Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Going to temporal superresolution for AP detection in two photon calcium imaging in vivo by using an explicit datamodel

MPG-Autoren
/persons/resource/persons85589

Kosten,  J
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83945

Greenberg,  D
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84010

Kerr,  J
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kosten, J., Greenberg, D., Bethge, M., & Kerr, J. (2008). Going to temporal superresolution for AP detection in two photon calcium imaging in vivo by using an explicit datamodel. Poster presented at 9th Conference of the Junior Neuroscientists of Tübingen (NeNa 2008), Ellwangen, Germany.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C6D7-6
Zusammenfassung
Two photon calcium imaging in vivo allows for the simultaneous imaging of activity in
populations of cortical neurons. This approach has been shown to achieve both single
action potential (AP) and single cell resolution, an important requirement when measuring
neural activity. However, there still remains room for improvement in both data
acquisition and data analysis. Imaging calcium transients across time allows the inference
of electrical spiking activity, but since the calcium signals are an order of magnitude slower
than the spiking activity which produces them, temporal accuracy can be lost. Here we
describe a possible approach to increase the temporal resolution of such data. We present
an approach that explicitly models signal and noise in the data, and complements the
output of a previous spike detection algorithm. Instead of averaging the signal over 96 ms
(a full frame), we employ higher resolution that averages over 1.5 ms periods, corresponding
to the individual laser scan lines that compose a single image frame. The dierence
between theoretical and observed
uorescence measurements is modeled as a multivariate
Gaussian distribution with zero mean, yielding a likelihood value for each possible spike
time over a two frame window. Taking into account the prior distribution of timing errors
in the output of our AP detection algorithm, we estimate the detected spike's most likely
position. This approach improves temporal resolution signicantly compared to previous
methods. We discuss the future development of this approach, its limitations, and the
crucial role of an accurate estimation of baseline
uorescence.