

Semi-supervised Analysis of Human fMRI Data

J. A. Shelton^{1,3}, M. B. Blaschko², C. H. Lampert¹, and A. Bartels^{1,3}

¹Max Planck Institute for Biological Cybernetics, ²University of Oxford, ³Universität Tübingen

Motivation

- Analyze brain activity in natural, complex setting, to assess natural processing
- Problem: natural stimuli data need labels expensive and time consuming

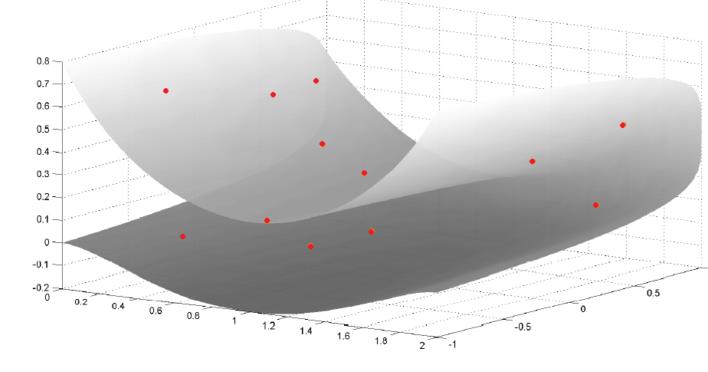
 Goal: use unlabeled data and labeled data (semi-supervised) for dimensionality reduction and to better approximate cortical activity

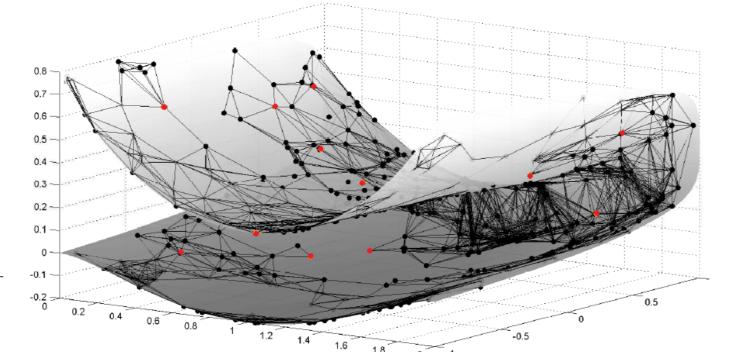
Methods and Materials

- fMRI data of one human volunteer during viewing of 2 movies.
- 350 time slices of 3-dimensional fMRI brain volumes acquired with Siemens 3T TIM scanner, separated by 3.2 s (TR), with a spatial resolution of 3x3x3 mm.
- Pre-processed according to standard procedures using the Statistical Parametric Mapping (SPM) toolbox [6].
- Labels: Continuous labels of one movie obtained via subjective ratings averaged across an independent set of five human observers |2|:
 - Human faces
 - Color
 - Human bodies
 - Language
 - Motion

Semi-Supervised Laplacian Regularization **Canonical Correlation Analysis**

- Labeled fMRI data: $\{x_1, \ldots, x_n\}$.
- Corresponding labels: $\{y_1, \ldots, y_n\}$.
- Paired data (fMRI with labels): $(x_1, y_1), \ldots, (x_n, y_n)$.
- Additional unlabeled data: $x_{n+1}, \ldots, x_{n+p_r}$.
- Data matrices: $X = (x_1, \dots, x_n)^T$, $Y = (y_1, \dots, y_n)^T$, $\hat{X} = (x_1, \dots, x_{n+p_x})^T$.
- Graph Laplacians [3]: $\mathcal{L}_{\hat{x}} = I D_{\hat{x}\hat{x}}^{-1/2} K_{\hat{x}\hat{x}} D_{\hat{x}\hat{x}}^{-1/2}$ for $(K_{\hat{x}\hat{x}})_{ij} = \exp\left(\frac{-\|x_i - x_j\|^2}{\sigma^2}\right)$ and diagonal $(D_{\hat{x}\hat{x}})_{ii} = \sum_{j=1}^{n+p_x} (K_{\hat{x}\hat{x}})_{ij}$.





(a) Labeled data

(b) Labeled and unlabeled data

Semi-Supervised CCA [4]

Solve (e.g. as generalized eigenproblem):

$$\max_{w_x, w_y} \frac{w_x^T C_{xy} w_y}{\sqrt{(w_x^T (C_{xx} + R_{\hat{x}}) w_x)(w_y^T (C_{yy} + R_y) w_y)}}$$
(1)

with regularizers

$$R_{\hat{x}} = \epsilon_x I + \gamma_x \hat{X} \mathcal{L}_{\hat{x}} \hat{X}^T \text{ and } R_u = \epsilon_u I + \gamma_u Y \mathcal{L}_u Y^T$$
 (2)

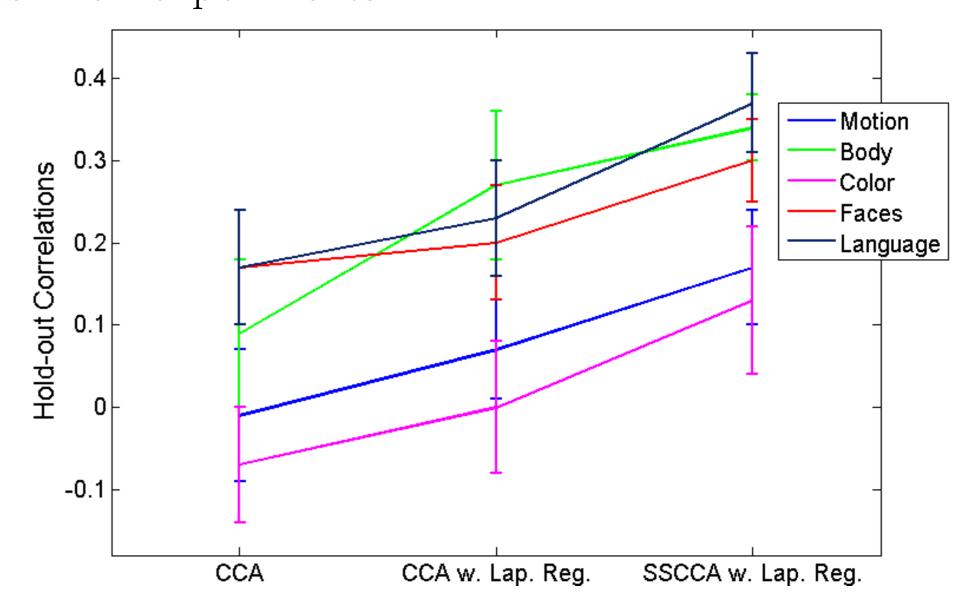
• Finds projections that are smooth with respect to manifold structures of \hat{X}, Y instead of ambient spaces.

Results

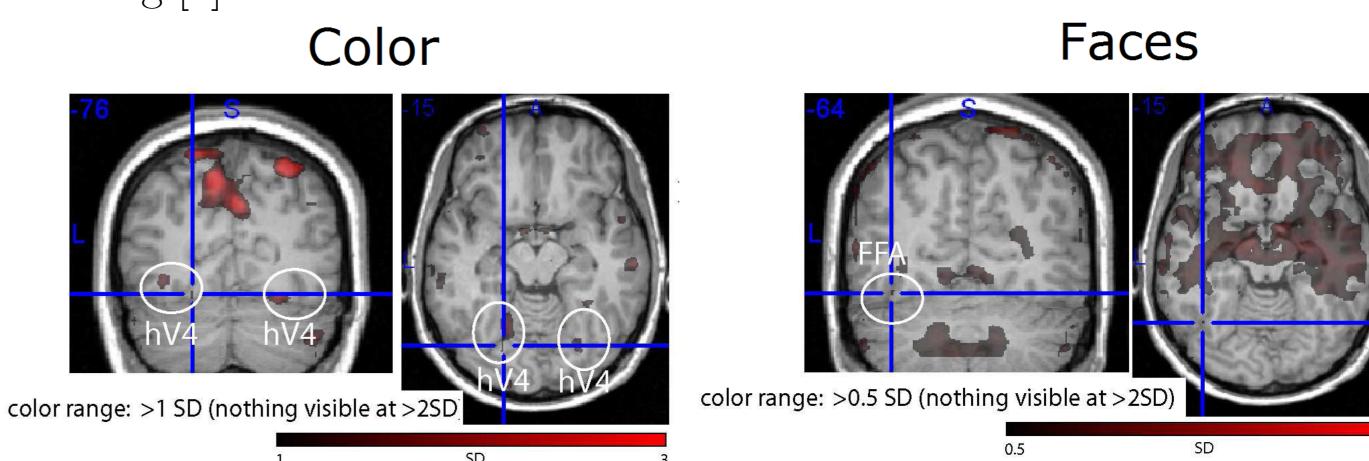
Experiments:

- CCA with only Tikhonov regularization labeled data only
- CCA with Tikhonov and Laplacian regularization labeled data only
- Semi-supervised CCA with Tikhonov and Laplacian regularization labeled and unlabeled data

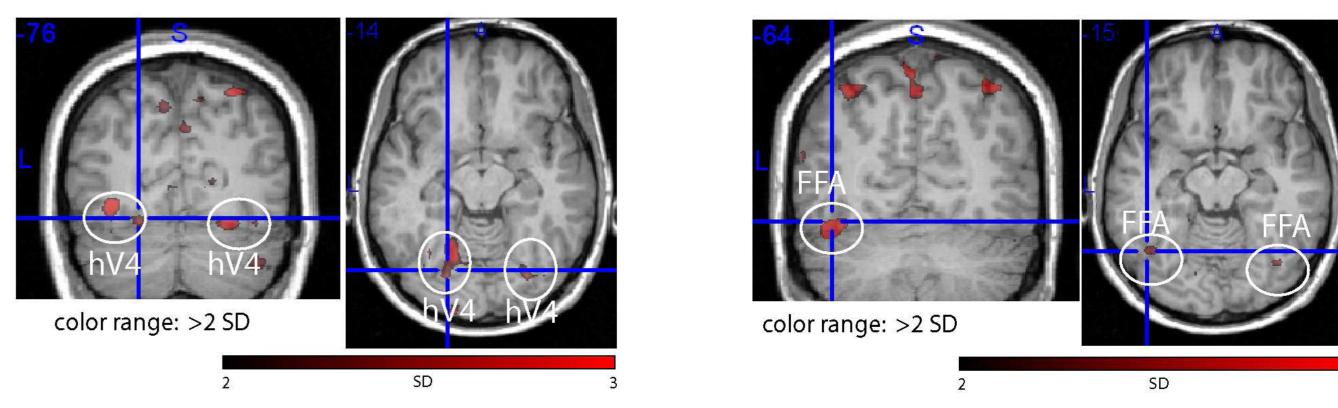
Mean holdout correlations from five-fold cross validation across each of the five variables in all experiments.



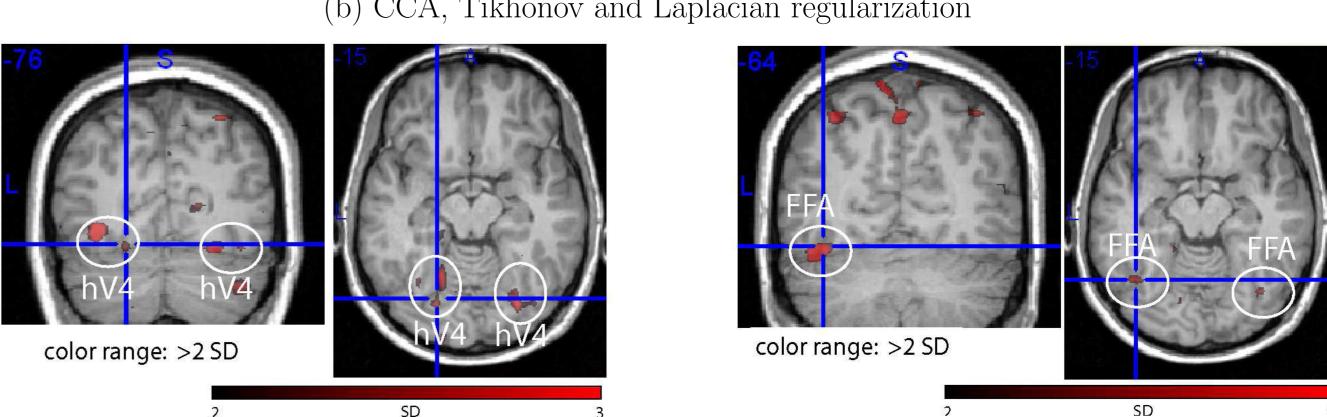
Visualization of learned weight vectors (w_x) for color and face stimuli, following [2].



(a) CCA, Tikhonov regularization



(b) CCA, Tikhonov and Laplacian regularization



(c) Semi-supervised CCA, Tikhonov and Laplacian regularization

Conclusions

- Semi-supervised Laplacian regularization framework consisently improves performance of dimensionality reduction [7, 8, 9]
- Weights learned by (semi-supervised) CCA identify expected regions of cortical activity [2]
- Semi-supervised learning allows the integration of unlabeled data in supervised learning to improve results
- Current and future work [9]:
 - Across-subjects comparisons
 - Unlabeled data acquired during resting state

References

16, (12), 2639-2664.

- [1] Bartels, A., Zeki, S., and Logothetis, N. K. (2008). Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 18:705-717.
- [2] Bartels, A., Zeki, S. (2004). The chronoarchitecture of the human brain natural viewing conditions reveal a time-based anatomy of the brain. NeuroImage 22:419-433.
- [3] Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. JMLR (2006)
- [4] Blaschko, M.B., Lampert, C.H., Gretton, A. (2008). Semi-supervised Laplacian Regularization of Kernel Canonical Correlation Analysis. ECML [5] Hardoon, D. R., S. Szedmak and J. Shawe-Taylor. (2004). "Canonical Correlation Analysis: An Overview with Application to Learning Methods," Neural Computation,
- [6] Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (Eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images, Academic Press (2007) [7] Shelton, J., Blaschko, M., and Bartels, A. (2008). Semi-supervised subspace analysis of human functional magnetic resonance imaging data, Max Planck Institute Tech Report, (185) (05 2009)
- [8] Blaschko, M., Shelton, J., Bartels, A., Lampert, C., H., and Gretton, A. (submitted) Semi-supervised Kernel Canonical Correlation Analysis with Application to human fMRI. Neurocomputing.
- [9] Blaschko, M., Shelton, J., and Bartels, A. (submitted) Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity. NIPS.