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Abstract

We applied PAC-Bayesian framework to derive gen-
eralization bounds for co-clustering1. The analysis
yielded regularization terms that were absent in the
preceding formulations of this task. The bounds sug-
gested that co-clustering should optimize a trade-off
between its empirical performance and the mutual in-
formation that the cluster variables preserve on row
and column indices. Proper regularization enabled
us to achieve state-of-the-art results in prediction of
the missing ratings in the MovieLens collaborative
filtering dataset.

In addition a PAC-Bayesian bound for discrete den-
sity estimation was derived. We have shown that
the PAC-Bayesian bound for classification is a spe-
cial case of the PAC-Bayesian bound for discrete den-
sity estimation. We further introduced combinatorial
priors to PAC-Bayesian analysis. The combinatorial
priors are more appropriate for discrete domains, as
opposed to Gaussian priors, the latter of which are
suitable for continuous domains. It was shown that
combinatorial priors lead to regularization terms in
the form of mutual information.

1 Introduction

Co-clustering is a widely used approach to the anal-
ysis of data matrices by simultaneous clustering of
“similar” rows and columns of the data matrix [2].
In [8] we identified two types of problems that are
often solved by co-clustering. The first is discrimina-
tive prediction of the missing matrix entries and the
second is estimation of a joint probability distribu-
tion of variables corresponding to rows and columns
of the data matrix. Discriminative prediction corre-
sponds to problems like collaborative filtering, where
the missing ratings are discriminatively predicted
given the 〈viewer,movie〉 pairs. Density estimation
corresponds to problems such as analysis of word-

1This abstract surveys the results developed in [7, 8, 6].

document co-occurrence data, where the task is to
learn the joint distribution of words and documents
(rows and columns of a matrix).

For the purpose of analysis of generalization proper-
ties of co-clustering we found convenient to apply the
PAC-Bayesian framework [4]. The key for success of
PAC-Bayesian analysis lies in the ability to slice a
hypothesis space in an intelligent way. For example,
differentiation of separating hyperplanes by the size
of the margin combined with PAC-Bayesian analysis
enabled the derivation of state-of-the-art generaliza-
tion bounds for Support Vector Machines [3, 5]. In [7]
we suggested an intelligent partition of the space of
co-clustering solutions that yielded meaningful and
practically useful bounds for this problem. We de-
fined a prior over this space by combinatorial count-
ing of the hypotheses according to the partition and
showed that this form of a prior leads to regulariza-
tion terms in the form of mutual information. For the
analysis of density estimation with co-clustering, we
have extended the PAC-Bayesian framework and de-
rived and PAC-Bayesian bounds for discrete density
estimation.

2 Main Results

Due to space limitations we present only a subsample
of the results, for further details refer to [7, 8, 6].

2.1 Discrete Density Estimation

Theorem 1. Let X be the sample space and let p(X)
be an unknown distribution over X ∈ X . Let H
be a hypothesis class, such that each h ∈ H is a
function from X to a finite set Z. Let ph(Z) =
P

X∼p(X)
{h(X) = Z} be the distribution over Z in-

duced by p(X) and h. Let P be a prior distribution
over H. Let Q be an arbitrary distribution over H
and pQ(Z) = EQ(h)

ph(Z) a distribution over Z in-

duced by p(X) and Q. Let S be an i.i.d. sample
of size N generated according to p(X) and let p̂(X)
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be the empirical distribution over X corresponding to
S. Let p̂h(Z) = P

X∼p̂(X)
{h(X) = Z} be the empiri-

cal distribution over Z corresponding to h and S and
p̂Q(Z) = EQ(h)

p̂h(Z). Then with a probability greater
than 1− δ for all distributions Q simultaneously :

D(p̂Q‖pQ) ≤ D(Q‖P) + (|Z| − 1) ln(N + 1)− ln δ

N
,

(1)
where2 p̂Q ≡ p̂Q(Z) and pQ ≡ pQ(Z) for brevity and
D(·‖·) is the KL-divergence.

The PAC-Bayesian bound for classification [4] is a
special case of the PAC-Bayesian bound for density
estimation. In order to illustrate this, let Z be the
error variable. Then each h ∈ H is a function from
the sample space of pairs 〈X,Y 〉 to the error variable

Z and |Z| = 2. Furthermore, L̂(Q) = P
p̂(X,Y )

{Z = 1}
and L(Q) = P

p(X,Y )
{Z = 1}. Substituting this into

(1) yields the PAC-Bayesian bound for classification.

The proof of theorem 1 is based on applying the law
of large numbers to show that for a single hypothesis
E

S
eND(p̂h(Z)‖ph(Z)) ≤ (N + 1)|Z|−1 and then treating

distributionsQ overH by applying change of measure
inequality (also called compression lemma [1]).

2.2 Co-clustering Analysis

We present the PAC-Bayesian bound for discrimi-
native prediction with co-clustering only. For the
PAC-Bayesian bound for density estimation with co-
clustering refer to [8, 6]. We consider the following
form of discriminative predictors:

q(Y |X1, .., Xd) =
∑

C1,..,Cd

q(Y |C1, .., Cd)

d∏
i=1

q(Ci|Xi).

In the collaborative filtering example d = 2, Y is the
rating, X1 is viewer ID and X2 is movie ID. The con-
ditional probability distribution q(Ci|Xi) represents
the probability of assigning Xi to cluster Ci. The
conditional probability q(Y |C1, .., Cd) represents the
probability of assigning label Y to cell 〈C1, .., Cd〉
in the cluster product space. We denote collec-
tively the free parameters of the model by Q ={
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
. In [7] it is shown

that Q is a distribution over hypothesis space of hard
partitions of the parameter space X1×..×Xd. We de-
note L(Q) = Ep(X1,..,Xd,Y )Eq(Y ′|X1,..,Xd)l(Y, Y

′) and

L̂(Q) = Ep̂(X1,..,Xd,Y )Eq(Y ′|X1,..,Xd)l(Y, Y
′), where

l(Y, Y ′) is a given loss function for predicting Y ′

instead of Y . We define q̄(ci) = 1
|Xi|

∑
xi
q(ci|xi)

to be the marginal distribution over Ci correspond-
ing to q(Ci|Xi) and a uniform distribution over Xi.

2Throughout the abstract | · | stands for cardinality of
a corresponding variable.

We define the mutual information corresponding to
the joint distribution q̄(xi, ci) = 1

|Xi|q(ci|xi) defined

by q(ci|xi) and the uniform distribution over Xi as

Ī(Xi;Ci) = 1
|Xi|

∑
xi,ci

q(ci|xi) ln q(ci|xi)
q̄(ci)

.

Theorem 2. For any probability distribution
p(X1, .., Xd, Y ) over X1 × .. × Xd × Y and for any
loss function l bounded by 1, with a probability of
at least 1 − δ over selection of an i.i.d. sample of
size N according to p, for all randomized classifiers
Q =

{
{q(Ci|Xi)}di=1, q(Y |C1, .., Cd)

}
:3

Db(L̂(Q)‖L(Q)) ≤
∑d
i=1 |Xi|Ī(Xi;Ci) +K

N
, (2)

where K =
∑
i |Ci| ln |Xi|+ (

∏
i |Ci|) ln |Y |+ ln N+1

δ .

Theorem 2 is obtained by defining a prior via com-
binatorial counting of the possible ways to cluster
Xi-s and calculating the KL-divergence of Q from
this prior, which yields the mutual information term
[7, 6]. As shown previously [6], regularization by mu-
tual information provides state-of-the-art predictions
on the MovieLens dataset.

3 Discussion and Future Work

As shown in previous work [6], theorem 2 can be gen-
eralized to graphical models having tree shape. Inter-
esting directions for future research include general-
ization of theorem 1 to continuous density estimation
and theorem 2 to more general graphical models.
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