Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Semi-supervised subspace analysis of human functional magnetic resonance imaging data

MPG-Autoren
/persons/resource/persons84215

Shelton,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83816

Blaschko,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83797

Bartels,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MPIK-TR-185.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shelton, J., Blaschko, M., & Bartels, A.(2009). Semi-supervised subspace analysis of human functional magnetic resonance imaging data (185). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C509-D
Zusammenfassung
Kernel Canonical Correlation Analysis is a very general technique for subspace learning that incorporates
PCA and LDA as special cases. Functional magnetic resonance imaging (fMRI) acquired data is naturally
amenable to these techniques as data are well aligned. fMRI data of the human brain is a particularly interesting
candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human
fMRI data, with regression to single- and multi-variate labels (corresponding to video content subjects viewed
during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better
than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze
the weights learned by the regression in order to infer brain regions that are important to different types of visual
processing.