Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Nonlinear directed acyclic structure learning with weakly additive noise models

MPG-Autoren
/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tillman, R., Gretton, A., & Spirtes, P. (2010). Nonlinear directed acyclic structure learning with weakly additive noise models. In Y. Bengio, D. Schuurmans, C. Williams, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 22 (pp. 1847-1855). Red Hook, NY, USA: Curran.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C0CE-C
Zusammenfassung
The recently proposed emphadditive noise model has advantages over previous structure learning algorithms, when attempting to recover some true data generating mechanism, since it (i) does not assume linearity or Gaussianity and (ii) can recover a unique DAG rather than an equivalence class. However, its original extension to the multivariate case required enumerating all possible DAGs, and for some special distributions, e.g. linear Gaussian, the model is invertible and thus cannot be used for structure learning. We present a new approach which combines a PC style search using recent advances in kernel measures of conditional dependence with local searches for additive noise models in substructures of the equivalence class. This results in a more computationally efficient approach that is useful for arbitrary distributions even when additive noise models are invertible. Experiments with synthetic and real data show that this method is more accurate than previous methods when data are nonlinear and/or non-Gaussian.