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Motivation

e Analyze brain activity in natural, complex setting, to assess
natural processing

e Problem: natural stimuli data need labels - expensive and
time consuming

¢ Goal: use unlabeled data and labeled data (semi-supervised)
for dimensionality reduction and to better approximate
cortical activity

1 Methods and Materials

e {MRI data of one human volunteer during viewing of 2 movies.

e 350 time slices of 3-dimensional tMRI brain volumes acquired with
Siemens 3T TIM scanner, separated by 3.2 s (TR), with a spatial resolu-
tion of 3x3x3 mm.

e Pre-processed according to standard procedures using the Statistical
Parametric Mapping (SPM) toolbox [6].

e Labels: Continuous labels of one movie obtained via subjective ratings
averaged across an independent set of five human observers |2|:

- Human faces
- Color

- Human bodies

- Language
- Motion

2 Semi-Supervised Laplacian
Canonical Correlation Analysis

e Labeled fMRI data: {x1,...,x,}.
e Corresponding labels: {y1,...,yn}.
e Paired data (fMRI with labels): (z1,11), ..., (Zn, Yn).

e Additional unlabeled data: x,.1, ..., Typip,.

e Data matrices: X = (:1:1, . ,xn)T, Y = (ylp c . yyn)T
X = (aq,... ,an+px)T.
, | ~1/2 ~1/2
e Graph Laplacians [3]: L; =1 — D_..""K;;D...

for (Kiz)ij = exp <_Hxir_2xju2> and diagonal (Djz )i = Zmpx(K@ae)w -

)

(a) Labeled data

(b) Labeled and unlabeled data

Semi-Supervised CCA [4]

¢ Solve (e.g. as generalized eigenproblem):

X w,, Crywy (1)
max
wetty (Wl (O + Ri)wy)(wl(Cyy + Ry)wy)

with regularizers
Ri=eJ+vXL: X" and R, =¢,] +7,YLYT (2

e Finds projections that are smooth with respect to manifold
structures of X .Y instead of ambient spaces.
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3 Results

— ,
bxperiments:

e CCA with only Tikhonov regularization - labeled data only

e CCA with Tikhonov and Laplacian regularization - labeled data only

e Semi-supervised CCA with Tikhonov and Laplacian regularization -

labeled and unlabeled data

Mean holdout correlations from five-fold cross validation across |each of the
five] variables in all experiments.
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Visualization of learned weight vectors (w,) for color and face stimuli,
following [2].
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(¢) Semi-supervised CCA, Tikhonov and Laplacian regularization

4 Conclusions

e Semi-supervised Laplacian regularization framework consisently improves
performance of dimensionality reduction |7, 8, 9]

e Weights learned by (semi-supervised) CCA identify expected regions of
cortical activity |2]

e Semi-supervised learning allows the integration of unlabeled data in

supervised learning to improve results

e Current and future work [9]:

- Across-subjects comparisons

- Unlabeled data acquired during resting state
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