
Varieties of Justification in Machine Learning

David Corfield

September 4, 2008

Abstract

Forms of justification for inductive machine learning techniques are dis-

cussed and classified into four types. This is done with a view to introduce

some of these techniques and their justificatory guarantees to the atten-

tion of philosophers, and to initiate a discussion as to whether they must

be treated separately or rather can be viewed consistently from within a

single framework.

1 Introduction

It is common for philosophers once they have adopted a favourite mode of
justifying inductive practices to hold it as being uniquely correct. Practitioners
of machine learning, on the other hand, tend to be open to a range of such
justifications, considering the breadth of this range to be a sign of the robustness
of their inductive method. Taken together they present philosophers with an
excellent opportunity to explore whether one position can make best sense of
them all, or whether a pragmatic pluralism is called for.

In this paper I would like to present a way to classify such justifications into
four varieties. Two of these four, ESTIMATE and BOUND, may be described
as dealing with ‘absolute’ performance, in the sense that they indicate how
accurately a learning device will perform in the future. Since we know that
without making presuppositions about the world we can say nothing about the
absolute future performance of an inductive device, what we must do then is
embody some presuppositions in the inductive bias of the device, which we then
employ to justify its output. By contrast, the other two forms of justification,
RELATIVE and CONSISTENT, deal with the relative performance of a device
compared, in the former case, to a given set of other devices, and in the latter,
to other ways the same device might function.

Here then are the four forms I shall consider:
(ESTIMATE) Under the assumption that the world provides you with an

independent and identically distributed sample from an unknown distribution,
you can give an unbiased estimate of the generalisation error of the trained
algorithm.

(BOUND) Under the assumption that the world provides you with an in-
dependent and identically distributed sample from an unknown distribution,
you can give probabilistic bounds for the generalisation error of the trained
algorithm in terms of its performance on a training set.

1

(RELATIVE) With no assumptions about the data generating process, you
can bound online inaccuracy in terms of the error rate of the best of a specified
set of competitors chosen with hindsight.

(CONSISTENT) The method is the only consistent scheme of inference in
relation to your state of knowledge. If you behave otherwise, and you are act-
ing consistently, it must be that your beliefs have been changed by extraneous
factors.

I shall discuss the use of these criteria largely in relation to one of the sim-
plest inductive tasks, that of binary classification. Assume that we are looking
to find a classifier on a space X , a function which when presented with an el-
ement of X outputs either +1 or −1. For example, X could be the set of all
30 × 30 pixellated grayscale images. We also assume that there is a fixed un-
known distribution over X × {+1,−1}. This might represent, for example, a
population of images of handwritten 3s and 5s. Then an algorithm is given a
sample from this population, called the training data. By means of this, it will
yield a function to classify unseen data, perhaps through the intermediary of a
probability function, so f(x) = +1 if p(x) ≥ 0.5, f(x) = −1 otherwise. We can
then test this function by seeing how accurately it classifies data from another
sample, the test data.

In this paper I shall use the opportunity of discussing justication criteria
to highlight some notable discoveries made in machine learning, in particular I
shall pay attention to so-called ‘kernel’ methods, which have come to dominate
a large part of the field over the past 15 years. These methods involve the
selection of a classifier from a very rich collection of functions, requiring that a
means to regularise the choice be found to prevent overfitting.

2 ESTIMATE

ESTIMATE and BOUND are most often appealed to, especially by non-Bayesians,
although it is possible to give them a Bayesian gloss. We can quickly deal with
this first type of justification, the main example of which is the widely used
cross-validation (CV). For example, in LOO (leave one out)-CV, we take each
data point of the training sample in turn, train our algorithm on the remainder
of the points, and then compute the prediction of our trained algorithm on the
missing point. We can then compare this prediction with the true label. The
error rate for these predictions is an almost unbiased estimator of the general-
isation error, that is, the misclassification rate of the algorithm trained on all
the data relative to the unknown distribution generating the data, a result due
to Luntz and Brailovsky (See Vapnik 1998).

Cross-validation can be, and commonly is, used to select algorithm param-
eters. It appears to bear characteristics of frequentist ways of operating, but
it is also used by Bayesians as a short-cut when the calculations involved in
marginalising over parameter values is intractable or too costly. I am unaware
of any analysis having been done, but it it is not hard to imagine that certain
conditions of ignorance would imply that parameter values for which the cross
validation score is highest correspond to the maximum of the posterior distri-
bution on these parameters. A Bayesian might also think to use this technique
to check on the plausibility of her model. Often, for reasons of tractability, she
must use a model which does not fully capture her prior beliefs. Cross-validation

2

can then provide assurance that she has not strayed too far from these beliefs.

3 BOUND

A key notion in the field of machine learning is that if the function space from
which the classifier is selected is very rich, then we risk overfitting. Imagine a
collection of points in a plane, some coloured red, some blue. If I am allowed
total freedom, of course I can draw a curve, however jagged, which separates
the data perfectly, so that all red points fall on one side of the line and all blue
points fall on the other. But I shall not expect this curve to perform well at
separating the unseen test data. In other words, I cannot expect the true error
rate to be close to the training error rate, zero in this case. What the BOUND
form of justification seeks to achieve is a probablistic guarantee of the difference
between the training error and the true error rates.

We shall need then to say something about the ‘capacity’ of the set of func-
tions to make discriminations. One way goes via the Vapnik-Chervonenkis di-
mension, or VC-dimension. The VC-dimension of a set of classifying hypotheses
is the largest natural number, n, such that there is a set of n points, for which
however they are labelled + or −, there is a hypothesis which agrees with this
labelling. The set of points is said to be ‘shattered’ by the hypothesis class. For
example, the set of half-planes has VC-dimension three because any set of three
non-collinear points is shattered by these classifiers, while any set of four points
is not shatterable by the same class. Arranged in a square, labelling diagonally
opposite points the same prevents separation. In general, the set of hyperplanes
in a d dimensional space has VC-dimension d + 1. On the other hand, the class
of convex polygons has infinite VC-dimension, since for any number of points
on the circumference of a circle, however they are labelled, it is possible to draw
a polygon to separate them.

With this dimension in hand we can now derive what are called PAC results,
where PAC stands for probably approximately correct. For a class of classifiers
or hypotheses H , then for any h in H , with probability at least (1 − δ),

errortrue(h) < errortrain(h) +
V C(H)(ln 2m

V C(H) + 1) + ln 4
δ

m
.

This result rests on the assumption that the training data is an independent and
identically distributed sample from the target distribution. Of course, we may
wonder how reasonable this assumption is. If I have trained a digit classifier on
digits written by people in one time and place, I should expect it to do less well
elsewhere and at other times. An obvious reason might be that 7s are written
with a bar across them in France but not in the UK.

We should also note that this result has the flavour of a confidence interval,
with its less than straightforward interpretation. Just because we have a training
error of, say, 2%, and the second and third terms of the right hand side amount
to, say, 3%, for δ = 1%, does not mean we should say we’re 99% certain that the
true error is less than 5%. It is quite possible that the gap between training and
true errors might be correlated with the training error, so that only when the
training error is away from zero is the error gap small. On the other hand, one
might argue that without evidence to the contrary it is reasonable to assume
no correlation.

3

So-called ‘empirical risk minimization’ has us merely choose h from a given
H with the smallest training error. A Bayesian might again point to some
ignorance conditions (see Minka 2001) which make this a reasonable thing to
do. But we can also use the PAC theorem in a more interesting way to select the
hypothesis class H itself, by employing ‘structural risk minimization’. Imagine
we have a chain of hypotheses classes, Hi, of increasing VC-dimension. Then
we can find the class and the classifier within that class which minimises the
right hand side of the bound.

Min{h,Hi:h∈Hi}(errortrain(h) +
V C(H)(ln 2m

V C(H) + 1) + ln 4
δ

m
).

In practice, the PAC bound is usually rather loose, and we may have reason to
doubt that a minimum will correspond to the best classifier.

Structural Risk Minimization is an instance of a general scheme where an
algorithm minimises an objective function made up of an inaccuracy term and
a regularization term to penalise complicated hypotheses:

Loss + Penalty = Badness of fit + Complexity of classifier class

4 Kernels

Now, one of the biggest events to happen in machine learning over the past
decade and a half has been the introduction of ‘kernel methods’. Such are the
advantages of working with linear algebra that we don’t mind mapping our data
into a potentially very high, or even infinite, dimensional space, so long as we
can cast our algorithm there in linear algebra terms. We may choose to do this
even if our data domain is a vector space already.

We do this by mapping our space X into what is called a reproducing kernel
Hilbert space, where the size of the inner product in the latter will reflect how
‘similar’ are the points in X . This is done by means of a kernel. A kernel
on a set X is a function K : X × X → R, which is symmetric and positive
definite, in the sense that for any N ≥ 1 and any x1, ..., xN ∈ X , the matrix
Kij = K(xi, xj) is positive definite, i.e.,

∑

i,j cicjKij ≥ 0 for all c1, ..., cN ∈ R.
(Complex-valued kernels are possible.)

Another way of looking at this situation is to reformulate it as a mapping
φ : X → H , where H is a reproducing kernel Hilbert space, a function space in
which pointwise evaluation is a continuous linear functional. The ‘kernel’ and
‘feature map to Hilbert space’ stories relate to each other as follows: K(x, .) =
φ(x). The reproducing aspect of H means that 〈f(.), K(x, .)〉 = f(x), and this
is continuous. So we have K(x, y) = 〈φ(x), φ(y)〉.

H is the span of the set of functions {K(x, .)|x ∈ X}, and, under certain
conditions, when we find the f ∈ H for which a functional is minimised, it takes
the form

f(x) =

m
∑

i=1

ciK(xi, x).

The xi are the support vectors. Ideally the number of these would be low, so that
the majority of the information in the training set labels is encoded efficiently.

4

An unlabelled data point is now classified by a kind of weighted sum of votes
from the support vectors, those very close to the point, according to the kernel,
having the largest say. The classification boundary in X is curved, while its
image in H is a hyperplane. Many linear algebra techniques in H just involve
the inner product, allowing the performance of a form of nonlinear algebra back
in X .

Consider binary classification again. The support vector machine approach
to this task looks to find the hyperplane in H which best separates the images
of data points φ(xi), so that those with the same label (yi) fall in the same
half space. In view of the PAC result mentioned in the previous section, it
may appear strange to be mapping to a higher-dimensional space, where linear
classifiers will have high or infinite VC-dimension. One solution is to control
for overfitting by finding such a hyperplane that classifies the training data
accurately with the largest perpendicular distance, or margin, to the nearest of
them (the support vectors). The support vector machine (SVM) does precisely
this, and as such it is known as a maximum-margin classifier. Now, the VC-
dimension of classifiers whose margin is greater than a given value is finite,
although data dependent. However, a PAC result is still possible.

Kernels, which characterise the similarity of the input set, are key to the
SVM approach. But how do they get chosen? A common choice is the Gaussian
radial-basis function (RBF) kernel:

K(x, y) = (4πt)−n/2exp

(

−
‖x − y‖2

4t

)

,

even though this can lead to an odd notion of similarity. Consider again hand-
written digits, pixellated 30 × 30 so that their grayscale values form a vector
in R

900. The image of a ‘1’ shifted a couple of pixels to the right will appear
very different in this representation. The classifying algorithm is not fed any
information to let it know that it ought to classify the shifted image as the same
digit. However, if it is trained on sufficient data this may well not matter since
there will be a training example ‘close enough’ to allow for correct classification.

This does seem wasteful, though, of useful background knowledge. Indeed,
you can see that if you operate on the training images with the same permutation
of the 900 pixels, it makes no difference to the SVM, even though it makes
an easy task much more difficult for a human. One way of exploiting this
background knowledge is to train a support vector machine with the given data,
find the support vectors, then use translations of them as new ‘virtual’ data.
This does have the effect of producing a more accurate classifier, but is seen by
some as ad hoc. Ideally, the expected invariances would be encapsulated in the
kernel.

A second very import motivation for the use of kernels is that they al-
low us to work with non-vectorial data, for instance strings, trees or graphs.
Much information gathered today is encoded in these forms. For example, bio-
chemists have produced vast amounts of data concerning protein sequences and
the functions they perform. In the case of protein sequences of a given length
(AGTTGACAG, GCTTGACTC,...) we might consider a kernel which counts as
similar strings containing long identical substrings. The use of kernel methods
in bioinformatics is a burgeoning field of application (see Schölkopf et al., 2004).

5

5 Bayesian Machine Learning

Now where are the Bayesians in all this? Rather than merely classifying an ob-
ject, surely it would be better if we were to give an assessment of the probability
of each label. Well, attempts have been made to give SVMs a probabilistic inter-
pretation, but the consensus is that these are contrived. More evidence of this
incompatibility comes from the fact that we can also view trained SVMs as suc-
cessfully compressing the training data, since the support vectors largely carry
the information of the training sample, and the number of these vectors may
be considerably lower than the sample size. But then theoretical work shows
that “sparseness and the ability to estimate conditional probabilities seem to be
incompatible.” (Bartlett, Jordan, McAuliffe 2006). If you don’t wish to bear
the cost of computing the full probability distribution, you must find a way
to ignore some of the training data. However, there are ways of treading this
balance which are more acceptable to the Bayesian.

Some have questioned the need to compute the full probability distribution.
One argument relies on a translation between probabilities and energy levels.
In statistical mechanics the Gibbs distribution is used to assign a probability
distribution to a collection of states and their energy levels. P (x) = 1

Z e−βE(x),

where Z =
∫

ddxµ(x)e−βE(x)

∫

ddxµ(x)
, and β = 1/T , the inverse of the temperature. So

we can pass in both directions between relative probabilities and normalisable
energies of states. In the machine learning setting, the states correspond to the
parameter values of the algorithm, for example, the weights of a neural network.
Several ideas from statistical mechanics have found uses in machine learning.
However, Yann LeCun et al. (2006) argue that in light of this translation we can
see that thinking in terms of energies is more flexible than confining ourselves to
probabilities. For one thing, it is possible to use unnormalised energies, which
may make calculations tractable. Moreover, if you are not going to treat the
whole space of states, but rather just concentrate on the region of states of
least energy, that is, those closely competing with the optimal setting at a given
stage, then there is no need to bear the full computational burden of performing
calculations over the full space of states. Furthermore, some unnormalisable
energy functions are very useful.

What of the Bayesian use of kernels? Introduced a little after SVMs hit the
scene, Bayesians found a similar resource in Gaussian processes, inviting the
charge that they had copied the SVM use of kernels. The Bayesian account of
this discovery runs differently, however, as they point to an independent source
of inspiration. It seems that people working on neural networks had found that
it is very difficult to train a many layered network. Typically one hidden layer
was doing most of the work. It was observed that in the limit of making this
single layer large (with certain conditions on the connection strengths), you end
up with a Gaussian Process (Rasmussen and Williams, 2006).

A Gaussian Process on X is a set of real-valued random variables on X , all
finite subsets of which have (consistent) Gaussian distributions:

f = (f1, ..., fn)T ∼ N(µ, Σ),

where Σ is the covariance matrix. It can also be thought of as a distribution
over functions on X , favouring those with certain qualities, e.g., smoothness.
f(x) ∼ GP (m(x), k(x, x′)). The Bayesian may be said to be regularizing by her

6

choice of prior.
In the case of classification, one is looking to find the posterior distribution

of the value of functions on X evaluated at a test point, after conditioning on
the training sample.

p(f∗|x,y, x∗) =

∫

p(f∗|x,y, f)p(f |x,y)df.

This value is then scaled to give a probability. Unfortunately, whereas in the
case of regression the relevant integral is Gaussian, this is no longer the case
for classification. However, one may find a Gaussian process which best fits the
maximum a posteriori solution, by using the Laplace approximation. A more
adequate Bayesian approximation, one defined not in terms of the mode of the
posterior but rather the mean, is to find a Gaussian process which matches the
first two moments of the posterior distribution. This process is known as the
Expectation Propagation (EP) algorithm.

Now, we can find a bayesian form of ESTIMATE which can be used for
Gaussian process classification, known as the PAC-Bayesian theorem. We begin
with a prior distribution over parameter values, P (w). After training on a
sample of size m, we arrive at a posterior distribution Q(w). Now for any
choice of P and Q, and for any δ, then with probability at least (1− δ) over the
choice of S ∼ Dm,

KLB(l(Q, S)||l(Q, D)) ≤
KL(Q||P)+log m+1

δ

m ,

where KL(.||.) is the Kullback-Leibler divergence and l(Q, S) is the expected
misclassification rate on the sample relative to distribution Q, while l(Q, D) is
the expected misclassification rate on the true distribution.

We can interpret this result by imagining that we are dealing with a collection
of experts labelled by the w. We begin with P a probability distribution over
the experts. After seeing the training data, we choose Q, a new distribution
over experts. We choose our Q so that on average our experts have classified
the sample well. Then we have a probabilistic bound for the divergence of their
average true error rates from what they achieved on the training sample. The
bound includes the term KL(Q||P) which penalizes you for how picky you have
been in your choice of experts. This will be large if you opted for a very narrow
range of experts. If on the other hand, you could keep reasonably close to
the original distribution P while remaining reasonably accurate on the training
sample, then the bound will be tighter.

Now, one might object to this result that it is rather odd to have a Bayesian
result rely on what looks like a frequentist interpretation of probability theory.
Here, we imagine a long sequence of attempts to calculate the difference between
test and training error, we would find that in x% of samples the gap between
expected sample error and expected true error is less than y%. But again, it
seems likely that some conditions of ignorance would allow us to say that in any
single instance of this training one’s degree of belief in a error gap less than y%,
should be at least x%. This ignorance would relate to the possible correlation
between errors terms.

Most applications of ESTIMATE bounds to practical situations are very
loose, indeed they are often vacuous, only telling us with high certainty that the
generalisation error will be less than some figure over, say, 30%, sometimes even

7

100%. However, Seeger using Gaussian Process Classification on the MNIST
handwritten digit set, and training on a sample of 5000 digits, arrived at the
following result:

empirical error 1.87%
generalization error 1.95%

upper bound 7.6%
δ = 1%.

This is a startling result in view of the much larger amount of data that would
have been necessary to achieve a similar result using the PAC-theorem, more
data than it is possible to handle with present day machines.

6 RELATIVE

Here the idea is that we guarantee the performance of our inductive procedure
by bounding the gap between its performance and that of the best of a set
of competitors chosen with hindsight. Imagine we are fed data one point at
a time. On the basis of information we have seen, we must estimate a certain
quantity relating to the next unlabelled data point, such as the probability of its
label. We are given a penalty according to our inaccuracy. If we adopt certain
strategies, we can show that, whatever the data, our average penalty per data
point will only exceed that of the best of a set of competitors, as selected after
seeing all the data at once, by at most a specified amount. This amount tends
to zero as the sample size increases. In many cases, Bayesian strategies fall into
this category. (See Grunwald 2007.)

An example using Gaussian processes, which holds for regression as well
as classification, is as follows. The penalty for a probabilistic estimate is the
negative log likelihood of the correct value. So, for example, if we think a
certain label is unlikely and we are wrong, we receive a large penalty. Now, we
can compare the penalty for Bayesian online decision making with the penalty
for a classifier chosen from a competitor set, after the input sequence has been
given:

−logPbs(y≤n|x≤n) ≤ −logP (y≤n|f, x≤n) +
1

2
||f ||2K +

1

2
log|I + cK|

where Pbs is the Bayesian Gaussian Process prediction method, and f is any
function from the Hilbert space associated with the kernel K. c is a constant
which depends on K.

In other words, for any function, f , from the Gaussian process, our Bayesian
total penalty is bounded by the sum of the penalty earned by that function, a
term relating to the prior of the Gaussian process at f , and a constant term
which depends on the kernel. It can be shown that the radial-basis function
kernel has good properties in this last regard. Only the first term on the right
hand side depends on n, so for given f , the average penalty per data point of
the Bayesian strategy will exceed that of f by at most a quantity which tends
to 0 as n grows large.

8

7 CONSISTENT

While the Bayesian may be pleased to find support for her methods from RELA-
TIVE, their justification type of first resort is CONSISTENT. Here the advocate
of a piece of inductive reasoning makes the claim that in view of what they know
and learn, it is the only consistent way to reason. Bayesians commonly appeal
to this type of justification through a variety of representation theorems which
assume that beliefs can be represented as probability distributions. For ex-
ample, de Finetti’s result for exchangeable sequences, ones for which permuted
sequences are seen as equiprobable, tells us that in the case of a binary sequence
our beliefs can be represented as a distribution over p in [0, 1], which is updated
by conditioning on the numbers of 0s and 1s seen. If you do not act in this
way, it must be that you did not wholly hold with exchangeability. Perhaps
you had reserved some of your belief for the possibility of sequences where the
generating mechanism changes the chance of a 0 appearing along the sequence.
After a long series of 1s followed by a long series of 0s, this belief may start to
dominate.

A more general, but less known, result of this form runs as follows (see
Snoussi and Mohammad-Djafari 2002): my task is to find the best estimator
taking values in a class of probability distributions over a space Z, based on a
sample from Z. Best is meant here in the sense of a least ‘distance’ from the
true distribution to my estimate, the distance often being the Kullback-Leibler
divergence. Now, there’s no reason I shouldn’t be able to describe my estimator
before I see any data, in other words my state of belief should tell me how I’ll
act whatever data I meet with. So let τ be my estimator, taking any finite set
of data to a probability distribution. Then define the generalisation error for
this estimator as follows:

E(τ) =
∫

p
P (p)

∫

z
P (z|p)D(p, τ(z)),

where D(p, .) is the cost of misspecifying the true distribution p. As you can see,
this quantity is what you expect your loss to be, based on your belief about the
true distribution p. What we seek is an estimator which minimises this expected
error. Snoussi and Mohammead-Djafari explain (p. 312) how, in the case where
D is the Kullback-Leibler divergence, the best estimator is the function which
sends z to

∫

pP (p|z), the mean of the posterior distribution. This shows the
coherence of the Bayesian approach. The idea then is, if you do not behave in
a Bayesian way here, either not all relevant beliefs were encoded in your prior,
or you received extraneous information, or you are behaving inconsistently with
respect to the cost of misspecification.

More broadly yet, very many machine learning algorithms can be conceived
as forms of maximum entropy reasoning under constraints. Some so-called ‘ob-
jective’ Bayesians consider this way of construing their reasoning as the best
justification of their practice. (See, for example, Williamson 2007.) As men-
tioned earlier, however, frequently the Bayesian is not able properly to reflect
her beliefs, due perhaps to issues of tractability or when no kernel can be devised
which respects background knowledge. Techniques associated with other forms
of justification, such as cross validation, may then be required for pragmatic
reasons.

9

8 Conclusion

I have given outlines of four kinds of justification offered by machine learning
theorists for their inductive algorithms. Many practitioners appear content to
adopt a pluralistic attitude. But I believe it would be very worthwhile to probe
their mutual coherence. I have given some indications that, if anyone can unify
them within a single framework, it is the Bayesian camp. The ESTIMATE and
BOUND type results admittedly have a classical flavour to them, but it would
appear quite possible to interpret them in a Bayesian light, with a reasonable
understanding of an agent’s state of ignorance.

Some philosophers may see simple binary classification tasks as lacking the
richness necessary to be able illuminate the most important aspects of inductive
practice as takes place in a mature natural science. Be that as it may, I be-
lieve that there is sufficient complexity to warrant the devoting of philosophical
attention to the wide range of types of justification used in machine learning
today. Some interest has been shown in the VC-dimension and its use in PAC
results, notably by Gilbert Harman, but for the most part the field remains
largely unexplored. In particular, there is important work to be done in fur-
ther understanding the relationship between minimum description length and
Bayesian approaches, and in examining the idea that many machine learning
techniques are forms of maximum entropy reasoning.

9 Bibliography

P. Bartlett, M. Jordan, J. McAuliffe, Comment on ‘Support vector machines
with applications’, Statistical Science, 21, 341-346, 2006.
P. Grunwald, The Minimum Description Length Principle, MIT Press 2007.
Y. LeCun et al., ‘A Tutorial on Energy-Based Learning’,
http://yann.lecun.com/exdb/publis/index.html#lecun-06, 2006.
T. Minka, Empirical Risk Minimization is an Incomplete Inductive Principle,
http://research.microsoft.com/ minka/papers/minka-erm.pdf, 2001.
Carl Rasmussen and Chris Williams, Gaussian Processes for Machine Learning,
MIT Press, 2006.
Bernhard Schölkopf, Koji Tsuda and Jean-Philippe Vert (eds.), Kernel Methods
in Computational Biology, MIT Press 2004.
H. Snoussi and A. Mohammad-Djafari ‘Information geometry and Prior Selec-
tion.’, in Bayesian Inference and Maximum Entropy Methods. MaxEnt Work-
shops, Aug. 2002, pp 307–327.
V. Vapnik, Statistical Learning Theory, Wiley 1998.
J. Williamson, ‘Philosophies of probability: objective Bayesianism and its chal-
lenges’. In Irvine, A., editor, Handbook of the philosophy of mathematics.
Elsevier, Amsterdam. Handbook of the Philosophy of Science volume 4, 2007.

10

