
Exact Dynamic Programming for Decentralized POMDPs with Lossless Policy
Compression

Abdeslam Boularias and Brahim Chaib-draa
Computer Science & Software Engineering Dept.

Laval University, Quebec G1k 7p4, CANADA
{boularias,chaib}@damas.ift.ulaval.ca

Abstract

High dimensionality of belief space in DEC-POMDPs is one
of the major causes that makes the optimal joint policy com-
putation intractable. The belief state for a given agent is a
probability distribution over the system states and the policies
of other agents. Belief compression is an efficient POMDP
approach that speeds up planning algorithms by projecting
the belief state space to a low-dimensional one. In this paper,
we introduce a new method for solving DEC-POMDP prob-
lems, based on the compression of the policy belief space.
The reduced policy space contains sequences of actions and
observations that are linearly independent. We tested our ap-
proach on two benchmark problems, and the preliminary re-
sults confirm that Dynamic Programming algorithm scales up
better when the policy belief is compressed.

Introduction

Decision making under state uncertainty is one of the great-
est challenges in artificial intelligence. State uncertainty is a
direct result of stochastic actions and noised, or aliased, ob-
servations. Partially Observable Markov Decision Processes
(POMDPs) provide a powerful Bayesian model to solve this
problem (Smallwood & Sondik 1971). In this model, the
state is represented by a probability distribution over all the
possible states, that we call a belief state. The complex-
ity of POMDPs algorithms, which is proved to be PSPACE-
complete (Papadimitriou & Tsitsiklis 1987), depends heav-
ily on the dimension of the belief state. During the last two
decades, significant efforts have been devoted to develop-
ing fast algorithms for large POMDPs, and nowadays, even
problems with a thousand of states can be solved within a
few seconds (Virin et al. 2007).

The rise of applications requiring cooperation between dif-
ferent agents, like robotic teams, distributed sensors and
communication networks, has made the presence of many
decision makers a key challenge for building autonomous
agents. For this purpose, a generalization of POMDPs to

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

multi-agent domains, called DEC-POMDPs (Decentralized
POMPDs), was introduced in (Bernstein, Immerman, & Zil-
berstein 2002), and since then, this framework has been re-
ceiving a growing amount of attention. This research is ba-
sically motivated by the fact that many real world problems
need to be formalized as DEC-POMDPs, while planning
with DEC-POMDPs is NEXP-complete (Bernstein, Immer-
man, & Zilberstein 2002), and even finding ε-optimal solu-
tions is NEXP-hard (Rabinovich, Goldman, & Rosenschein
2003).

Finding good solutions to DEC-POMDPs is so difficult be-
cause there is no optimality criterion for the policies of
a single agent alone: whether a given policy is better or
worse than another depends on the policies of the other
agents. Consequently, the dimensionality of the policy space
is a crucial factor in the scalability of DEC-POMDPs algo-
rithms. In this paper, we propose a new method for scal-
ing up Dynamic Programming for DEC-POMDPs, based on
a lossless compression the policy space. Our approach is
based on the following observation: given a set of policies,
only a few sequences are necessary to represent all the poli-
cies. This method is an adaptation to DEC-POMDPs of an-
other approach that was originally proposed to reduce the
state space dimensionality in POMDPs, and which is known
as the Predictive State Representations (PSRs) (Littman,
Sutton, & Singh 2001). In PSRs, states are replaced by se-
quences of actions and observations that have linearly inde-
pendent probabilities. Similarly, a poll of policies can be
represented by a smaller set of sequences that have linearly
independent probabilities of occurring in these policies.

Related Work

A brute force solution for DEC-POMDPs consists in per-
forming an exhaustive search in the space of joint policies
(Bernstein, Immerman, & Zilberstein 2002), but this ap-
proach is almost useless in practice, even for the smallest
domains. In fact, the search should focus only on the poli-
cies that are likely to be dominant. There are two main
approaches for finding these policies: top-down heuristics
and bottom-up dynamic programming. MAA* was the first

20

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

algorithm to use a top-down heuristic (Szer, Charpillet, &
Zilberstein 2005). It is an adaptation of A* using a heuris-
tic evaluation function to prune dominated nodes, where the
nodes correspond to joint policies. A big disadvantage of
such top-down search approaches is that the starting point
should be known in advance. On the other hand, Dynamic
Programming (DP) algorithm, proposed in (Hansen, Bern-
stein, & Zilberstein 2004), consists in constructing the op-
timal policies from leaves to root by using iterated policy
elimination. DP algorithm can solve problems that are un-
feasible with the exhaustive search, but it keeps all the dom-
inant policies for every point in the belief space, even those
that will never be reached in practice. This problem has
been efficiently addressed with Point Based Dynamic Pro-
gramming (PBDP) algorithm proposed in (Szer & Charpil-
let 2006). PBDP makes use of top-down heuristic search to
determine which belief points will be reached during the ex-
ecution, and constructs the best policy from leaves to root
with DP, by keeping only the policies that are dominant in
the reachable points. In the same vein, Memory Bounded
Dynamic Programming (MBDP) is an algorithm that has
been proposed recently in (Seuken & Zilberstein 2007) and
which is close to PBDP, it is based on bounding the maxi-
mum number of policies kept in memory after each iteration.

All these algorithms are based on reducing the number of
policies to be evaluated or kept in memory. Alternatively, we
can preserve the original policies space, and use a more com-
pact representation of the policies. In decision trees, policies
are constructed by combining multiple sequences of actions
and observations, and the same sequences can be replicated
in different policies. The sequential representation takes ad-
vantage of this characteristic: all the possible sequences of
a given length are represented explicitly, and each policy
is represented by a binary vector that indicates which se-
quences are contained in this policy. This method has been
applied efficiently to DEC-POMDPs in (Aras, Dutech, &
Charpillet 2007), the proposed algorithm uses a mixed inte-
ger linear program to find the optimal policies, where each
variable corresponds to a sequence. However, there is no
guarantee that the number of sequences will not exceed the
number of policies, this can happen when we have a few
policies with large horizons.

Decentralized POMDPs

DEC-POMDPs, introduced in (Bernstein, Immerman, &
Zilberstein 2002), are a straight generalization of POMDPs
to multi-agent systems. Formally, a DEC-POMDP with n
agents is a tuple 〈I,S,{Ai},P,{Ω},O,R,T,γ〉, where:

• I is a finite set of agents, indexed 1 . . .n .

• S is a finite set of states.

• Ai is a finite set of individual actions for agent i. ~A =
⊗i∈IAi is the set of joint actions, and ~a = 〈a1, . . . ,an〉 de-
notes a joint action.

• P is a transition function, P(s′|s,~a) is the probability that
the system changes from state s to state s′, when the agents
execute the joint action ~a.

• Ωi is a finite set of individual observations for agent i.
~Ω = ⊗i∈IΩi is the set of joint observations, and ~o =
〈o1, . . . ,on〉 denotes a joint observation.

• O is an observation function, O(~o|s′,~a) is the probability
that the agents observe ~o when the current state is s′ and
the joint action that led to this state was ~a.

• R is a reward function, where R(s,~a) denotes the reward
(or cost) given for executing action ~a in state s.

• T is the horizon of planning (the total number of steps).

• γ is a discount factor.

Planning algorithms for DEC-POMDPs aim to find the best
joint policy of horizon T , which is a collection of several
local policies, one for each agent. A local policy of horizon
t for agent i, denoted by qt

i , is a mapping from local histo-
ries of observations o1

i o2
i . . .ot

i to actions in Ai. Usually, we
use decision trees to represent local policies, each node of
the decision tree is labeled with an individual action ai, and
each arc is labeled with an individual observation oi. To ease
notations, we consider in the remainder of this paper that we
have only two agents, i and j, all the results can be easily
extended to the general case. A joint policy of horizon t for
agents i and j is denoted by qt = 〈qt

i,q
t
j〉. We also use Qt

i ,
Qt

j to indicate the sets of local policies for agents i and j
respectively, and Qt for the set of joint policies.

Since the states are partially observable, agents should
choose their actions according to a belief on the current state.
The belief state, denoted by the vector b, is a probability dis-
tribution over the different states. In the single-agent con-
text, the belief state is a sufficient statistic for making opti-
mal decisions, but in multi-agent systems, the reward given
to an individual action depends on all the actions taken by
the other agents at the same time; the belief state is then no
longer sufficient for making optimal decisions. In order to
choose optimally its action, an agent should take into ac-
count which actions the other agents are going to execute.
Ideally, every agent should know exactly the actions of the
other agents, but unfortunately, this cannot be achieved with-
out use of communication. In fact, the joint policy is pro-
vided to all the agents, and the first joint action can easily
be predicted, since we just have to look at the first node of
every local policy tree. But then, the next actions depend on
the local observations perceived by each agent, and without
communication, we can only consider a probability distribu-
tion over the actions (or the remaining subtrees) of the other
agents. This distribution is what we call a multi-agent belief
state. The belief state bi for agent i contains a probability
distribution over the states S, and another probability distri-
bution over the current policies Q j of agent j. Notice that
bi(s,q j) is the probability that the system is in state s and
the current policy of agent j is q j.

21

Input: Qt−1
i , Qt−1

j and V t−1;

Qt
i , Qt

j ← fullBackup(Qt−1
i), fullBackup(Qt−1

j);
Calculate the value vectors V t by using V t−1(equation 1);
repeat

remove the policies of Qt
j that are dominated (Table 1);

remove the policies of Qt
j that are dominated (Table 1);

until no more policies in Qt
i or Qt

j can be removed ;
Output: Qt

i ,Q
t
j and V t ;

Algorithm 1: Dynamic Programming for DEC-
POMDPs (Hansen, Bernstein, & Zilberstein 2004).

Dynamic Programming for DEC-POMDPs

Dynamic Programming is by far the technique most used
for solving multistage decision problems, where the opti-
mal policies of horizon t are recursively constructed from
the optimal sub-policies of horizon t− 1. This method has
been widely used for finding optimal finite horizon policies
for POMDPs since (Smallwood & Sondik 1971) presented
the value iteration algorithm. Recently, (Hansen, Bernstein,
& Zilberstein 2004) proposed an interesting extension of the
value iteration algorithm to decentralized POMDPs, called
Dynamic Programming Operator for DEC-POMDPs. We
review here briefly the principal steps of this algorithm.

The expected discounted reward of a joint policy qt , started
from state s, is given recursively by Bellman value function:

Vqt (s)= R(s,~A(qt))+γ ∑
s′∈S

P(s′|s,~A(qt)) ∑
~o∈~Ω

O(~o|s′,~A(qt))V~o(qt)(s
′)

(1)
where ~A(qt) is the first joint action of the policy qt (the root
node),~o is a joint observation, and~o(qt) is the sub-policy of
qt below the root node and the observation ~o.

The value of an individual policy qt
i , according to a belief

state bi, is given by the following function:

Vqt
i
(bi) = ∑

s∈S
∑

qt
j∈Qt

j

bi(s,qt
j)V〈qt

i ,q
t
j〉(s) (2)

where 〈qt
i,q

t
j〉 denotes the joint policy made up of qt

i and qt
j,

V〈qt
i ,q

t
j〉(s) is given by equation 1.

The Dynamic Programming Operator (Algorithm 1) finds
the optimal policies of horizon t, given the optimal poli-
cies of horizon (t − 1). V t is the set of value vectors Vqt

corresponding to the joint policies of horizon t. First, the
sets Qt

i , Qt
j are generated by extending the policies of Qt−1

i ,
Q j

t−1, and V t are calculated by using V t−1 in equation 1,
then the weakly dominated policies of each agent are itera-
tively prune. The pruning process stops when no more poli-
cies can be removed from Qt

i or Qt
j. A policy qt

i is said to be
weakly dominated if and only if:

∀bi ∈ ∆(S×Qt
j),∃qt

i
′ ∈ Qt

i−{qt
i}: Vqt

i
′(bi)≥Vqt

i
(bi) (3)

minimize: ε

subject to:

∑
s∈S

∑
qt

j∈Qt
j

bi(s,qt
j) = 1

∀s ∈ S,∀qt
j ∈ Qt

j :

0≤ bi(s,qt
j)≤ 1

∀qt
i
′ ∈ Qt

i−{qt
i} :

∑
s∈S

∑
qt

j∈Qt
j

bi(s,qt
j)[V

t
〈qt

i ,q
t
j〉
(s)−V t

〈qt
i
′,qt

j〉
(s)]+ ε > 0

Table 1: The linear program used to check if a policy qt
i is

dominated or not (Hansen, Bernstein, & Zilberstein 2004).

Policy Space Compression

Motivation

The main problem with DEC-POMDPs, compared to
POMDPs, is the dimensionality of the policy space. In fact,
the number of policies grows double exponentially with re-
spect to the planning horizon and the number of observa-
tions. If we get |Qt−1

i | policies for agent i at step t−1, then
|Ai||Qt−1

i ||Ωi| new policies will be created at step t.

This curse of dimensionality has dramatic consequences on
both time and space complexity of the DEC-POMDPs al-
gorithms. From Algorithm 1, we can see that the dynamic
programming operator spends most of its time determining
the weakly dominated policies by checking the inequality
(3) for every policy qt

i . The usual approach for performing
this test is to use the linear program of Table 1. The objec-
tive function to be minimized is defined by ε , which is the
greatest difference between the value of qt

i and the value of
any other policy qt

i
′ over the belief space. If ε ≥ 0 then the

policy qt
i is dominated and should be removed, and if ε < 0,

then there is some region in ∆(S×Qt
j) where qt

i is domi-
nant. The variables are ε and the probabilities b(., .) of the
multi-agent belief state, so there are |S||Qt

j|+1 variables.

The time complexity of a linear program solver depends on
the number of variables and constraints defined in the prob-
lem, so, it depends directly on the number of policies and the
way we represent the beliefs over these policies. However,
the main problem of Dynamic Programming (Algorithm 1)
remains the size of the memory space required to represent
the value vectors V t for each joint policy. The memory space
required to represent these vectors at step t is |Qt

i||Qt
j||S|

floats. Indeed, this algorithm runs out of memory several
iterations before running out of time.

22

a1

a2

a1

o1

a1

o2

o1

a1

a1

o1

a1

o2

o2

a1

a2

a1

o1

a3

o2

o1

a1

a1

o1

a3

o2

o2

a1

a2

a2

o1

a1

o2

o1

a1

a2

o1

a1

o2

o2

a1

a2

a2

o1

a3

o2

o1

a1

a2

o1

a3

o2

o2

Q j = {qa,qb,qc,qd}

qb

qc qd

qa

⇔
U j =

 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1



=

 1 0 1
1 0 0
0 1 1
0 1 0


Ũ jFj

×

(1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 −1 0 0 1 −1

)

qa
qb
qc
qd

a1 o1 a2 o1 a1

a1 o1 a2 o1 a2

a1 o1 a2 o2 a1

a
1 o

1 a
2 o

2 a
3

a
1 o

2 a
1 o

1 a
1

a
1 o

2 a
1 o

1 a
2

a
1 o

2 a
1 o

2 a
1

a
1 o

2 a
1 o

2 a
3

Basis(Q̃ j)︷ ︸︸ ︷
q̃∗1 q̃∗2 q̃∗3

di
m

en
si

on
=

4

di
m

en
si

on
=

3

Figure 1: Reducing the policy space dimensionality.

To alleviate these problems, we need to use a more compact
technique to represent the belief of agent i on the policies of
agent j, instead of the naive probability distribution over all
the policies Qt

j. We can exploit the structure of the policies,
and find some features Q̃t

j = {q̃t
1, . . . , q̃

t
|Q̃t

j |
} which constitute

a sufficient information: each point in ∆Qt
j will correspond

to a point in ∆Q̃t
j, and vice versa. We should also guarantee

that |Q̃t
j| ≤ |Qt

j| and that most of the time |Q̃t
j| � |Qt

j|. A
policy is a collection of sequences of actions and observa-
tions. A sequence q̃t

j of horizon t for agent j is an ordered
list of t individual actions and t− 1 individual observations
(a1

j ,o
1
j , . . . ,o

t−1
j ,at

j). A joint sequence q̃t of horizon t is a
couple 〈q̃t

i, q̃
t
j〉 where q̃t

i is an individual sequence for agent
i and q̃t

j is an individual sequence for agent j, a joint se-
quence can also be seen as one ordered list of joint actions
and observations. The set Qt

j can be completely replaced,
without any loss of information, by a matrix U t

j called the
outcome matrix (Singh, James, & Rudary 2004). Each row
of U t

j will correspond to a policy qt
j ∈ Qt

j and each column
will correspond to a sequence q̃t

j. U t
j(q

t
j, q̃

t
j) is defined as

the probability that agent j will execute the actions of q̃t
j if

the observations of q̃t
j occur, such that the actual policy of

agent j is qt
j. Since the policies are deterministic, we have

U t
j(q

t
j, q̃

t
j) = 1 if the sequence q̃t

j appears in the policy qt
j,

and U t
j(q

t
j, q̃

t
j) = 0 else. Figure 1 shows a set Qt

j containing
4 individual policies for agent j: qa,qb,qc and qd . There
are 8 different sequences in these policies, the matrix U j has
then 4 rows and 8 columns.
If bi(s, .) is a multi-agent belief state, i.e. a probability dis-
tribution over the policies of Qt

j for some state s ∈ S, then
the product bi(s, .)U t

j returns a vector containing the proba-
bility of every sequence of Q̃t

j. To reduce the dimensionality
of bi(s, .) from |Qt

j| to N, we should find a transformation

function f defined by:

f : ∆Qt
j → [0,1]N

bi(s, .) 7→ b̃i(s, .)

b̃i(s, .) is called the reduced multi-agent belief state, it corre-
sponds to the belief about the sequences, whereas bi(s, .) is
the belief about the policies. In order that f be an accurate
transformation function, we should be able to make predic-
tions about any sequence q̃ j by using only the vector b̃i(s, .).

Linear reduction of policy space dimensionality

The outcome matrix U t
j can be factorized as follows:

U t
j = F t

jŨ
t
j

In this case, our transformation function is simply the matrix
F t

j . The reduced belief state b̃i can be generated from bi by:

b̃i(s, .) = bi(s, .)F t
j

and the probabilities of Q̃t
j sequences can be found by:

bi(s, .)U t
j = bi(s, .)(F t

jŨ
t
j)

= b̃i(s, .)Ũ t
j

The matrix F t
j is a basis for the matrix U t

j , it is formed by
linearly independent columns of U t

j . We use Basis(Q̃t
j) to

indicate the set of sequences corresponding to these linearly
independent columns. In Figure 1, Basis(Q̃t

j) contains the
sequences q̃∗1, q̃∗2 and q̃∗3. Note that |Basis(Q̃t

j)| ≤ |Qt
j|, be-

cause the linear rank of a matrix cannot be more than the
number of rows in this matrix, and F t

j has exactly |Qt
j| rows.

Since F t
j is a basis for the outcome matrix U t

j , we can write
any column of U t

j as linear combination of F t
j columns:

Pr(q̃t
j|qt

j) = U t
j(q

t
j, q̃

t
j) = F t

j (q
t
j, .)wq̃t

j

23

where wq̃t
j

is a weight vector1 associated to the sequence q̃t
j

(we have one weight vector per sequence). Similarly, wq̃t
j

is

the column corresponding to q̃t
j in the matrix Ũ t

j .

If b̃i(s, .) = bi(s, .)Fj is a reduced belief state, then:

Pr(s, q̃t
j|bi) = ∑

qt
j∈Qt

j

bi(s,qt
j)Pr(q̃t

j|qt
j)

= ∑
qt

j∈Qt
j

bi(s,qt
j)(F(qt

j, .)wq̃t
j
)

= b̃i(s, .)wq̃t
j

This means that given a reduced belief state, the probability
of any sequence is a linear combination of the probabilities
contained in this reduced belief state.

Finding the basis sequences

The main problem now is how to find the basis sequences
of Q̃t

j and their matrix F t
j without factorizing the entire

matrix U t
j at each step. The theorem below states that

if Basis(Q̃t−1
j) is the set of basis sequences for horizon

t − 1, then the sequences of Basis(Q̃t
j) for horizon t will

be among the one step extensions of the Basis(Q̃t−1
j) se-

quences. This means that we need to extend only the se-
quences of Basis(Q̃t−1

j) at each step, and construct the ma-
trix F t

j where the columns correspond to these extended se-
quences. F t

j may contain some linearly dependent columns,
along with the basis columns. Thus, we use a Gauss-Jordan
elimination on F t

j , or any other decomposition technique, to
extract Basis(Q̃t

j) in a polynomial time.

Theorem 1. Let Qt−1
j be a set of horizon t−1 policies, Q̃t−1

j

is the set of horizon t−1 sequences corresponding to Qt−1
j ,

Qt
j is the set of horizon t policies created from Qt−1

j by an
exhaustive backup, and Q̃t

j is the set of horizon t sequences
corresponding to Qt

j, then:

Basis(Q̃t
j)⊆ {aoq̃t−1

j : a ∈ A j,o ∈Ω j, q̃t−1
j ∈ Basis(Q̃t−1

j)}

Proof. This theorem claims that the sequences of Basis(Q̃t
j)

are contained in the one step extensions of the Basis(Q̃t−1
j)

sequences. In other words, ∀q̃t−1
j ∈ Q̃t−1

j ,∀a ∈ A j,∀o ∈Ω j,
we should be able to write the column U t

j(.,aoq̃t
j) as a linear

combination of the columns of F t
j , which is the sub-matrix

of U t
j corresponding to the sequences aoq̃t−1

j : a ∈ A j,o ∈
Ω j, q̃t−1

j ∈ Basis(Q̃t−1
j). U t

j is the outcome matrix of Qt
j,

1To simplify the notations, we consider that the belief vectors
are rows and the weight vectors are columns.

U t−1
j is the outcome matrix of Qt−1

j , F t−1
j is the sub-matrix

of U t−1
j corresponding to the sequences of Basis(Q̃t−1

j).

Let qt
j be a policy of Qt

j, q̃t−1
j a sequence of Q̃t−1

j , a an action
of A j and o an observations of Ω j, then we can be in one of
the following two situations:

• Case 1: the policy tree qt
j starts with an action different

from a, then the sequence aoq̃t−1
j does not appear in the

policy qt
j, so: U t

j(q
t
j,aoq̃t−1

j) = 0.

• Case 2: the policy tree qt
j starts with the action a, then

the sequence aoq̃t−1
j appears in the policy qt

j iff q̃t−1
j ap-

pears in o(qt
j), the sub-tree of qt

j below the first action
a and the observation o. We have then U t

j(q
t
j,aoq̃t−1

j) =
U t−1

j (o(qt
j), q̃

t−1
j) and ∀q̃∗j ∈ Basis(Q̃t−1

j) : F t
j (q

t
j,aoq̃∗j) =

F t−1
j (o(qt

j), q̃
∗
j). So 2:

U t
j(q

t
j,aoq̃t−1

j) = U t−1
j (o(qt

j), q̃
t−1
j)

= ∑
q̃∗j∈Basis(Q̃t−1

j)

Ft−1
j (o(qt

j), q̃
∗
j)wq̃t−1

j
(q̃∗j)

= ∑
q̃∗j∈Basis(Q̃t−1

j)

Ft
j (q

t
j,aoq̃∗j)waoq̃t−1

j
(aoq̃∗j)

= Ft
j (q

t
j, .)waoq̃t−1

j

where we define waoq̃t−1
j

as follows:{
waoq̃t−1

j
(a′o′q̃∗j) = wq̃t−1

j
(q̃∗j) if a = a′ and o = o′,

waoq̃t−1
j

(a′o′q̃∗j) = 0 else.

Cases 1 and 2 can be grouped together, we have then:

U t
j(q

t
j,aoq̃t−1

j) = F t
j (q

t
j, .)waoq̃t−1

j

Notice that the vector waoq̃t−1
j

is defined independently on

the policy qt
j. So, the sequences {aoq̃∗j : a ∈ A j,o ∈Ω j, q̃∗j ∈

Basis(Q̃t−1
j)} are indeed a basis for the matrix U t

j .

Reduced value vectors

Since we want to use this representation for planning, we
have to redefine the value function (equations 1 and 2), given
that the belief state is now about sequences instead of poli-
cies. First, we define the expected value Vq̃t (s) of a joint
sequence q̃t =~a1~o1~a2~o2 . . .~at in state s as follows:

Vq̃t (s) = Pr(q̃t |s)Rq̃t (s)
= Pr(~o1~o2 . . .~ot−1|s1 = s,~a1~a2 . . .~at−1)Rq̃t (s)

2We use q̃∗j to indicate a basis sequence, the horizon of this
sequence can be inferred from the context.

24

Pr(~o1~o2 . . .~ot−1|s,~a1~a2 . . .~at−1) is the probability that the
observations of q̃t will occur if we start executing the
actions of q̃t at s, and Rq̃t (s) is the reward expected from
the actions of q̃t such that the observations of q̃t will occur.
Rq̃t (s) is given by:

Rq̃t (s)=
t

∑
k=1

γ
k−1

∑
s′∈S

Pr(sk = s′|s1 = s,~a1~o1 . . .~at)R(s′,~ak)

=
∑

t
k=1 γk−1

∑s′∈S Pr(sk = s′,~o1 . . .~ot−1|s1 = s,~a1 . . .~at−1)R(s′,~ak)
Pr(~o1~o2 . . .~ot−1|s1 = s,~a1~a2 . . .~at−1)

=
∑

t
k=1 γk−1

∑s′∈S αk(s,s′, q̃t)β k(s′, q̃t)R(s′,~ak)
Pr(~o1~o2 . . .~ot−1|s1 = s,~a1~a2 . . .~at−1)

where:{
αk(s,s′, q̃t) = Pr(~o1 . . .~ok−1,sk = s′|s1 = s,~a1 . . .~ak−1)
βk(s′, q̃t) = Pr(~ok . . .~ot−1|sk = s′,~ak~a2 . . .~at−1)

We applied Bayes’ rule, and then we decomposed
Pr(sk = s′,~o1 . . .~ot−1|s1 = s,~a1 . . .~at−1) into αk(s,s′, q̃t) and
βk(s′, q̃t), taking advantage of Markov property.

So, the expected value of a joint sequence q̃t is given by:

Vq̃t (s) =
t

∑
k=1

γ
k−1

∑
s′∈S

αk(s,s′, q̃t)βk(s′, q̃t)R(s′,~ak)

This value is calculated recursively as follows:

V~a~oq̃t−1(s)=
t

∑
k=1

γ
k−1

∑
s′∈S

αk(s,s′,~a~oq̃t−1)βk(s′,~a~oq̃t−1)R(s′,~a)

= β1(s,~a~oq̃t−1)R(s,~a)

+
t

∑
k=2

γ
k−1

∑
s′∈S

αk(s,s′,~a~oq̃t−1)βk(s′,~a~oq̃t−1)R(s′,~a)

= β1(s,~a~oq̃t−1)R(s,~a)

+γ

t−1

∑
k=1

γ
k−1

∑
s′∈S

∑
s′′∈S

[P(s′′|s,~a)P(~o|s′′,~a)αk(s′′,s′, q̃t−1)

βk(s′, q̃t−1)R(s′,~a)]

= β1(s,~a~oq̃t−1)R(s,~a)+γ ∑
s′∈S

P(s′|s,~a)P(~o|s′,~a)Vq̃t−1(s′)

We used the following properties: α1(s,s,~a~oq̃t−1) = 1,
α1(s,s′,~a~oq̃t−1) = 0 for s′ 6= s, βk(s′,~a~oq̃t−1) =
βk−1(s′, q̃t−1) for k ≥ 2, and αk(s,s′,~a~oq̃t−1) =
∑s′′∈S P(s′′|s,~a)P(~o|s′′,~a)αk−1(s′′,s′, q̃t−1).

The value function of an individual policy qt
i in a reduced

belief state b̃i is given by:

Vqt
i
(b̃i) = ∑

s∈S
Pr(s|b̃i) ∑

q̃t
j∈Q̃t

j

q̃t
i∈Q̃t

i

Pr(q̃t
j|b̃i)Pr(q̃t

i |qt
i)V〈q̃t

i ,q̃
t
j〉(s)

= ∑
s∈S

∑
q̃∗j∈Basis(Q̃t

j)
q̃∗i ∈Basis(Q̃t

i)
F t

i (qt
i ,q̃
∗
i)=1

b̃i(s, q̃∗j)Ṽ〈q̃∗i ,q̃∗j 〉(s)

where:

Ṽ〈q̃∗i ,q̃∗j 〉(s)
de f
= ∑

q̃t
j∈Q̃t

j

q̃t
i∈Q̃t

i

wq̃t
j
(q̃∗j)wq̃t

i
(q̃∗i)V〈q̃t

i ,q̃
t
j〉(s)

We substituted the probability of each sequence q̃t
j with a

linear combination of the probabilities b̃i(s, q̃∗j) of the basis
sequences q̃∗j , and the probability of each sequence q̃t

i with
a linear combination of the probabilities F t

i (qt
i, q̃
∗
i) ∈ {0,1}

of the basis sequences q̃∗i . The reduced vector Ṽ〈q̃∗i ,q̃∗j 〉 de-
fines the contribution of 〈q̃∗i , q̃∗j〉 to the value of a joint policy,
by including a proportion of the values of all the sequences
which depend on 〈q̃∗i , q̃∗j〉. If we want to calculate the value
of a policy qt

i for a given multi-agent belief state b̃i, all we
need are the vectors Ṽ〈q̃∗i ,q̃∗j 〉 and the matrix F t

i .

We will see now how to calculate the value vectors Ṽ t given
the value vectors Ṽ t−1. At horizon 1, each policy is a sin-
gle action. We have then Basis(Q1

j) = A j, and Ṽ〈ai,a j〉(s) =
V〈ai,a j〉(s) = R(s,〈ai,a j〉). At horizon t > 1, we know from
Theorem 1 that the basis sequences are of the form aioiq̃∗i
and a jo jq̃∗j , where q̃∗i ∈ Basis(Q̃t−1

i) and q̃∗j ∈ Basis(Q̃t−1
j).

Ṽ〈aioiq̃∗i ,a jo j q̃∗j 〉(s) = ∑
q̃t−1

j ∈Q̃t−1
j

q̃t−1
i ∈Q̃t−1

i

wa jo j q̃t−1
j

(q̃∗j)waioiq̃t−1
i

(q̃∗i)

V〈aioiq̃t−1
i ,a jo j q̃t−1

j 〉
(s)

= R(s,〈ai,a j〉)C〈aioiq̃∗i ,a jo j q̃∗j 〉(s)

+ γ ∑
s′∈S

Pr(〈oi,o j〉,s′|s,〈ai,a j〉)V〈q̃i
∗,q̃ j

∗〉(s
′)

(4)

where:

C〈aioiq̃∗i ,a jo j q̃∗j 〉(s)
de f
= ∑

q̃t−1
j ∈Q̃t−1

j

q̃t−1
i ∈Q̃t−1

i

wa jo j q̃t−1
j

(q̃∗j)waioiq̃t−1
i

(q̃∗i)

Pr(〈aioiq̃t−1
i ,a jo j q̃t−1

j 〉)|s)

= ∑
s′∈S

P(s′|s,〈ai,a j〉)O(〈oi,o j〉|s′,〈ai,a j〉)C〈q̃∗i ,q̃∗j 〉(s
′) (5)

In order to calculate the value vector Ṽ〈aioiq̃∗i ,a jo j q̃∗j 〉, we only

need to know the vectors C〈q̃∗i ,q̃∗j 〉 and Ṽ〈q̃∗i ,q̃∗j 〉, provided by
the last iteration of the dynamic programming algorithm.

Algorithm

Algorithm 2 describes the main steps of the dynamic pro-
gramming algorithm where the policies are evaluated in a
reduced dimensional space. We keep the same structures Qt

i
and Qt

j used in Algorithm 1. The value vectors V t are re-
placed by lower dimensional vectors Ṽ t . We also need to

25

Input: Qt−1
i ,Qt−1

j ,Basis(Q̃t−1
i),Basis(Q̃t−1

j),
Ṽ t−1

i ,Ṽ t−1
j ,Ct−1

i ,Ct−1
j ;

Qt
i , Qt

j ← fullBackup(Qt−1
i), fullBackup(Qt−1

j);

Basis(Q̃t
i)← Ai×Oi×Basis(Q̃t−1

i);
Basis(Q̃t

j)← A j×O j×Basis(Q̃t−1
j);

Calculate the vectors Ct by using Ct−1 (Equation 5);
Calculate the vectors Ṽ t by using Ṽ t−1 (Equation 4);
repeat

remove the policies of Qt
j that are dominated (Table 2);

remove the policies of Qt
j that are dominated (Table 2);

until no more policies in Qt
i or Qt

j can be removed ;
removeDependence(Qt

i ,Basis(Q̃t
i),Basis(Q̃t

j),C
t ,Ṽ t);

removeDependence(Qt
j,Basis(Q̃t

j),Basis(Q̃t
j),C

t ,Ṽ t);
Output: Qt

i , Qt
j, Basis(Q̃t

i), Basis(Q̃t
j), Ṽ t

i , Ṽ t
j , Ct ;

Algorithm 2: Dynamic Programming for DEC-
POMDPs with Lossless Policy Belief Compression.

Input: Qt
i ,Basis(Q̃t

i),Basis(Q̃t
j),C

t ,Ṽ t ;
Use a decomposition method to find the linearly dependent
sequences in Basis(Q̃t

i), and remove them from Basis(Q̃t
i);

foreach each removed sequence q̃i from Basis(Q̃t
i) do

foreach basis sequence q̃∗i from Basis(Q̃t
i) do

foreach basis sequence q̃∗j from Basis(Q̃t
j) do

C〈q̃∗i ,q̃∗j 〉←C〈q̃∗i ,q̃∗j 〉+wq̃i(q̃
∗
i)C〈q̃i,q̃∗j 〉;

Ṽ〈q̃∗i ,q̃∗j 〉← Ṽ〈q̃∗i ,q̃∗j 〉+wq̃i(q̃
∗
i)Ṽ〈q̃i,q̃∗j 〉;

end
end

end
Output: Updated Basis(Q̃t

i),C
t ,Ṽ t ;

Algorithm 3: Removing the dependent sequences from
Basis(Q̃t

i) and updating the vectors Ct , Ṽ t .

maintain the lists Basis(Q̃t
i), Basis(Q̃t

j), and the probability
vectors Ct . The matrix F t

i (resp. F t
j) is implicitly repre-

sented by specifying for each basis sequence the list of poli-
cies where this sequence occurs.

At step t = 1, we have Q1
i = Basis(Q̃1

i) = Ai,Q1
j =

Basis(Q̃1
j) = A j and ∀ai ∈ Ai,∀a j ∈ A j : Ṽ〈ai,a j〉 =

R(.,〈ai,a j〉),C〈ai,a j〉 = 1. At step t > 1, Qt
i and Qt

j are the
sets of all possible policies of horizon t where the sub-
policies of horizon t− 1 are in Qt−1

i and Qt−1
j respectively.

Basis(Q̃t
i) and Basis(Q̃t

j) are formed by one step extensions
of Basis(Q̃t−1

i) and Basis(Q̃t−1
i) respectively.

We now calculate the probability vectors Ct by using the
vectors Ct−1 in Equation (5), and the value vectors Ṽ t us-
ing the vectors Ct and Ṽ t−1 in Equation (4). The vectors Ṽ t

are used to determine which policies of i and j are domi-
nated and should be removed. We use the linear program
of Table 2 to solve this problem for each policy qt

i . The
variables of this linear program are: ε , and the probabili-

minimize: ε

subject to:
∀s ∈ S,∀q̃∗j ∈ Basis(Q̃t

j) :

0≤ b̃i(s, q̃∗j)≤ 1

∀qt
i
′ ∈ Qt

i−{qt
i} :

Vqt
i
(b̃i)−Vqt

i
′(b̃i)+ ε > 0

Table 2: The linear program used to determine if a policy qt
i

is dominated or not, with a reduced belief space.

ties b̃(., .) of the reduced multi-agent belief state, we have
then |S||Basis(Q̃t

j)|+1 variables. Notice that contrary to the
original belief state bi(s, .) which is a probability distribu-
tion over the policies of agent j, the reduced belief space
b̃i(s, .) is not necessarily a probability distribution, because
the sequences are not mutually exclusive. In Figure 1 for
example, if b(s,qa) = 1 then b̃(s, q̃∗1) = 1 and b(s, q̃∗3) = 1.
The relation between the different basis sequences is more
complex and more constraints should be added to make sure
that any reduced belief considered in the linear program will
really correspond to some belief in the original space. In
fact, if we take any belief bi(s, .), we can always find a re-
duced belief b̃i(s, .) = bi(s, .)F t

j where all the policies keep
the same values, but given a reduced belief b̃i(s, .), we are
not sure of finding a belief bi(s, .) in the original space such
that b̃i(s, .) = bi(s, .)F t

j . This is true if and only if the trans-
formation function, represented by the matrix Fj is a bijec-
tion. However, if a policy qt

i is not dominated, then there is a
belief bi(., .) where Vqt

i
(bi) > Vqt

i
′(bi),∀qt

i
′ ∈ Qt

i −{qt
i}, and

in the corresponding reduced belief b̃i(., .) = bi(., .)Fj, we
will also have Vqt

i
(b̃i) >Vqt

i
′(b̃i),∀qt

i
′ ∈Qt

i−{qt
i}. Therefore,

the linear program of Table 2. keeps at least all the dominant
policies, but can keep some dominated policies (Table 3.).

After pruning the dominated policies, some basis sequences
become linearly dependent. Algorithm 3 is then used to re-
move the newly dependent sequences, and to update the pa-
rameters C and Ṽ of the remaining basis sequences. These
two update operations are derived from the definitions of C
and Ṽ . Notice that when we eliminate policies (i.e. eliminate
rows from the matrix U), the linearly dependent sequences
remain dependent, and keep the same weight vectors.

Experiments

We implemented both of Algorithm 1 (DP) and Algorithm 2
(DP with Policy Compression) using ILOG Cplex 10 solver
on an AMD Athlon machine with a 1.80 GH processor and
1.5 GB ram. We used Gauss-Jordan elimination method to

26

Dynamic Programming Dynamic Programming with Lossless Policy Compression
Problem T runtime policies runtime policies basis sequences compression ratio

MA-Tiger 2 0.20 (27,27) 0.17 (27,27) (18,18) 1.5
3 2.29 (675,675) 1.79 (675,675) (90,90) 7.5
4 - - 534.90 (195075,195075) (540,540) 361.25

MABC 2 0.12 (8,8) 0.14 (8,8) (8,8) 1
3 0.46 (72,72) 0.36 (72,72) (24,24) 3
4 17.59 (1800,1458) 4.59 (3528,3528) (80,80) 44.1

Table 3: The runtime (in seconds) and the number of policies and sequences of DP algorithms, with and without compression.

find the basis sequences. For the last step of planning, we
omit pruning the dominated policies since we will not use
them to generate further policies, thus, we only generate the
value vectors of each joint policy and each joint sequence.
We compared the performances of these two algorithms on
two benchmark problems MA-Tiger and MABC (Hansen,
Bernstein, & Zilberstein 2004). Both of the two algorithms
find the same optimal values. However, the memory space
used to represent value vectors is significantly smaller when
we use the compression approach. In fact, the value vectors
in the original DP algorithm are defined on states and poli-
cies, whereas the reduced value vectors are defined on states
and basis sequences. Notice also that the compression ratio
(policies number/basis sequences number) grows exponen-
tially w.r.t the planning horizon. Also, the runtime of DP
is improved when the compression algorithm is used. In-
deed, the backup of reduced value vectors (equations 4 and
5) takes less time than the backup of original value vectors
(equation 1). However, given that the linear program of Ta-
ble 2 is under-constrained, our algorithm can keep some ad-
ditional policies that are dominated. In MABC for example,
our algorithm generates 3528×3528 joint policies at the be-
ginning of horizon 4, while only 1800×1458 joint policies
are not dominated. This problem can be solved by adding
a larger system of constraints on the probabilities of the se-
quences, but the computational efficiency will be possibly
affected. We can see that as in all the compression tech-
niques, there is a tradeoff between the space performance
and the time performance.

Conclusion

The dimensionality of the policy space is a crucial factor
in the complexity of Dynamic Programming algorithms for
DEC-POMDPs. In this paper, we introduced a new ap-
proach for dealing with this problem, based on projecting
the policy beliefs from the high dimensional space of trees
to the low dimensional space of sequences, and using ma-
trix factorization methods to reduce even more the number
of sequences. Consequently, the memory space used in this
algorithm is significantly smaller, while the runtime is lower
compared to the original DP algorithm. This method can
be used in approximate DP algorithms, mainly for domains
with large observations space. We target also to investigate
quick and lossy factorization techniques, and more specifi-
cally, binary-matrices factorization algorithms.

References

Aras, R.; Dutech, A.; and Charpillet, F. 2007. Mixed Integer Lin-
ear Programming for Exact Finite-Horizon Planning in Decen-
tralized POMDPs. In Proceedings of International Conference
on Automated Planning and Scheduling (ICAPS’07), 18–25.
Bernstein, D.; Immerman, N.; and Zilberstein, S. 2002. The Com-
plexity of Decentralized Control of Markov Decision Processes.
Mathematics of Operations Research 27(4):819–840.
Hansen, E.; Bernstein, D.; and Zilberstein, S. 2004. Dynamic
Programming for Partially Observable Stochastic Games. In Pro-
ceedings of the 19th National Conference on Artificial Intelli-
gence (AAAI’04), 709–715.
Littman, M.; Sutton, R.; and Singh, S. 2001. Predictive Repre-
sentations of State. In Advances in Neural Information Processing
Systems 14 (NIPS’01), 1555–1561.
Papadimitriou, C., and Tsitsiklis, J. 1987. The Complexity of
Markov Decision Process. Mathematics of Operations Research
12(3):441–450.
Rabinovich, Z.; Goldman, C.; and Rosenschein, J. 2003. The
Complexity of Multiagent Systems: the Price of Silence. In
Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems (AAMAS’03), 1102–
1103.
Seuken, S., and Zilberstein, S. 2007. Improved Memory-Bounded
Dynamic Programming for Decentralized POMDPs. In Proceed-
ings of the 23rd Conference on Uncertainty in Artificial Intelli-
gence (UAI’07).
Singh, S.; James, M.; and Rudary, M. 2004. Predictive State
Representations: A New Theory for Modeling Dynamical Sys-
tems. In Uncertainty in Artificial Intelligence: Proceedings of the
Twentieth Conference (UAI’04).
Smallwood, R. D., and Sondik, E. J. 1971. The Optimal Control
of Partially Observable Markov Decision Processes over a Finite
Horizon. Operations Research 21(5):1557–1566.
Szer, D., and Charpillet, F. 2006. Point-Based Dynamic Program-
ming for DEC-POMDPs. In Proceedings of the 21th National
Conference on Artificial Intelligence (AAAI’06), 304–311.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. MAA*: A
Heuristic Search Algorithm for Solving Decentralized POMDPs.
In Proceedings of 21st Conference on Uncertainty in Artificial
Intelligence (UAI’05).
Virin, Y.; Shani, G.; Shimony, S.; and Brafman, R. 2007. Scal-
ing Up: Solving POMDPs through Value Based Clustering. In
Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence (AAAI’07), 1290–1295.

27

http://www.aaaipress.org

	ICAPS 2008
	Home
	Contents
	Index
	ICAPS Conferences

