Max-Planck-Institut fiir biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 186

Spectral Stacking: Unbiased
Shear Estimation for Weak
Gravitational Lensing

Reshad Hosseini,! Matthias Bethge,!

Oktober 2009

This Technical Report has been approved by:

Director at MPIK Postdoc at MPIK

MAX-PLANCK-GESELLSCHAFT



Max-Planck-Institut fiir biologische Kybernetik
Max Planck Institute for Biological Cybernetics

MAX-PLANCK-GESELLSCHAFT

Technical Report No. 186

Spectral Stacking: Unbiased
Shear Estimation for Weak
Gravitational Lensing

Reshad Hosseini,! Matthias Bethge,!

Oktober 2009

! Computational Vision and Neuroscience Group, email: hosseini;mbethge@tuebingen.mpg.de




Spectral Stacking: Unbiased Shear Estimation for
Weak Gravitational Lensing

Reshad Hosseini, Matthias Bethge

Abstract. We present a new method for the estimation of shear in gravitational lensing from a set of galaxy images
with unknown distribution of shapes. Common procedures first compute an estimate of some characteristic feature
for each individual galaxy and then average over these. The average can be used to estimate the shear as it becomes
independent of the individual galaxy shapes with increasing number of images. A common problem of the previous
methods is that the estimators of the features are biased. Here we introduce “spectral stacking” which uses the power
spectrum as a characteristic feature of the individual galaxies. If the galaxy images are contaminated by Poisson noise,
an unbiased estimator of the power spectrum exists which is used in the analysis. Furthermore, the power spectrum is
independent of the location of the individual galaxy centers provided the smoothed galaxy intensities decay sufficiently
fast. No further assumptions are necessary. The algorithm won the main contest of the GreatO8 challenge.

1 Introduction

Due to dark matter in the universe, the light of galaxies is bended and as a result we can only image the distorted
versions of the original galaxies. In the case of weak gravitational lensing the distortion of the galaxy image can be

described by a shear transformation:
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where x,, and y, are the coordinates of the undistorted galaxy image and xs and y; are those of the sheared image.
The variables a and b determine the shear transformation matrix.
The generation of the image data set provided in the Great08 challenge can be described as follows: Images of 10*
galaxies of unknown shapes are sheared using a unique shear parameter pair (a,b). Subsequently, the images are
blurred with a smoothing kernel and then pixelized. The resulting pixel intensities are distorted by Poisson noise. This
is accomplished by drawing from a Poisson distribution whose mean is given by the pixel intensity plus some constant
background.
The shear parameter estimation problem in the challenge is a simplified version of the real problem because here the
shear is assumed to be the same for all galaxies while in reality the shear is not constant even if we only consider
galaxies in some part of the sky that are located in close vicinity to each other. Also the smoothing kernel is assumed
to be constant across the image and the same for all galaxies while in reality it is not. The noise model considered in
the challenge is Poisson distributed but the true noise is better described as a combination of Poisson and Gaussian
noise [1].
One assumption that is fundamental to solving the shear estimation problem is isotropy which says that all rotations
of the same galaxy around the center of mass should be equally likely. Most procedures exploit this assumption in
the following way: they first compute an estimate of some characteristic feature for each individual galaxy and then
average over these. By virtue of the isotropy, the average becomes independent of the individual orientations of the
galaxies with increasing number of images. This allows one to estimate the shear from the orientation of the average
image.

An important factor for the success of this approach is to have an unbiased estimator of the characteristic feature
under the given noise model. All previous methods, however, require additional assumptions on the shape of galaxies
in order to guarantee that the estimates of the feature are unbiased. The method that worked second best in the



challenge [2] requires only two parameters to be estimated which rely on prior knowledge about the intrinsic galaxy
model: The x- and y-coordinate of the center of mass of the galaxy before smoothing.

In this work we introduce spectral stacking as a method that under mild assumptions, is completely independent of
the shape of galaxies by using the power spectrum as a feature that can be estimated in an unbiased way. In the next
section, we explain the details of the method. In section 3, we show simulation results and in section 4 we discuss
possibilities how to further improve the method proposed in this report.

2 Method

We begin with a summary of the image generation process. The original unsheared galaxy image is i, (Xu, yu) and the
sheared image is is(xs,ys) where the shear is modeled by the linear coordinate transformation of (1). Afterwards, the
image is blurred. This yields

if(stYS) :is(xmys)*hs(xm}’s)a (2)

where i is the filtered image, hs(xs,ys) is the filter kernel, and * denotes the convolution operator. Then the image
is pixelized which is equivalent to a convolution with a box kernel h;(x,,y5) and subsequent sampling. Furthermore,
the range of the image is limited which is equivalent to a multiplication with a box window function w(xs,ys). Thus,
we obtain

i7'(XsaYS) = [Zf(Xst) * hf(Xs>YS)]w(stys) (3)
ir[mg, ng] = i (msT,0T) V{mg,ns} € Z, 4)

where 7T is the sampling period. Without loss of generality we can set 7' = 1. Furthermore, we can concatenate the
two linear filtering steps into one h(xs,ys) = hs(Xs,¥s) * hp(Xs,ys). This yields

ir(X57YS) = [is(xsv}Is) * h<X57YS)]w(Xs7yS) (5)
ir[msvns} = ir(ms; ns) V{ms,ns} € Z. (6)

Taking the Fourier transform of the two equations yields:

L(Q:,Qy) = [Ls(Qa, Q) H(Qu, Q)] * W (e, Qy) (N
fr(wz,wy) = Z I (wy + 2kym, wy + 2kym), —7 < {wg,wy} <, (8)
ky,ky=—o00

where capital letters denote Fourier transform, €2 is the frequency of the continuous signal and w is the frequency
of the discrete signal which ranges from —m to 7. For our analysis we assume that the filtered image is confined to
the domain of the rectangular function and zero outside. Then we can drop the convolution with the sinc function
W(Qz, Qy):

I(Q:,Qy) =~ I(Q,Qy)H(Qs, Q). 9
The range of I,.(2;, €,) is less than 27 (because of the filtering with the smoothing kernel). Therefore, we have

I (we,wy) = In(we,wy), —m < {we,wy} < (10)

The amplitude of the Fourier transform is invariant with respect to shifts. That is, both a signal and a shifted version
of it have the same amplitude spectrum. More generally, we can write

| (way wy) [P~ Ls (way wy) P | H (w, wy) P, (11)

where p is an arbitray power. Since the convolution kernel H (w, wy) is assumed to be the same for all galaxies, taking
the sum over all galaxy images yields
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where N is the total number of galaxy images. If NV becomes sufficiently large, the second term in (12) converges
Zgil |Ts, (wg, wy) [P — G(wy,w,) and the limiting function has an elliptical shape being of the form

G(wg,wy) = f([wwva]z_l[wwva]T)a 13)

where the covariance matrix % is dependent on the shear matrix and f : [0,00) — R is an arbitrary function. The
elliptical shape of the limiting function G(w,, w,,) originates from the assumed isotropy. This can be explained as
follows: Due to the isotropy assumption the sum over a large number of images converges to a spherically symmetric
function. Since shearing is a linear transformation first shearing each individual image and then averaging yields
the same result as first averaging and then shearing. Thus the effect of the shear can be described to transform the
spherically symmetric function into an elliptically contoured function. This property also holds true for the magnitude
of the Fourier transform because for the magnitude taking the Fourier transform of a rotated image is the same as
rotating the Fourier transformed image. The relationship between the coordinate systems in the frequency domain
between sheared and original galaxies is given by:

we \ _ (l—a —b -t W'y
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The covariance matrix of a spherically symmetric function is proportional to the identity matrix:
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Hence, applying the shear transformation yields:
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Using the fact that the shear matrix is symmetric it follows from (16) that A = A X~'/2 where ) is a constant. In
order to fulfill the constraint that the trace of the shear matrix A must be equal to (1+a) + (1 —a) = 2 we need to set

_ 2 : ; A
A= (177 Now, we can write G(w,, w,) as a function of the shear matrix A:

Ga(we,wy) = FONHwa, wy|AAT [we, wy ] T). (17)

Finally, we have to take into account that the images i,[m, ns| are contaminated by Poisson noise. That is, the
intensities of the observed pixels i,[mg, ng| are drawn from Poisson distributions whose means are given by 4,.[m;, n).
If we choose p = 2 we can use

S(wg,wy) = |I~O(u)gg,w?,,)|2 -C (18)
as an unbiased estimator of the power spectrum under Poisson noise [3]:
E{S(wz,wy)} = |I~T(Wwva)‘2 19)

Here, I, (wa, wy) is the Fourier transform of the noisy image i,[m,, ns| and C' = qu N, io[mg, ng|. If we sum over
this unbiased estimate of the power spectra of the galaxies (see (12)), we obtain an unbiased estimate of the filtered
limiting function |H (w,,wy)|?G(wy,wy). Due to the central limit theorem, the resulting noise is approximately
Gaussian. Fortunately, an unbiased estimator for the variance of the resulting Gaussian noise can also be obtained (see
appendix). Taken together, we obtain the following model:

N
Z Sk(wa,wy) = |H (wa, Wy)|2GA(Wx7Wy) + n(wa, wy), (20)
k=1
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Figure 1: Logarithm of the power spectrum of the smoothing filter. It is estimated by summing over the power spectrum of the stars
which is given as a separate set of 10" stars.

where G 4 (wy,wy) is an elliptically contoured function given in (17) which depends on the shear matrix A and where
1(wy, wy) denotes Gaussian noise whose an unbiased estimator of its variance is given by (A-4) in the appendix.
Hence, for estimating the shear matrix A we can use a nonlinear least square procedure to optimize over the limiting
function using the inverse square root of the the noise variance as a weighting function. In other words, we want to
minimize the following loss function over the range of possible shear matrices A:

N 2
Ba= ), [a(wlwy) (;Sk(%wy)—|H(wz,wy>IQGA(wmwy)>] : @

Wz ,Wy

In order to carry out the minimization, we further need to specify a parametric model for the radial function f that
we used in the definition of G 4 (wy,wy). In our case, we used a polynomial to model the radial function in the log
domain.

3 Results

We applied the algorithm to the main contest of the GreatO8 challenge. In the challenge a data set of smoothed star
images was provided in addition to the galaxy images. We used this data set to estimate the term | H (w,,, w,,)|? by first
computing the power spectrum for each individual star image and then averaging over the entire ensemble. All galaxy
images have been smoothed with one out of three different smoothing filters. Our estimate of one of the smoothing
filters is shown in Figure 1. The magnitude decays very fast such that the pixelization does not lead to aliasing in the
Fourier domain.

In order to solve the nonlinear least square problem of (21) we used the Levenberg-Marquardt method [4] imple-
mented in the MATLAB optimization toolbox. We sample the Fourier transform over a rectangular grid of 2048 x 2048
points (This is equivalnet to zero-pading in the pixel domain and then applying Fourier transform). For the nonlinear
least square fit, we only used a fraction of the sample points in the fourier domain: We only kept those points for
which the power spectrum of the filter is greater than 1.5 percent of its maximum value. As a radial function we used
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Figure 2: (a) The sum of the unbiased estimates of the galaxy spectra in the frequency domain. (b) The inverse Fourier transform
of (a) in the desired range. Both figures show the logarithm of the absolute value.

a polynomial of degree 9 in the log domain:

9
Fr) =" axlog(r)* (22)
k=0

In Fig. 2(a), we have shown the result of the estimate of the summed power spectra for a set of galaxies chosen from the
main challenge (“real noise”). In Fig. 2(b), we applied the inverse Fourier transform to get the pixelized representation
of the signal and display only the meaningful part of 78x78 pixels. (The original support of the image is 39x39 and
squaring in the Fourier domain is equivalent to convolution in the pixel domain). As one can see, the image intensity
decays rapidly in the pixel domain. This finding justifies our assumption that a signal is present only in the range of
the box.

The accuracy of the results for the challenge has been evaluated by the following score:

10—*

% (<(< a; — a; >iek)2>k * <(< bi = bi >iek)2>k) |

where a; and b; are the true shear matrix parameters for a galaxy set ¢ and a; and b; are the estimates, respectively.
The inner brackets denote averaging over sets with similar shear value and observing condition j € k and the outer
brackets denote averaging over different observing condition. The value is calculated from 2700 different sets of
galaxy images. The method introduced in this paper achieved the best score of Q = 210.9. The second best method
based on stacking in the pixel domain [2] achieved a score of @) = 131.4.

Q= (23)

4 Discussion and Future Work

In this paper, we introduced “spectral stacking” as a new method for the estimation of shear from a set of distorted
galaxies with unknown shape distribution. Unlike existing methods, this procedure is completely independent of the
intrinsic galaxy shapes. The characteristic feature that we use is an unbiased estimator of the power spectrum for each
galaxy. The resulting method achieved the best score of () = 210.9 in the challenge.

Various modifications and extensions are possible that may lead to further improvements of spectral stacking. First,
We would like to mention that it can easily be modified to incorporate both Poisson and Gaussian noise. If the
smoothing kernel is changing from one galaxy to another, one could use an averaged smoothing kernel in the analysis.

Second, one could get rid of the ad hoc assumption of using only those pixels for the nonlinear least square min-
imization which are greater than a certain threshold. To this end, one can apply the inverse Fourier transform to the



power spectrum and reformulate the problem in that domain because there we know the range to which the nonlin-
ear least squares method has to be applied (see Fig. 2). After applying the inverse Fourier transform, the estimation
problem of (20) reads

f(z,y) = h(z,y) * g(z,y) +n(z,y), (24)

where f(x,y) and h(x, y) are the inverse Fourier transform of 25:1 Sk (wy, wy) and | H (wy, wy )|, respectively. Note
that g(x, y), the inverse Fourier transform of G(w,,wy ), is again an elliptically contoured function and one can use
the same parametric model as in (22). Because the inverse Fourier transform is a linear operator the noise is again
Gaussian. Therefore, the same nonlinear least square method can be used to search for the optimal shear parameters.

Another possible modification would be to use the square of the power spectrum (i.e. to choose p=4) as characteristic
feature of the galaxy images. For this feature an unbiased estimate is given by:

S(Wg, wy) = %S((,ugg,wy)2 - %Cz — CS(wg,wy) — %S(?wmﬂwy). (25)

Using 19 and A-1, it is straightforward to see that S (wz, wy) is an unbiased estimator of the square of power spectrum
T (wa, wy)[*:

B{S(waswy)} = %E{S(wx,wyf} _ %02 — CE{S(waywy)} — %E{S(Z,uz, 20,)} = | (weswy)[. (26)

It is an empirical question whether this feature would lead to better results.

Finally, one could replace the objective function of the nonlinear least squares method with a more principled
approach: Instead of minimizing (21) we are actually interested in minimizing the mean square error of the estimate
of the shear parameters which is reflected in Q (see (23)). To this end, one could use Bayesian sampling methods
instead of the nonlinear least square method in order to estimate the shear parameters under the true loss function.
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Appendix

We derive an unbiased estimator of the noise variance of 7(w,, w,) for the model given in (20). In [3] it has been
shown that the second moment of the estimator in (18) yields

E{S(we,wy)?} = 20| (we, wy) |2 + C2 + 2|1 (wa, wy)|* + |1 (204, 2w,) |2 (A-1)
Therefore, the variance of the estimator for the kth galaxy image reads:
Uk(wwva)z = E{Sk(wwva)2} - E{Sk(wwva)}z
- QCk"fT'k (wra wy)|2 + C}% + |j7’k (wiva)‘4 + ‘jm (2001, 2wy)|2~ (A'Z)
The total noise variance is the sum of the individual variances:
N N
U<wwva)2 = Z Uk(wa:,wy)Q = Z 2Ck |1, (wm,wy)|2 + CI% + |1, (wwva)|4 + |17, (2wz, 2wy)|2- (A-3)
k=1 k=1

From this we can derive that

N N N N

V(ws,wy) =1/2 " Sp(wa,wy)® +1/2) CR+ Y CrSk(we,wy) +1/2>  Si(2ws, 2wy) (A-4)
k=1 k=1 k=1 k=1

is an unbiased estimator of the noise variance since by taking the expectation of V' (w,w,) we find

N N N N
B{V(wa,wy)} = 1/2>  B{Sk(wa,wy)’} +1/2>  CR+ Y ChB{Sk(wr,wy)} +1/2>  E{Sk(2wa, 2w,)}
k=1 k=1 k=1 k=1
N ~ ~ ~
= Y 20k (War )P + CF 4 [T (W wy) [+ [, (200, 20 P = 0 (s ). (A-5)

k=1

Note that here we do not investigate the convergence rate of the estimator because this rate depends on the distribution
shape of the galaxies which is not known.



