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BCI as a Potential Assistive Technology

o Complete paralysis (e.g. late-stage Amyotrophic Lateral
Sclerosis)
@ Communication

@ Disconnection of motor pathways (e.g. subcortical stroke,
amputation)
@ Rehabilitation of movement
@ Relief of phantom-limb pain
@ Control of prosthetics or FES

@ Other...
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@ interruptions
o fatigue, pain, drugs

@ noisy, non-“standard” and non-stationary EEG

o slower ERP responses, more low-frequency dominance
@ blood-sugar- and fatigue-dependent changes
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Problems with Clinical Deployment

@ ‘“good-day-bad-day” syndrome: any exploration of induction
parameters requires an alternating or mixed design, halving
the amount of data in any one experimental condition on any
one day

@ data set sizes are small to start with

@ more frequent session-to-session transfer problems



Measurement systems for BCl

Implanted microelectrode
array (Cyberkinetics, Inc)

Figure from Hochberg
et al. Nature, July 2006.
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Department of Epileptology,

University of Bonn, 2004

Electrocorticography (ECoG)



Measurement systems for BCl

Electroencephalography (EEG)



Measurement systems for BCl

Near Infra-Red Spectrophotometry (NIRS)



Measurement systems for BCl

Functional Magnetic Resonance
Imaging (fMRI)

Magnetoencephalography (MEG)
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Induction

@ Attention (overt and/or covert) to one of a number of stimuli
o Most common example: visual grid speller (Farwell & Donchin
1988)
o BUT: for completely paralysed users, vision deteriorates.
~- incentive to design auditory-/tactile-based methods.

@ “Mental tasks”
@ Most common example: imagined movement of hands or feet.
o BUT: for users with motor-neuron disease, will the motor
system continue functioning well enough long-term?
~ incentive to explore non-motor mental tasks.
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Event-Related Potentials

figures from Polich (2007)
Clinical Neurophysiology
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Event-Related Potentials

attend-left (101) vs attend-right (99) AUC

electrode

0 100 200 300 400 500
time (msec)



Bandpower

Event-Related Desynchronization in motor imagery: classify
imagined left hand movement vs. imagined right hand movement
based on power in (say) 10 Hz-band of estimated pre-motor cortex
sources in the left and right hemispheres.
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Bandpower

baseline (100) vs navigation (50) basleine (100) vs foot (50) Auc
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An Overfitting Nightmare?

@ High noise
@ Small number of data exemplars

@ Very large number of features.
Well actually, the features are usually highly correlated.

@ This is a good thing—we only need to worry about a
low-dimensional subspace.

o This is a bad thing—can lead to trying to optimize very “stiff”
systems.
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Source Separation
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Source Separation
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Cheap supervised rotation with CSP
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Slightly deeper learning?

From Collobert & Weston's NIPS 2009 tutorial:

Engineering: complex features, simple algorithm.
Preprocessing (spatial subspace, spectral filtering...) then classification

VS

Machine-Learning: simple input, implicitly learn the features.

Idea: instead of performing CSP’s least-square criterion to estimate
discriminative sources

S =WX
then classifying the resulting bandpower features diag (SS') according to some
other loss function, let’s treat W as the hyperparameters of (e.g.) a Gaussian

Process classifier and optimize them according to the marginal-likelihood...
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Slightly deeper learning?
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Note:

@ large individual variation

@ particular benefits for smaller, noisier datasets.



Deeper learning ~» more “hands-free” operation

n__. =100, x 8 folds, x 15 subjects
train

linear covariance function in log—variance space
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Automatic combination of /selection between first- and second-order features
@ Christoforou et al. (2008) JMLR
@ Tomioka & Miiller (2010) Neuroimage

Convex optimization of spatial filters, with automatic selection/weighting

between frequency bands

@ Tomioka & Miiller (2010) Neuroimage
@ Farquhar (2009) Neural Networks

@ extensible to arbitrary number of dimensions (time, frequency,

cross-subject, cross-condition, ...)

Pre-processing can still make a difference to performance (e.g. equalizing
variance across frequency bands to compensate for 1/f; spatial pre-whitening
in both first- and second-order cases).

Pre-processing the data can be seen as equivalent to changing the

regularization environment. What is the “ideal” regularization strategy?
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Low-rank Classification

In linear ERP classification: classifier finds weights M for classifying space-x-time

“image” segments:
i
T
S t
Ly regularization: regularize by putting an L-1 penalty on the singular values of M.
@ Tomioka & Aihara (2007) ICML 2007.

@ Tomioka & Miiller (2010), Neuroimage.

@ Farquhar (2009), Neural Networks.



Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 & BBCI Workshop

2000):

(81%

0 200 400 600

attended

+
unattended

o oonn 4AnO Bn0

0 200 400 600

0 200 400 600

0 200 400 600

i

I

A

o oonn 4AnO Bn0




Example Sparsification Results

A BCI based on auditory stimuli (Hill et al., NIPS 2004 & BBCI Workshop

2009):
rank of spatio-temporal weight matrix
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How Can Machine-Learners Help to Make BCI a Clinical Reality?

Moving towards “deeper’ learning strategies
@ improve performance on small/noisy datasets

@ make systems run more “hands-free”

Use of Ls regularization (and its generalization to > 2 dimensions) to find the
right subspace solutions.

Incorporating prior knowledge/setting up the regularization environment in
better ways.

Better transfer-learning and zero-training methods (e.g. see Fazli et al., this
NIPS).

Dealing with non-stationarities in brain data (see Klaus-Robert Miiller’s talk at
this symposium, re SSA).

Finding ways of encoding information in more user- and brain-friendly ways
(e.g. see Hill et al., last NIPS).



