y‖1,
where α ∈ {.01, .05, j/10 : 1 ≤ j ≤ 9}.

Figure 1 shows the time to compute projections for solving (3.3) with each of the three choices of F (x,y);
the computation was done using MATLAB’s fzero function, hereafter called A0. The plots show the (expected)
linear scaling as the problem size is varied; the runtimes increase with increasing γ, which is also easily explained
because larger γ means more nonzero entries in x∗, whereby computing g′(θ) becomes more expensive. In all
graphs, each of the plotted lines shows computation times averaged over 5 runs.

0 2 4 6 8 10

x 10
6

0

5

10

15

20

25

30

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4 6 8 10

x 10
6

0

20

40

60

80

100

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4 6 8 10

x 10
6

0

10

20

30

40

50

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Figure 1: Total time to compute projection using fzero on (3.3) with [0, θmax] as the interval. The three plots show running
times for the three different choices of F (x,y) as n increases from 101 to 107 and as γ is varied (γ = .01‖y‖1 for the
lowest line, going up to γ = .9‖y‖1 for the uppermost line). The plot shows that the runtimes scale linearly and increase with
increasing γ.

0 2 4 6 8 10

x 10
6

0

5

10

15

20

25

30

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4 6 8 10

x 10
6

0

50

100

150

200

250

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0 2 4 6 8 10

x 10
6

0

20

40

60

80

100

γ=.01

γ=.9

Size (n) of the problem

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Figure 2: Total time to compute projection using Algorithm 2 for the same setup as in Figure 1. The plots show an empirical
linear runtime, and with increasing γ the running times worsen.

Figure 2 reports the same experiment as in Figure 1, but this time with Algorithm 2, hereafter called A1. We
observe that on a broad range of γ values, for the first function (first plot), A1 is as fast as A0, while for the other
two choices of F (second and third plots) and larger values of γ, A1 takes about twice as long as A0. This behavior
is expected, as the binary-search requires computing the function g′(θρ) several times, and when the optimal ρ is
large, a high overhead is incurred. The immediate question then is: when is A1 useful? If we look closely at the
plots in Figures 1 and 2, we see that for small values of γ, A1 indeed outperforms A0. Let us take a closer look at
this difference.

5.1.2 Experiment 2: Effect of tighter interval
We now retain the experimental setting of the previous section, but proceed to look more closely at the impact

of a tighter interval used by Algorithm 2. We used γ = α‖y‖1, where α ∈ {.01j : 1 ≤ j ≤ 20}. From the plots
one sees that for the first function A1 runs approximately twice as fast as A0 across the entire range of γ. For the

8

second and third function, A1 runs faster than A0 for γ ≤ .1‖y‖1. Somewhat surprisingly, for n = 107 (second
row, last plot), the overhead incurred by A1 makes it run slower than A0.

0 0.05 0.1 0.15 0.2
5

6

7

8

9

10

11
x 10

−3 n = 10000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.04

0.06

0.08

0.1

0.12

0.14
n = 100000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.5

1

1.5
n = 1e+06

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
6

8

10

12

14

16

18
n = 1e+07

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014
n = 10000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.04

0.06

0.08

0.1

0.12

0.14
n = 100000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2

0.8

1

1.2

1.4

1.6
n = 1e+06

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
6

8

10

12

14

16

18

20
n = 1e+07

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.005

0.01

0.015
n = 10000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.04

0.06

0.08

0.1

0.12

0.14

0.16
n = 100000

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
n = 1e+06

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

0 0.05 0.1 0.15 0.2
6

8

10

12

14

16

18
n = 1e+07

γ

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

A0

A1

Figure 3: Running time comparisons for small values of γ between A0 and A1, where A0 refers to root-finding with [0, θmax]
as the interval, and A1 refers to Algorithm 2. The values of γ range from .01‖y‖1 to .2‖y‖1. The three rows of the plot
correspond to the three different choices of F (x,y).

5.2 Euclidean projections onto the `1,∞-ball
Here we compare the projection algorithm of Quattoni et al. [8] against our method from Section 3.3.1. Our
implementation used an adaption of the median-finding algorithm of Duchi et al. [4] as a subroutine. We note that
our algorithm could be further sped up, since in [6] the median-based approach is reported to be slower than a
bisection-based method.

We obtained the `1,∞-projection code of Quattoni et al. [8] from the first author’s webpage; this code is in C
(MATLAB mex-file), and we refer to it as AP in the experiments below. We implemented our projection code in C
(as a MATLAB mex-file), and this is referred to as SP in our experiments below.

We report results on the following two dense matrices:

1. Y1 ∈ R500×5000 with varying γ; and

2. Y2 ∈ R10000×3000 with varying γ.

Matrix Y1 is more favorable to AP (as the number of groups (rows) is much smaller than the number of columns),
while the matrix Y2 stresses both AP and SP owing to its large number of groups (rows). In fact, Y2 is particularly
challenging for SP, as SP is iterative and requires solving 10,000 subproblems as each major iteration.

Tables 1 and 2 present running time and accuracy results (accuracy is defined as the constraint violation: |γ −
‖X‖1,∞|, whereX is the estimated solution). We remark that the corresponding objective function values attained
by AP and SP generally agreed with each other to a relative error of 10−8 (the worst agreement had relative error
of 10−3).

From Table 1 it is clear why we called Y1 to be favorable to AP: this algorithm is at worst 10 times slower than
our method, and at best slightly faster, though in regimes where sparsity is low. Furthermore, AP yields solutions

9

γ
‖Y1‖1,∞

AP Time (s) SP Time (s) Speedup AP accuracy SP accuracy
.01 17.87 1.71 10.42 3.89E-11 1.78E-14
.05 15.90 1.60 9.93 3.62E-11 2.71E-12
.10 13.54 1.60 8.44 3.65E-11 2.27E-13
.20 9.41 1.79 5.26 1.51E-11 3.41E-13
.30 6.26 1.96 3.20 5.46E-12 2.16E-12
.40 4.18 1.97 2.12 6.71E-12 4.55E-13
.50 3.03 2.15 1.41 2.05E-12 5.24E-10
.60 2.49 2.51 0.99 6.14E-12 2.05E-12
.70 2.24 2.69 0.83 7.05E-12 4.55E-13

Table 1: Running time and accuracy |γ − ‖X‖1,∞| comparison between AP and SP on Y1

less accurate than SP, though both of them satisfy the constraint to high accuracy. Hence, for all practical purposes,
even for the “favorable” case, we recommend using SP.

Table 2 highlights the setting where the AP method suffers, namely, the setting with a very large number of
groups (rows) for the mixed-norm. Here, AP is at worst 161 times slower, while being overall significantly less
accurate than SP. Thus, when the number of groups is large, SP is an even better choice. However, we also note
that from both tables, it seems that for the non-sparse setting, AP competes with SP. But overall, for the typical
regimes of interest, SP should be used for computing the projections.

γ
‖Y2‖1,∞

AP Time (s) SP Time (s) Speedup AP accuracy SP accuracy
0.01 3812.35 24.13 157.97 4.50E-09 1.48E-12
0.05 3344.85 20.79 160.90 4.82E-09 5.91E-12
0.10 2784.16 19.09 145.84 5.19E-09 1.46E-11
0.20 1807.52 21.22 85.19 3.25E-09 3.64E-12
0.30 1052.59 21.65 48.62 2.66E-09 3.27E-09
0.40 551.83 23.68 23.30 1.25E-09 7.28E-12
0.50 266.14 25.88 10.28 6.66E-10 2.87E-09
0.60 122.04 32.43 3.76 1.42E-09 4.73E-11
0.70 60.30 30.23 1.99 4.62E-10 6.95E-10

Table 2: Running time and accuracy (|γ − ‖X‖1,∞|) comparison between AP and SP on Y2

6 Conclusions
We discussed generalized proximity and projection operators. We derived efficient root-finding procedures for
applying these operators for `1, `∞, and `1,∞-norms. While analyzing the `1,∞-case we also noted that our
approach can be used to speed up the Euclidean projection too. Our experiments exhibited the behavior of our
generalized `1-norm proximity algorithm. The practical benefit of our approach was then further highlighted by
comparing it against the `1,∞-norm projection algorithm of [8], where we observed speedups of up to 160 times.
Several aspects in which our work could be extended remain open, and we will explore some of these in the future.

References
[1] L. M. Bregman. The relaxation method of finding the common point of convex sets and its applications to

the solution of problems in convex programming. U.S.S.R. Computational Mathematics and Mathematical
Physics, 7(3):200–217, 1967. 1

[2] Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Numerical Math-
ematics and Scientific Computation. Oxford University Press, 1997. 1

[3] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Mod-
eling and Simulation, 4(4):1168–1200, 2005. 1, 7

[4] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient Projections onto the `1-Ball for Learning
in High Dimensions. In ICML, 2008. 7, 9

10

[5] D. Kim, S. Sra, and I. S. Dhillon. A scalable trust-region algorithm with application to mixed-norm regres-
sion. In Int. Conf. Machine Learning (ICML), 2010. Submitted. 4

[6] J. Liu and J. Ye. Efficient euclidean projections in linear time. In Int. Conf. Machine Learning, pages 657–
664, 2009. 7, 9

[7] M. Patriksson. A survey on a classic core problem in operations research. Technical Report 2005:33, Depart-
ment of Mathematical Sciences, Chalmers University of Technology and Göteborg University, Oct. 2005. 1,
5, 7

[8] A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An Efficient Projection for `1,∞ Regularization. In
ICML, 2009. 6, 7, 9, 10

[9] F. Sinz, E. Simoncelli, and M. Bethge. Hierarchical modeling of local image features through lp nested
symmetric distributions. In Adv. Neural Inf. Proc. Syst., 2009. 4, 7

[10] J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-Newton Approach to Nonsmooth Convex
Optimization Problems in Machine Learning. J. Mach. Learn. Res., 11:1145–1200, Mar. 2010. 6

[11] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable
selection. Ann. Stat., 37(6A):3468–3497, 2009. 4, 7

11

	Introduction
	Related Work

	Efficiently solving (GPO)
	GPO with the 1-norm
	GPO with the -norm
	GPO with the 1, mixed-norm
	Box-constrained proximity

	Efficiently solving (GPP)
	GPP with 1-norm
	GPP with -norm
	GPP with 1,-norm
	Implication for the Euclidean case

	Further extensions
	Numerical Results
	1-GPP
	Experiment 1: Scalability
	Experiment 2: Effect of tighter interval

	Euclidean projections onto the 1,-ball

	Conclusions

