Machine Learning for Motor Skills in Robotics
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Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and
the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s,
however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the
perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully
adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet
to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid
robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for
a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we
study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing
the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can

be applied in this setting.

1 Introduction

Despite an increasing number of motor skills exhibited by mani-
pulator and humanoid robots, the general approach to the ge-
neration of such motor behaviors has changed little over the
last decades [4]. The roboticist models the task as accurately as
possible and uses human understanding of the required motor
skills in order to create the desired robot behavior as well as
to eliminate all uncertainties of the environment. In most ca-
ses, such a process boils down to recording a desired trajectory
in a pre-structured environment with precisely placed objects. If
inaccuracies remain, the engineer creates exceptions using hu-
man understanding of the task. While such highly engineered
approaches are feasible in well-structured industrial or research
environments, it is obvious that if robots should ever leave fac-
tory floors and research environments, we will need to reduce the
strong reliance on hand-crafted models of the environment and
the robots exhibited to date. Instead, we need a general approach
which allows us to use compliant robots designed for interacti-
on with less structured and uncertain environments in order to
reach domains outside industry. Such an approach cannot solely
rely on human knowledge but instead has to be acquired and
adapted from data generated both by human demonstrations of
the skill as well as trial and error of the robot.

The tremendous progress in machine learning over the last
decades offers us the promise of less human-driven approaches
to motor skill acquisition. However, despite offering the most
general way of thinking about data-driven acquisition of motor
skills, generic machine learning techniques, which do not rely on
an understanding of motor systems, often do not scale into the
domain of manipulator or humanoid robotics due to the high
domain dimensionality. Therefore, instead of attempting an un-
structured, monolithic machine learning approach to motor skill
aquisition, we need to develop approaches suitable for this parti-
cular domain with the inherent problems of task representation,
learning and execution addressed separately in a coherent frame-
work employing a combination of imitation, reinforcement and
model learning in order to cope with the complexities involved

in motor skill learning. The advantage of such a concerted ap-
proach is that it allows the separation of the main problems of
motor skill acquisition, refinement and control. Instead of either
having an unstructured, monolithic machine learning approach
or creating hand-crafted approaches with pre-specified trajecto-
ries, we are capable of acquiring skills, represented as policies,
from demonstrations and refine them by trial and error. Using
learning-based approaches, we can achieve accurate control wi-
thout accurate analytical models of the complete system.

2 Motor Skill Learning

Our principal objective is establishing the foundations for a ge-
neral framework for representing, learning and executing motor
skills for robotics. As can be observed from this question, this
goal requires three building blocks, i.e., appropriate representati-
ons for movements, learning algorithms which can be applied to
these representations and a learned transformation that allows
the execution of the kinematic policies in the respective task
space on robots.

2.1 Important Aspects of Motor Skills

We briefly address the three essential aspects of motor skill lear-
ning, i.e., representation, learning and execution, in this section.

Representation. For the representation of motor skills, we can
rely on the insight that humans, while being capable of perfor-
ming a large variety of complicated movements, restrict themsel-
ves to a smaller amount of primitive motions [?]. As suggested
by ljspeert et al. [2], such primitive movements can be repre-
sented by nonlinear dynamic systems. We can represent these in
the differential constraint form given by

Agi(xi,f{i,t)i:bei(xi,f{i,t), (1)

where 7 € N is the index of the motor primitive in a library of
movements, 0; € RY denote the parameters of the primitive 4,
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Abbildung 1: This figure illustrates our general approach to mo-
tor skill learning by dividing it into motor primitive and a motor
control component. For the task execution, fast policy learning
methods based on observable error need to be employed while
the task learning is based on slower episodic learning.

t denotes time and x;,%;,X; € R" denote positions, velocities
and accelerations of the dynamic system, respectively.

Learning. Learning basic motor skills' is achieved by adapting
the parameters 6; of motor primitive 7. The high dimensionality
of our domain prohibits the exploration of the complete space of
all admissible motor behaviors, rendering the application of ma-
chine learning techniques which require exhaustive exploration
impossible. Instead, we have to rely on a combination of super-
vised and reinforcement learning in order to aquire motor skills
where the supervised learning is used in order to obtain the in-
itialization of the motor skill while reinforcement learning is used
in order to improve it. Therefore, the aquisition of a novel motor
task consists out of two phases,i.e., the ‘learning robot’ attempts
to reproduce the skill acquired through supervised learning and
improve the skill from experience by trial-and-error, i.e., through
reinforcement learning.

Execution. The execution of motor skills adds another level of
complexity. It requires that a mechanical system

u=M(q,q,1)4+ F(q,q,1), (2)

with a mapping x; = f;(q,q,t) can be forced to execute each
motor primitive A;X; = b; in order to fulfill the skill. The mo-
tor primitive can be viewed as a mechanical constraint acting
upon the system, enforced through accurate computation of the
required forces based on analytical models. However, in most
cases it is very difficult to obtain accurate models of the mecha-
nical system. Therefore it can be more suitable to find a policy
learning approach which replaces the control law based on the
hand-crafted rigid body model. In the thesis [3], we follow this
approach which forms the basis for understanding motor skill
learning.

2.2 Resulting Approach

As we have outlined before, we require an appropriate gene-
ral motor skill framework which allows us to separate the desi-
red task-space movement generation (represented by the motor
primitives) from movement control in the respective actuator
space. Based on the understanding of this transformation from
an analytical point of view on robotics, we present a learning

1Learning by sequencing and parallelization of the motor primitives
will be treated in future work.
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Abbildung 2: (a) Anthropomorphic SARCOS Master Arm used
as simulated system and in progress of actual robot evaluations.
(b) Tracking performance for a planar figure-8 pattern for the
simulated SARCOS Master arm.

framework for task execution in operational space. For doing so,
we have to consider two components, i.e., we need to determi-
ne how to learn the desired behavior represented by the motor
primitives as well as the execution represented by the transfor-
mation of the motor primitives into motor commands. We need
to develop scalable learning algorithms which are both appro-
priate and efficient when used with the chosen general motor
skill learning architecture. Furthermore, we require algorithms
for fast immediate policy learning for movement control based
on instantly observable rewards in order to enable the system
to cope with real-time improvement during the execution. The
learning of the task itself on the other hand requires the learning
of policies which define the long-term evolution of the task, i.e.,
motor primitives, which are learned on a trial-by-trial basis with
episodic improvement using a teacher for demonstration and re-
inforcement learning for self-improvement. The resulting general
concept underlying [3] is illustrated in Figure 1.

2.3 Novel Learning Algorithms

As outlined before, we need two different styles of policy learning
algorithms, i.e., methods for long-term reward optimization and
methods for immediate improvement. Thus, we have developed
two different classes of algorithms in [3], i.e., the Natural Actor-
Critic and the Reward-Weighted Regression.

Natural Actor-Critic. The Natural Actor-Critic algorithms [3]
are the fastest policy gradient methods to date and “the current
method of choice” [1]. They rely on the insight that we need to
maximize the reward while keeping the loss of experience con-
stant, i.e., we need to measure the distance between our current
path distribution and the new path distribution created by the
policy. This distance can be measured by the Kullback-Leibler
divergence and approximated using the Fisher information me-
tric resulting in a natural policy gradient approach. This natu-
ral policy gradient has a connection to the recently introduced
compatible function approximation, which allows to obtain the
Natural Actor-Critic. Interestingly, earlier Actor-Critic approa-
ches can be derived from this new approach. In application to
motor primitive learning, we can demonstrate that the Natural
Actor-Critic outperforms both finite-difference gradients as well
as ‘vanilla’ policy gradient methods with optimal baselines.
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Abbildung 3: This figure shows (a) the performance of a baseball
swing task when using the motor primitives for learning. In (b),
the learning system is initialized by imitation learning, in (c) it is
initially failing at reproducing the motor behavior, and (d) after
several hundred episodes exhibiting a nicely learned batting.

Reward-Weighted Regression. In contrast to Natural Actor-
Critic algorithms, the Reward-Weighted Regression algorithm [3]
focuses on immediate reward improvement and employs an ad-
aptation of the expectation maximization (EM) algorithm for
reinforcement learning instead of a gradient based approach.
The key difference here is that when using immediate rewards,
we can learn from our actions directly, i.e., use them as trai-
ning examples similar to a supervised learning problem with
a higher priority for samples with a higher reward. Thus, this
problem is a reward-weighted regression problem, i.e., it has a
well-defined solution which can be obtained using established
regression techniques. While we have given a more intuitive ex-
planation of this algorithm, it corresponds to a properly derived
expectation-maximization algorithm for immediate reward rein-
forcement learning. Our applications show that it scales to high
dimensional domains and learns good control policies.

3 Robot Application

The general setup presented in [3] can be applied in robotics
using analytical models as well as the presented learning algo-
rithms. The applications presented in [3] include motor primitive
learning and operational space control and will be briefly discus-
sed here.

3.1 Learning Operational Space Control

Operational space control is one of the most general frameworks
for obtaining task-level control laws in robotics. We have deve-
loped a learning framework for operational space control which
is a result of a reformulation of operational space control as a
general point-wise optimal control framework and our insights
into immediate reward reinforcement learning. While the general
learning of operational space controllers with redundant degrees
of freedom is non-convex and thus global supervised learning
techniques cannot be applied straightforwardly, we can gain two
insights, i.e., that the problem is locally convex and that our
point-wise cost function allows us to ensure global consistency
among the local solutions. We show that this framework works
well for both simulated and real robot arms as presented in Fi-
gure 2.

3.2 Learning of Motor Primitives

The main application of our long-term improvement framework
is the optimization of motor primitives. Here, we follow essen-
tially the previously outlined idea of acquiring an initial solu-
tion by supervised learning and then using reinforcement lear-
ning for motor primitive improvement. For this, we demonstrate
both comparisons of motor primitive learning with different po-
licy gradient methods, i.e., finite difference methods, ‘vanilla’
policy gradient methods and the Natural Actor-Critic, as well
as an application of the most successful method, the Natural
Actor-Critic to T-Ball learning on a physical, anthropomorphic
SARCOS Master Arm, see Figure 3.

4 Conclusion

In conclusion, in [3], we have presented a general framework for
learning motor skills which is based on a thorough, analytically
understanding of robot task representation and execution. We
have introduced two classes of novel reinforcement learning me-
thods, i.e., the Natural Actor-Critic and the Reward-Weighted
Regression algorithm. We demonstrate the efficiency of these
reinforcement learning methods in the application of learning to
hit a baseball with an anthropomorphic robot arm on a phy-
sical SARCOS master arm using the Natural Actor-Critic, and
in simulation for the learning of operational space with reward-
weighted regression.
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