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The effect of pairwise neural correlations on global
population statistics

Jakob H. Macke1,Manfred Opper2, Matthias Bethge1

Abstract. Simultaneously recorded neurons often exhibit correlations in their spiking activity. These cor-
relations shape the statistical structure of the population activity, and can lead to substantial redundancy across
neurons. Here, we study the effect of pairwise correlations on the population spike count statistics and redundancy
in populations of threshold-neurons in which response-correlations arise from correlated Gaussian inputs. We in-
vestigate the scaling of the redundancy as the population size is increased, and compare the asymptotic redundancy
in our models to the corresponding maximum- and minimum entropy models.

1 Introduction
Finding suitable models for capturing the statistical structure of firing patterns distributed across multiple neurons
is a major challenge in sensory neuroscience, and a prerequisite for understanding population codes. Recently,
the Ising model [1], originally introduced by Ising in 1925 to understand ferromagnetism, has become popular for
studying the statistical structure of neural activity recorded simultaneously from large populations of neurons [2, 3].
The use of the Ising model for neural data analysis originates from the fact that it constitutes the optimum with
respect to the maximum entropy (MaxEnt) rationale [4]. These studies have raised the question of the importance
of higher-order correlations in binarized spike trains, and how the joint entropy of neural populations scales with
population size [5].

The Dichotomized Gaussian distribution (DG) constitutes an alternative model for correlated binary patterns
[6]. In this model, binary patterns are thought of being generated by thresholding a multivariate Gaussian random
variable, and correlations between neurons arise from the correlations in the underlying Gaussian. The DG can
be interpreted as a phenomenological model of how correlations in the inputs to threshold-neurons shape the
distribution of spike-counts in the population [7]. In contrast to maximum entropy models [8], the DG is easily fit
even to large population sizes, and it is possible to generate exact samples via sampling from the latent Gaussian.

Bethge and Berens [9] used the DG to model the statistics of symmetrically thresholded natural images, and
empirically found very small entropy-differences between the DG and Ising model on small images. However,
the properties of the DG for large populations have not been characterized analytically yet. Here, we investigate
whether this close match between the two models persist for large populations of neurons, and across all possible
firing rates µ and pairwise correlation coefficients ρ. For simplicity, we focus on models with exchangeable
correlation structure, i.e. with constant firing rates and pairwise correlations for all neurons.

We present a derivation of the spike-count distribution of the DG, from which one can calculate its entropy
rate and characterize its phase-transitions. We generalize these results to models consisting of a finite number of
homogeneous pools, with correlations both within and across pools. In addition, we show how the model can be
generalized to common input models with arbitary input distributions, and to neurons which are not necessarily
simple threshold devices. Finally, we derive the minimum entropy distribution (MinEnt) for given first and second
moments. The entropy difference between the MaxEnt and MinEnt models determine to what extent the entropy
is constrained by pairwise correlations.

In this technical report, we aimed to present a very detailed and rigorous derivation of all relevant results, at
the cost of having to sacrifice readability and smoothness of exposition. Motivations, a more stringent exposition,
explanation and interpretation of results, and conclusions will be given elsewhere.
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2 The Dichotomized Gaussian: A common input model for binary neurons

2.1 The Dichotomized Gaussian

We want to model a multivariate, n-dimensional binary random variable X ∈ {0, 1}n with mean µ and covariance
matrix Σ. In the DG, samples from X are constructed by generating samples from a Normal random variable Z
with mean γ and covariance Λ, and binarizing it at 0, i. e. setting Xi = 1 iff Zi > 0. For X to have the desired
moments µ and Σ, we choose γ and Λ such that

Λii = 1, µi = Φ(γi) (1)
Σij = Φ2(γi, γj ,Λij)− Φ(γi)Φ(γj). (2)

Here, Φ(.) is the cumulative distribution function (cdf) of a univariate Gaussian, and Φ2(., ., λ) the cdf of a bivariate
Gausssian with unit variances and correlation coefficient λ. Equation (2) has a unique solution for any admissible
moments µ and Σ, and can be solved numerically. In the special case of µi = µj = 1/2, Λij = sin(2πΣij).

Fitting the parameters via equations (2) is easy, and possible even for large population sizes n. As samples
from multivariate Gaussians can also be obtained in a straightforward manner, the Dichotomized Gaussian can be
used as an efficient tool for generating binary random variables with specified second order correlation structure
[10, 11]. For alternative methods, see [12, 13, 14, 15]. We here do not consider temporal correlations or point
process models of spiking in continuous time. Other studies [16, 17] have used doubly-stochastic processes with
Gaussian process rate functions to generate spike trains with controlled correlation structure in continuous time.

A) B)

+

+

+

+

spikestresholdingindependent
noise

common input
(1,1)(0,1)

(1,0)(0,0)

Figure 1: Dichotomized Gaussian: A) In this model, correlations are modelled as arising from common, Gaussian input into
threshold neurons. B) The parameters of this model can be fitted by moment matching: Given the thresholds γ and the
correlation of the common input, λ = Λ12, the probability mass in the top left corners determine the probability of two
simultaneous spikes, and hence the correlation in the spiking activity.

2.2 Relationship between input- and output correlations

Equation (2) implies a characteristic relationship between the correlations of the Gaussian inputs and the correla-
tions of the binary threshold neurons: Given the same amount of input correlation, the correlation of the binary
firing rates will grow monotonically with their firing rates. The qualitatively similar relationship has been observed
in integrate-and-fire neurons [18], continous time threshold crossing processes [19, 20], intra-cellular recordings
of slices receiving common input [18], as well as, e.g., in in-vivo recordings of neural population activity in the
somatosensory cortex of anesthetized rats [21]. In general, the absolute value of the output correlation is always
less than the absolute magnitude of the input correlation: The binary thresholding operation ’destroys’ correlation.
This effect is most prominent for very low firing rates, and smallest in the symmetric case, i.e. µ = 0.5.
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Figure 2: Relationship between input and output correlations: A) The transfer-function which maps input-correlation λ = Λ12

to output correlation changes with firing rate. B Similarly, we plot the output correlation as a function of firing rate, for fixed
input correlations. Given the same level of input correlation, the output correlation increases monotonically with firing rate up
to µ = 0.5.

2.3 Homogeneous population model

In this report, we want to model a homogeneous population with n neurons, each having firing rate µ, constant
pairwise covariance c and correlation coefficient ρ = c/(µ(1 − µ)) [22]. Binary samples from the model are ob-
tained by dichotomizing a latent Gaussian Z with mean γ, unit variances and pairwise covariance (and correlation
coefficient) λ > 0.

We set

Z ∼ N (γ, Λ), where Λ = I(1− λ) + λene>n (3)

Z = γ +
√

1− λT +
√

λenS (4)
where T ∼ N (0, In) (5)

S ∼ N (0, 1), (6)

where en is a column vector consisting of all ones.

The binary patterns X are generated by X = 1. In this model, P (X = x) = P (X = y) whenever ‖x‖ = ‖y‖,
where ‖x‖ =

∑
i x. Such a homogeneous population model is fully characterized by the number of neurons that

spike synchronously, i.e. the population spike count distribution: We set K = ‖X‖, the population spike count,
and R = K/n, the proportion of neurons spiking at any time. The probability of seeing a given pattern with k
spikes is QDG(k) = PDG(K = k)/

(
n
k

)
. For finite population sizes n, the population spike count distribution is

given by
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PDG(X = x) =
∫

z

P (X = x|z)p(z)dz (7)

=
∫ ∞

−∞
φλ(s)P (X = x|s)ds (8)

=
∫ ∞

−∞
φλ(s)

n∏
i=1

P (Xi = xi|s)ds (9)

=
∫ ∞

−∞
φλ(s)

n∏
i=1

(1− L(s))1−xiL(s)xids, (10)

where L(s) = P (Zi > 0|s) (11)

= P

(
Ti >

−s− γ√
1− λ

)
(12)

= Φ
(

s + γ√
1− λ

)
. (13)

Here, φλ(s) is the probability density function of a one-dimensional Gaussian with mean 0 and variance λ.

2.4 Asymptotic spike count distribution
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Figure 3: Convergence of population spike count: For increasing population size but fixed input correlation and firing rate, the
population spike count distribution converges to its asymptotic distribution.

For large population sizes n, the integral in (10) can be approximated using the saddle-point approximation: We
set U(s) = r log L(s) + (1− r) log L(−s) to get

QDG(k) =
∫ ∞

−∞
φλ(s)L(s)rn(1− L(s))n−rnds (14)

=
∫ ∞

−∞
φλ(s)enU(s)ds (15)

for large n ≈

√
2π

−nU ′′(so)
φλ(so)enU(so) (16)
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U(s) has a unique maximum uo, as it is just a binomial likelihood function in L, and L is monotonic in s. Therefore,
we get that

L(so) = r (17)

so =
√

1− λΦ−1(r)− γ (18)

enU(so) =
(
rr(1− r)1−r

)n
(19)

U ′′(so) = − L′(so)2

r(1− r)
(20)

L′(so) = φ

(
s + γ√
1− λ

)
1√

1− λ
(21)

φλ(s) =
φ(s/

√
λ)√

λ
(22)

Putting this together, we get

QDG(k) =
φ(so/

√
λ)

φ
(

so+γ√
1−λ

) (rr(1− r)1−r
)n√2π(1− λ)r(1− r)

λn
(23)

(24)

and the discrete ’large n’ population spike count distribution

PDG(K = k) = QDG(k)
(

n

k

)
(25)

=
φ(so/

√
λ)

φ(Φ−1(r))

√
2π(1− λ)r(1− r)

λ

((
rr(1− r)1−r

)n
√

n

(
n

nr

))
(26)

≈ φ(so/
√

λ)
φ(Φ−1(r))

√
2π(1− λ)r(1− r)

λ

(
1

n
√

2πr(1− r)

)
. (27)

Renormalizing, this yields the asymptotic, continuous valued spike count distribution:

f(r) =
φ(so/

√
λ)

φ(Φ−1(r))

√
1− λ

λ
(28)

=
φ

(√
1−λ

λ η − γ√
λ

)
φ(η)

√
1− λ

λ
(29)

= exp
(
− 1

2λ

(
(1− 2λ)η2 − 2γη

√
1− λ + γ2

))√1− λ

λ
(30)

= exp

−1
2

(
η − γ

√
1−λ

(1−2λ)

)2

λ/(1− 2λ)

 exp
(

γ2

2− 4λ

)√
1− λ

λ
(31)

where η = Φ−1(r).
In the symmetric case, γ = 0, we have that

f(r) = C exp
(
− (1− 2λ)η2

2λ

)
, (32)

which is symmetric around the mode r = 1/2, as expected. Also, we want to recover the uniform distribution if
c = Φλ(0, 0) − 1/4 = 1/12. This is the case for λ = sin

(
2c
π

)
, i.e. λ = 1/2, in which case f(r) is a constant as

desired.
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Figure 4: Asymptotic spike count distribution of the DG for mean firing rate µ = 0.5 (top panel) and µ = 0.2, for four different
correlation strengths.

2.5 Phase transitions and modes of the distribution

We are interested in how the spike-count distribution changes as the pairwise correlations ρ are increased. The
partition-function has a discontinuity at λ = 1/2. Thus, the transition point is at λ = 1/2, independently of the
mean γ of the latent Gaussian. However, the resulting correlation coefficient ρ of the binary vectors X strongly
depends on γ, as can be seen from (2). Translating back from λ to the correlation coefficient ρ, one can see that
the transition point is at

ρc =
Φ2(γ, γ, 1/2)− Φ(γ)2

Φ(γ)Φ(−γ)
. (33)

For low firing rates µ, even very weak binary correlations lead to a latent covariance of 1/2, and are sufficient for
reaching the critical point. In this model, the ‘strength’ of correlation between binary random variables depends
strongly on the firing rates µ [7]. Thus, in this model, the parameter λ measures correlation-strength independently
of firing rates, whereas the correlation-coefficient ρ confounds the two [23].

From equation (31), we can see that, for λ 6= 1/2, the distribution f(r) has a local extremum at

rm(λ, γ) = Φ
(

γ
√

1− λ

1− 2λ

)
(34)

∂rm

∂λ
= φ

(
γ
√

1− λ

1− 2λ

)
γ(3− 2λ)

2(1− 2λ)2
√

1− λ
(35)

For λ < 1/2, rm is the mode of the distribution, whereas for λ > 1/2, it constitutes a local minimum.
At the transition point λ = 1/2, the quadratic term in (31) vanishes, and the spike-count distribution is given by

fc(r) = C exp
(

1√
2
Φ−1(r)γ

)
. (36)

2.6 Entropy rate

We note that in this model H(X) = H(X|K) + H(K). The entropy of the the spike count H(K), is bounded
above by log(n), which is dominated by H(X|k), which grows linearly. Hence, for large populations, we can

6



C
or

re
la

tio
n 

ρ

µ=0.5

0 0.25 0.5 0.75 1

0

0.2

0.33

0.4

0.6

µ=0.45

0 0.25 0.5 0.75 1

0

0.2

0.33

0.4

0.6

µ=0.2

0 0.25 0.5 0.75 1

0

0.2

0.29

0.4

0.6

Figure 5: Changes in spike count statistics for varying correlation strength ρ and constant mean µ = 0.5, µ = 0.45 and
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calculate the entropy by considering only H(X|k):

hDG =
1
n

H(X) (37)

=
1
n

∑
k

P (K = k) log
(

n

k

)
(38)

≈
∑

k

P (K = k)
(
−k

n
log

k

n
−
(

1− k

n

)
log
(

1− k

n

))
(39)

≈
∫ 1

0

f(r) [−r log r − (1− r) log(1− r)] dr (40)

Alternatively, the entropy can be computed noting that it can be decomposed into the entropy of the model given
the common input S, and the mutual information between common input and X , MI(S : X):

HDG(n) = −
∑

x

p(x) log(p(x)) (41)

= −
∫ ∞

−∞

∑
x

p(x, s) log(p(x))ds (42)

= −
∫ ∞

−∞

∑
x

p(x, s)
(

log p(x|s)− log p(x|s)
p(x)

)
ds (43)

= −
∫ ∞

−∞
p(s)

∑
x

p(x|s) log p(x|s)ds (44)

+
∫ ∞

−∞
p(s)

∑
x

p(x|s) log
p(x|s)
p(x)

ds (45)

=: H(X|S) + MI(S : X) (46)

The conditional entropy H(X|S is given by

H(X|S) = n

∫ ∞

−∞
p(s) [L(s) log L(s) + L(−s) log L(−s)] ds (47)
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The second term, MI(S : X) is negligibly small for large n. This follows (e. g.) from the data-processing
inequality:

MI(S : X) ≤ MI(S : Z) (48)
= H(Z)−H(Z|S) (49)

=
1
2

(log(det(Λ))− log(det((1− λ)In))) (50)

=
1
2

log
(

1 +
λn

1− λ

)
(51)

Therefore, for large n:

hDG =
∫ ∞

−∞
φλ(s) [L(s) log L(s) + L(−s) log L(−s)] ds (52)

By changing variables L(s) = r, one can see that the two derivations lead to the same result.
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Figure 6: Behaviour of the entropy rate as the population size is increased: The entropy can be decomposed in the entropy of
the spike count, and the entropy of the model conditional on the spike count. For large population sizes, the conditional entropy
(blue dashed) dominates. Therefore, the asymptotic entropy can be computed by just considering this conditional entropy.
Alternatively, the entropy can be computed using the fact that the mutual information between X and the common input S is
bounded by the mutual information between S and Z. For large n, this bound becomes tight (black dashed).
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3 The Ising Model

3.1 Spike count distribution for finite population sizes n

For the Ising model [1, 24], the probability of observing a given pattern x with k spikes (‖x‖ = k) is given by

Qisi(‖X‖ = k) =
1

Zisi
exp

(
hk +

Jk2

2n

)
, (53)

and the probability of observing k spikes is

Pisi(K = k) =
(

n

k

)
1

isi
exp

(
hk +

Jk2

2n

)
. (54)

The partition function Zisi is given by

Zisi =
∑

x

exp
(

h‖x‖+
J‖x‖2

2n

)
(55)

=
∑

x

exp (h‖x‖)
√

Jn

2π

∫ ∞

−∞
exp

(
−Jnm2

2
+ Jm‖x‖

)
dm (56)

=

√
Jn

2π

∫ ∞

−∞
exp

(
−Jnm2

2

)
(1 + exp (Jm + h))n

dm (57)

=

√
Jn

2π

∫ ∞

−∞
exp

(
−Jnm2

2
+ n log (1 + exp (Jm + h))

)
dm (58)

For finite n, we fit the parameters numerically [25] and calculate the entropy via H(X) = H(K) + H(X|K)
to avoid having to sum across all 2n patterns.

For large n, the integral can be approximated [26] by

Zisi ≈ =

√
Jn

2π

√
2π

−nU ′′(mo)
exp (nU(mo)) (59)

where

U(m) = −Jm2

2
+ log (1 + exp (Jm + h)) (60)

and mo is the solution to

m =
1

1 + exp (−Jm− h)
. (61)

This gives

U ′′(mo) = J2 exp (−Jm− h) m2 − J (62)

Z ≈ exp (nU(mo))
1−

√
J exp (−Jm− h) m2

(63)
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Figure 7: Comparison between the Dichotomized Gaussian and the Ising model for large population sizes: For comparison, we
show simulated spike rasters from a model with no correlation but same mean firing rate (top left). The spike count distribution
of the Ising model is bimodal (bottom right). Thus, it behaves like a mixture of two independent models: For most of the
time, neurons firing independently with low firing rate, but this firing mode is punctuated by events in which very neurons
fire synchronously. Interestingly, these synchronous firing events do not require higher order interactions. In contrast, the
spike-count distribution of the DG has a much wider range, with firing patterns of different orders occuring (bottom left).

3.2 Asymptotic entropy

For large population sizes n, H(K) is negligibly small compared to H(X|K), and we find the MaxEnt distribution
directly by finding the spike-count distribution Pisi which maximizes

H(X|K) =
1
n

∑
k

Pisi(K = k) log
(

n

k

)
. (64)

This is really the linear program

max
P

H(X|K) =
1
n

∑
k

Pk log
(

n

k

)
(65)

subject to Pk ≥ 0 ∀ k (66)∑
k

Pk = 1 (67)

1
n

∑
k

Pkk = µ (68)

1
n2

∑
k

Pkk2 = µ2n2 + cn(n− 1) + µ(1− µ)n. (69)

(70)
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In the limit of n →∞, we can write it as

max
f

H(X|K) = −
∫ 1

0

f(r)r log(r) + (1− r) log(1− r)dr (71)

subject to f(r) ≥ 0 ∀r ∈ [0, 1] (72)∫
f(r)dr = 1 (73)∫

f(r)rdr = µ (74)∫
f(r)r2dr = µ2 + c. (75)

(76)

By finding the function f that maximizes it, we can find the the asymptotic entropy of the maximum-entropy
distribution without having to use the exponential form of the MaxEnt distribution, and in particular, without
identifying the parameters h and J . We make the informed guess that the functional form of P which maximizes
is a mixture of two delta-distributions, fisi(r) = p−δ(r−r−)+p+δ(r−r+), where r+ = 1−r− and the locations
r± and probabilities p± are chosen such that the mean and variance are as desired, i.e. by

µ = p−r− + p+r+ (77)

c + µ2 = p−r−
2 + p+r+

2 (78)

r± =
1
2
±
√

1/4− µ + µ2 + c (79)

p+ =
µ + r+ − 1
2r+ − 1

(80)

p− = 1− p+. (81)

The entropy rate is given by

hisi = lim
n→∞

(
p−
n

log
(

n

nr−

)
+

p+

n
log
(

n

nr+

))
(82)

= p−H(r−) + p+H(r+) (83)
where H(r) = −r log(r)− (1− r) log(1− r) (84)

Summing up, the entropy is given by:

r =
1
2
±
√

1/4− µ + µ2 + c (85)

=
1
2
±
√

1/4 + µ(1− µ)(1− ρ) (86)

H = −r log(r)− (1− r) log(1− r) (87)

Thus, we can calculate the asymptotic entropy rate of the Ising model without having to identify the parameters
h and J explicitly. Also, we see that an Ising model with rate µ0 and no correlations has the same entropy as one
rate µ1 with pairwise covariance c provided that µ2

0 − µ0 = µ2
1 − µ1 + c.

We are yet to show that the form of fisi that we guessed above is indeed the solution to the linear program. In
general, one can prove the optimality [27] of a feasible solution x∗ for the linear program

min v>x (88)
subject to x ≥ 0 (89)

Ax = b (90)
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by finding a solution λ∗ to the dual program

max λ>b (91)

A>λ ≤ v (92)

which has the same result, i.e. v>x∗ = λ∗>b. Rewriting the MaxEnt problem as minimizing the negative
entropy, we need to find a vector λ which satisfies

a) λ1 + λ2µ + λ3(µ2 + c) = −hisi (93)

b) λ1 + λ2s + λ3s
2 ≤ s log(s) + (1− s) log(1− s). ∀s ∈ [0, 1], (94)

We take

λ1 = −hisi + λ2(r2 − r) (95)

λ2 = log
(

r

1− r

)
/(1− 2r) (96)

λ3 = −λ2. (97)

(The values of λ are obtained by requiring that the equality a) holds, and that inequality b) holds with equality at
the point s = µ− µ2 − c, and that the derivatives of the lhs and rhs of equation b) also match at this point).

Noting that µ− µ2 − c = r − r2, condition a) holds:

λ1 + λ2µ + λ3(µ2 + c) = (98)

= −hisi + λ2(r2 − r) + λ2(µ− µ2 − c) (99)
= −hisi (100)

For condition b) to hold, we check that r is a local minimum of the function ∆(s) = rhs(s)−lhs(s). As ∆(r) = 0,
and that it does not have any other stationary points for s ≤ 1/2, we get that ∆(s) ≥ 0∀s ∈ (0, 1).

3.3 Minimum entropy distribution
For the minimum entropy model (assuming exchangeability), we can use the same type of argument, by guessing
the solution to a linear program, and verifying its correct-ness by constructing the solution to the dual problem. In
that case, the solution turns out to be a sum of three delta-peaks at locations 0, rm and 1. The mean and correlation
determine both the location of the middle-peak rm and the relative weights p, fmin(r) = p0δ(r − 0) + pmδ(r −
rm) + p1δ(r− 1). Without loss of generality, we only consider the case µ ≤ 1/2. The functional form of solution
is different for small and big correlations, and changes at a transition point given by co = 1/2µ− µ2. For c ≤ co

rm = µ + (1− µ)ρ (101)
pm = µ/rm (102)
p0 = 1− pm, p1 = 0 (103)

hmin = lim
n→∞

p0
1
n

log
(

n

0

)
+ pm

1
n

log
(

n

nrm

)
(104)

= 0− pm (rm log rm + (1− rm) log(1− rm)) (105)
= −µ (log rm + (1/rm − 1) log(1− rm)) (106)

For c > co

pm = 4µ(1− µ)(1− ρ) (107)
rm = 1/2 (108)
p0 = p1 (109)

hmin = lim
n→∞

p0
1
n

log
(

n

0

)
+ pm

1
n

log
(

n

n/2

)
+ p1

1
n

log
(

n

n

)
(110)

= 0 + pm + 0 = pm (111)
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Figure 8: Comparison of the entropy rate for the DG and Ising model. A Entropy rate of the Dichotomized Gaussian for
different values of the mean µ and correlation coefficient ρ. C Absolute entropy difference between the Ising model and DG,
hisi − hDG. D Scaled entropy of the DG-model, (hDG − hmin) /(hisi − hmin) in percent.

4 More general covariance structures
4.1 A finite number of mutually uncorrelated pools
We first consider a population consisting of l pools of size n1, n2, . . . , nl,

∑
i ni = n, and relative sizes bi = ni

n ,∑
i bi = 1. We define B =

∑
b2
i . Each neuron has mean firing rate µ and pairwise correlation ρ (covariance c),

but only with neurons within its pool. In this case, the average covariance is given by

cav = c

∑
i ni(ni − 1)
n(n− 1)

(112)

≈ c
∑

b2
i (113)

= cB (114)

and the entropy density by

hpools =
1
n

∑
i

H(pool i) (115)

=
1
n

∑
i

nihDG (116)

= hDG (117)
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The entropy density of the pool-model is the same as that of the infinite-range model. However, the average
correlation between any pair of neurons is only cB. By making B smaller (e.g. by using more pools), we can
make the average correlations arbitrarily small without changing the (asymptotic) entropy h.

The population spike-count distribution of this model is the convolution of the single-pool spike-count distribu-
tion with itself n times.

More generally, if the l pools have mean firing rates and with-in pool correlations µi and ρi, then, in the asymp-
totic limit, we get

hpools =
1
n

∑
i

H(pooli) (118)

=
1
n

∑
i

nihDG(µi, ρi) (119)

4.2 Scaling up general covariance matrices
Suppose we have recorded a population of l neurons, with some covariance matrix Cl. How can we make bigger
populations that have ’the same second order structure’? One approach is to make bigger matrices C ′ by random
sampling elements from C, or by randomly sampling elements from the underlying correlation-coefficient matrix,
and thereby generating bigger, synthetic covariance matrices. The problem of that approach is that we have no
guarantee as to whether the synthetically generated matrix C ′ will indeed be ’valid’, i.e. whether it will be the
covariance matrix of any multivariate binary distribution. Even if C ′ is positive definite, and even if each entry C ′ij
satisfies the constraints that the means of two binary random variables impose on their covariance, validity of C ′

is not guaranteed [28, 11].
Alternatively, one can envisage a model in which correlations are modelled as arising from a common input.

Then, we extrapolate to larger population sizes under the assumption that the common input is fixed. In other
words, we assume that the extrapolation corresponds to a denser and denser sampling of the population.

4.3 Multivariate common input model
In this model, we assume that the latent Gaussian can be decomposed into a common input L and independent
noise T :

Z = γ + DT + BU, (120)

where D is a diagonal matrix of size l× l which determines the variance of the independent noise, and B is an l×b
dimensional, low rank matrix of ’loadings’, which determines how much each of the neurons gets as a common
input. T and U are l dimensional standard Gaussians, and γ is an l dimensional offset. The dimensionality of U ,
b, is the rank of the common input. This model has covariance matrix

Λ̂ = Cov(Z) = D2 + BB> (121)

We first find the covariance matrix of the Gaussian inputs Z, Λ, via equation (2) Then, perform a factor analysis
[29] on Λ to identify B and D from Λ. If b < l, Λ and Λ̂ will not be identical, but should be similar. It should be
noted that both of these steps could be combined into a single maximum likelihood estimation of B and D from
the binary observations X– algorithms for this task are variants of ’binary factor analysis’.

4.4 Extrapolations: Scaling up the model
We extrapolate the model to larger population sizes by keeping the common input fixed. For each neuron which
receives a common input and adds independent noise, we create m ’copies’ which receive, on each trial, the same
common input, and have independent noise with the same statistical properties. In other words, we consider a
sequence of populations Z(1), Z(2), . . . Z(m) constructed by the following procedure: Z(1) = γ + DT (1) + BU .
In the general case, the population

Z(m) = γ(m) + D(m)T (m) + B(m)U (122)
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is defined by: γ(m) = em ⊗ γ, D(m) = Is ⊗D, T (m) is an n = lm × 1 dimensional standard Gaussian, and
B(m) = el ⊗ B. We also define the random variable S(m) = B(m)U , i.e. the common input, with associated
covariance matrix ΛS = BB>.

Thus, Z(m) has covariance matrix

Cov(Z(m)) = Im ⊗D2 + emem
> ⊗BB>. (123)

It will sometimes be convenient to rewrite Z(m) as a matrix of size l×m, where Z
(m)
ij denotes the input to the j-th

element of the ith pool—whenever we use two indices, we mean the matrix versions of Z or X . As before, binary
random variables X are obtained by cutting of Z at 0.

4.5 Asymptotic entropy
We calculate the entropy via the formula

HDG(n) = H(X|S) + MI(S : X) (124)

≈ H(X|S) =
∫

s

H(X|S = s)p(s)ds (125)

=
∫

s

p(s)
n∑

i=1

H(Xi|S = s)ds (126)

=
m∑

j=1

l∑
i=1

∫
s

p(s)H(Xij |Si = s)ds (127)

= m

l∑
i=1

∫
si

p(si)H(Xi1|Si = si)dsi (128)

= m

l∑
i=1

∫
si

p(si) [Li(si) log(Li(si)) + (1− Li(si)) log(1− Li(si))] dsi (129)

where Li(si) = P (Zi1 > 0|si) = Φ( si+γ
Dii

) and p(si) =
√

ΛS,iiφ
(
si/
√

ΛS,ii

)
. We can see that the formula only

depends on the diagonal of the correlation input Λii: In other words, the cross-pool correlations do not contribute
to the asymptotic entropy at all, only the within-pool correlations matter.

4.6 Asymptotic spike count distribution
We also want to write down the ’generalized spike count distribution’ of P (R = r), where we define K to be the
l dimensional vector with Ki =

∑m
k=1 Xik, and Ri = 1

mki.

P (X = x) =
∫

P (X = x|S = s)P (S = s)ds (130)

=
∫

φΛ(s)
l∏

i=1

m∏
j=1

P (Xij |si)ds (131)

=
∫

φΛ(s)
l∏

i=1

m∏
j=1

L(si)xij L(−si)1−xij ds (132)

=
∫

φΛ(s)
l∏

i=1

Li(si)kiLi(−si)m−kids (133)

=
∫

φΛ(s) exp (mU(s)) ds (134)
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with U(s) =
∑l

i=1 ri log Li(si) + (1 − ri)Li(−si) Now, using argument entirely analogously to the case of a
single pool, we get that, in the limit of large m, this expression becomes:

P (X = x) ≈ (2π)l/2√
−m det

(
∂2U
∂s2 (s)

)φΛS
(s)emU(s) (135)

where

Li(si) = ri (136)

si = DiiΦ−1(ri)− γ (137)

emU(s) =

(
l∏

i=1

rri
i (1− ri)1−ri

)m

(138)

det
(

∂2U

∂s2
(s)
)

=
l∏

i=1

−L′i(si)2

ri(1− ri)
(139)

L′i(si) = φ

(
si + γ

Dii

)
1

Dii
(140)

Hence, for large n, we have that:

P (X = x) ≈ (2π)l/2

ml/2

√∏l
i=1

“
φ

“
si+γ

Dii

”
1

Dii

”2

ri(1−ri)

(
l∏

i=1

rri
i (1− ri)1−ri

)m

φΛS
(s) (141)

(142)

From this, we can derive the asymptotic generalized spike count distribution f(r):

P (R = r) = P (X = x)
l∏

i=1

(
m

mri

)
(143)

=
(2π)l/2√∏l

i=1

“
φ

“
si+γ

Dii

”
1

Dii

”2

ri(1−ri)

(
l∏

i=1

1√
m

(
rri
i (1− ri)1−ri

)m( m

mri

))
φΛS

(s) (144)

≈ (2π)l/2√∏l
i=1

“
φ

“
si+γ

Dii

”
1

Dii

”2

ri(1−ri)

(
l∏

i=1

1
m
√

2πri(1− ri)

)
φΛS

(s) (145)

=
1

ml

 l∏
i=1

(
φ
(

si+γ
Dii

)
1

Dii

)2

ri(1− ri)

l∏
i=1

ri(1− ri)


−1/2

φΛS
(s) (146)

(147)

Hence, finally, the generalized spike count density is given by
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f(r) =
φΛS

(DΦ−1(r)− γ)∏l
i=1

φ(Φ−1(ri))
Dii

(148)

= detD
φΛS

(DΦ−1(r)− γ)
φ(Φ−1(r))

(149)

=
det(D)

det(ΛS)1/2
exp

(
−1

2
(
(Dη − γ)>ΛS

−1(Dη − γ)− η>η
))

(150)

A) B) C)

Figure 9: Generalized spike count distribution for a model with two pools and within-pool correlations. In A), the pools are not
correlated, in B), they have a positive correlations, whereas in C), the correlation is negative.

4.7 General input distributions
Up to now, we assume that the correlated input into the cells were Gaussian, and that each individual cell had
additive, Gaussian noise. We can easily generalize the spike-count distribution f(r) to an arbitrary common input
with distribution fs(s), and a noise distribution P (Xi = 1|Si = si) = Li(s). In this case,

f(r) =
fs(L−1(r))∏l

i=1 L′i(L
−1
i (ri))

(151)

In summary, the generalized spike count distribution can be obtained by starting with the distribution of the com-
mon input, and performing a change of variables based on the noise models Li(s) on each dimension. This makes
sense intuitively: The probability of observing a proportion of r of the neurons spiking is the same as the probabil-
ity of observing a common input which, in each individual neuron, has the corresponding probability of eliciting a
spike.
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