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Approximation Algorithms for Bregman
Clustering Co-clustering and Tensor Clustering

Suvrit Sra, Stefanie Jegelka, and Arindam Banerjee

Abstract. The Euclidean K-means problem is fundamental to clustering and over the years it has been
intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10],
and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational diffi-
culty encountered by these clustering problems is the NP-Hardness of the associated optimization task,
and commonly used methods guarantee at most local optimality. Consequently, approximation algo-
rithms of varying degrees of sophistication have been developed, though largely for the basic Euclidean
K-means (or `1-norm K-median) problem. In this paper we present approximation algorithms for several
Bregman clustering problems by building upon the recent paper of Arthur and Vassilvitskii [5]. Our al-
gorithms obtain objective values within a factorO(logK) for Bregman k-means, Bregman co-clustering,
Bregman tensor clustering, and weighted kernel k-means. To our knowledge, except for some special
cases, approximation algorithms have not been considered for these general clustering problems. There
are several important implications of our work: (i) under the same assumptions as Ackermann et al. [2]
it yields a much faster algorithm (non-exponential in K, unlike [2]) for information-theoretic clustering,
(ii) it answers several open problems posed by [4], including generalizations to Bregman co-clustering,
and tensor clustering, (iii) it provides practical and easy to implement methods—in contrast to several
other common approximation approaches.

1 Introduction

Partitioning data points into clusters is a fundamentally hard problem. The well-known Euclidean k-
means problem that seeks to partition the input data into K clusters, so that the sum of squared distances
of the input points to their corresponding cluster centroids is minimized, is an NP-Hard problem [22].
Simple and frequently used procedures that rapidly obtain local minima exist since a long time [26, 32].
For example, Lloyd’s algorithm [32], which is commonly referred to as the K-means algorithm is ar-
guably the most popular approach to solving Euclidean k-means. Here, one begins with K centers (usu-
ally chosen randomly) and assigns points to their closest centers. Each cluster center is then recomputed
as the mean of the points assigned to it, and these two steps are repeated until the procedure converges.
A similar greedy procedure also exists for the Bregman k-means problem, as shown in [8]. Despite
enjoying properties such as monotonic descent in the objective function value and utter simplicity of
implementation, these simplistic iterative approaches can often get stuck in poor local-optima. There-
fore, heuristic local search strategies (e.g., [21]), or even guaranteed approximation algorithms have been
designed for it (e.g., [31] or references therein). Heuristic strategies can be quite effective but are not ac-
companied by better than local optimality guarantees, while standard approximation algorithms quickly
sacrifice the simplicity, and thereby the efficiency of the K-means algorithm.

Fortunately, in a recent paper Arthur and Vassilvitskii [5] presented a simple initialization scheme
for Euclidean k-means along with an elegant analysis guaranteeing an O(logK) approximation to the
globally optimal objective function value. The greatest advantage of their scheme is that it retains the
simplicity and efficiency of the K-means algorithm, while still maintaining theoretical guarantees. This
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paper is directly motivated by their work, which we greatly extend to obtain approximation algorithms
for several Bregman clustering problems. We summarize our main results below.

1.1 Results.
We present approximation algorithms for the following Bregman divergence based clustering problems:

1. Bregman k-means [8] (§2),
2. Bregman co-clustering [10] (§5),
3. Bregman tensor clustering [9] (§5).

Additionally as an easy generalization of [5] we also obtain an approximation algorithm for weighted
kernel k-means [20] (§4).

Implications. Our results have several important implications. Under assumptions similar to that
of (Ackermann et al. [2], 2008), we obtain a much faster approximation algorithm for information-
theoretic clustering as a special case of our approximation for Bregman k-means (§3.1). Ackermann
et al. [2] require time exponential (or worse) in K, while our methods run in time linear in K. In fact,
while preparing this paper we became aware of a very recent SODA 2009 paper of Ackermann and
Blömer [1] (yet to appear in print), who provide new approximation algorithms for Bregman k-means.
However, their new algorithms, while faster than those in [2], are still exponential (or worse) in K—our
algorithm operates under the same assumptions on the Bregman divergences as made by [1], and is much
faster (non-exponential in K).

Our results for Bregman co-clustering and Bregman tensor clustering answer two open problems posed
by [4], and yield the first (to our knowledge) known approximation algorithms for these problems. Fi-
nally, using our O(logK) approximation for weighted kernel K-means, one can obtain potentially better
algorithms for graph-cut objectives and certain semi-supervised clustering problems by exploiting the
equivalences described by [20, 30].

1.2 Related work
There exist several books and a vast array of papers dealing with the problem of clustering. However,
as our focus is on approximation algorithms for Bregman divergence based clustering problems, we
summarize below only work dealing with approximation algorithms for clustering. Graph partitioning
also forms a large class of clustering problems and algorithms. However, it lies outside the scope of this
paper, apart from the connection via weighted kernel k-means as mentioned above.

1.2.1 Clustering
The most directly related work is the paper [5] that has motivated our algorithms for clustering. If one

fixes the number of clusters K, and the data dimensionality d, then Euclidean k-means can be solved
exactly, in time O(nKd) [28]. We remark that using the Bregman Voronoi ideas of Nielsen et al. [35], it
might be possible to generalize the work of Inaba et al. [28] to Bregman k-means.

Several other polynomial time approximation algorithms for K-means have been proposed in the lit-
erature, for example, [17, 25, 31] (also see the references therein). All of the algorithms proposed in
these papers suffer from a common problem, namely exponential (or poly-exponential) dependence on
K, rendering them impractical despite their theoretical pleasantness.

Of particular interest is the paper of Ackermann et al. [2], who extended clustering guarantees of Ku-
mar et al. [31] to generic divergence measures (including Bregman divergences). Under the same as-
sumptions on the underlying Bregman divergence as Ackermann et al. [2] we obtain a much faster and
practical approximation algorithm for Bregman k-means than their methods. Their approximation factor
is (1 + ε) with a running time of O(dn2(K/ε)O(1)

), while our factor is O(logK) with a running time of
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O(dnK). In an even more recent paper that will appear in SODA 2009, Ackermann and Blömer [1]
(preprint available from the authors’ website) have introduced a new O(dKn + d22(K/ε)Θ(1)

logK+2 n)
approximation algorithm for Bregman k-means that again achieves (1+ ε) approximation, with the same
assumptions as [2] on the underlying Bregman divergences. Our approximation algorithms for Bregman
k-means are much more practical than theirs, both because of the lower running time as well as the
implementational simplicity.

Related to Bregman k-means is the important special case of information theoretic clustering, wherein
one minimizes the sum of KL divergences of input data points to their cluster centroids. In addition to the
generic methods already summarized above, recent important work worth mentioning here is the paper
of Chaudhuri and McGregor [14], who present a KL-divergence clustering algorithm that does not make
any assumptions on the input data, but yields a non-constant O(log n) approximation.

Other relevant works such as [29, 34, 36] are summarized in [1, 2, 5], and we refer the reader to those
papers for additional information.

1.2.2 Co-clustering and Tensor clustering.
For a detailed discussion of co-clustering and several relevant references we refer the reader to [10],

while for the lesser known problem of tensor clustering we refer the reader to [3, 9, 11, 23, 33, 40].
Approximation algorithms for co-clustering are much less well-studied. We are aware of only two

very recent attempts (both papers are from 2008), namely, [38] and [4]–and both of the papers follow
similar approaches to obtain their approximation guarantees. In this paper, we build upon [4] and obtain
approximation algorithms for Bregman co-clustering as well as Bregman tensor clustering. We therefore
answer two open problems posed by [4], namely, whether their methods for Euclidean co-clustering could
be generalized to Bregman co-clustering, and more importantly, whether generalizations to tensors could
be found. Our approximation results for co-clustering and tensor clustering may be viewed independently
of our results for Bregman clustering, because they are based on being able to solve the 1-dimensional
(standard) clustering problem with any guaranteed approximation method. One can, and we do, however,
invoke our Bregman clustering results to obtain actual efficient algorithms.

Now we are ready to discuss details of our methods and we begin with Bregman clustering below.

2 Bregman Clustering

Bregman k-means (BREGM) was introduced by Banerjee et al. [8], and it can be viewed as a generaliza-
tion of Euclidean k-means and information theoretic clustering (ITC) [19]. Below we derive a random-
ized algorithm called BREG++ for Bregman k-means and prove it to be within O(logK) of the optimal.
In §3.1 we discuss the particularly interesting special case of ITC in further detail, especially because
ITC has only recently (in 2008) witnessed some progress in terms of approximation algorithms [2, 14].
We also discuss implications of our BREG++ for mixture-modeling in §3.2.

2.1 Setup and Algorithm.

Let X = {x1, . . . ,xn} be the input data, and {w1, . . . , wn} corresponding non-negative weights. For a
strictly convex function f , let Bf denote a Bregman divergence defined as [13]

Bf (x,y) = f(x)− f(y)−∇f(y)T
(
x− y

)
. (2.1)

Given Bf , Bregman k-means seeks a partition C = {C1, . . . , CK} of X , such that the following objective
is minimized:

J(C) =
K∑
h=1

∑
xi∈Ch

wiBf (xi,µh), (2.2)
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where µh is the weighted mean of cluster Ch, i.e.,

µh =
∑
xi∈Ch wixi∑
xi∈Ch wi

. (2.3)

The means given by (2.3) are optimal for a given clustering, as shown formally below.

Lemma 2.1. Let A be a set of points with weighted mean µA, and let z be an arbitrary point. Then,∑
xi∈A

wiBf (xi, z) =
∑
xi∈A

wiBf (xi,µA) +WABf (µA, z),

where WA =
∑
xi∈Awi.

Proof. Follows directly from the definition (2.1) of Bf and equation (2.3)—for details see [8].

Algorithm. Given K initial means, the Bregman k-means (BREGM) algorithm [8] follows the outline:

1. For each i = 1 . . . N , assign point xi to its nearest (in Bf ) mean updating cluster Ch.

2. For each h = 1 . . .K, compute µh using (2.3).

3. Repeat steps 1 and 2 to convergence.

This simple k-means type approach monotonically decreases the objective function, finally stopping once
the clusters stabilize. To obtain approximation guarantees, we must modify this basic algorithm a little.
To that end, we generalize the careful initialization technique of [5], as shown below.

As its initialization, BREG++ selects cluster centers from X sequentially following a weighted
farthest-first scheme. The first center µ1 is chosen with probability proportional to its weight, i.e., for
some xi ∈ X

P (µ1 = xi) =
wi∑n
j=1wj

.

The remaining centers are chosen fromX with a different weighting. At a given stage in the initialization,
let C be the set of centers already chosen. Let D(x) denote the smallest Bregman divergence of a point
x in X to an already chosen center, i.e.,

D(x) = min
µ∈C

Bf (x,µ). (2.4)

Then BREG++ chooses the next center µh by letting µh = xi ∈ X , with probability

P (µh = xi) =
wiD(xi)∑n
j=1wjD(xj)

. (2.5)

The initialization steps (2.4) and (2.5) are repeated until we have chosen K centers, which are then
used to initialize the standard BREGM algorithm. Interestingly, this weighted farthest-first initialization
alone is sufficient to bring BREG++ within a factorO(logK) of the optimal, as the analysis below shows.

2.2 Analysis.

Arthur and Vassilvitskii’s [2007] analysis does not directly generalize to Bregman k-means. Some ad-
ditional details must be developed as outlined in this section. We assume that the Bregman divergence
being minimized has bounded curvature, i.e., ∃ σ1, σ2 with 0 < σ1 ≤ σ2 <∞, such that

σ1‖x− y‖2 ≤ Bf (x,y) ≤ σ2‖x− y‖2. (2.6)
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Note that the bounds (2.6) need not hold over the entire domain of f—they can be limited to convex
hulls of the input data points. Specifically, we can select

σ1 = inf
x∈X

y∈conv(X )

Bf (x,y)
‖x− y‖2

, σ2 = sup
x∈conv(X )

y∈X

Bf (x,y)
‖x− y‖2

, (2.7)

where conv(X ) denotes the convex hull of X , i.e., the set of points that can be expressed as y =∑
x∈X αxx with αx ≥ 0 and

∑
x∈X αx = 1. Though these bounds might appear restrictive, they

are in fact not that limiting, as our treatment of information theoretic clustering in Section 3.1 shows. In
fact, it turns out the similar bounds were assumed in the very recent work of Ackermann et al. [2], and [1].
In the language of convex-optimization, these bounds are nothing but bounds on curvature (Hessian) of
the convex function Bf (e.g., in the context of strong convexity [12, §9.1.2]).

On a more intriguing note, it seems that without such assumptions on the curvature of Bf , one might
not be able to obtain constant approximation ratios; this intuition is reinforced by the recent results
of [14], who avoided making such assumptions, but ended up with an O(log n) approximation.

We now prove the approximation in three steps (following [5]). First we show that BREG++ is com-
petitive in those clusters out of the optimal clustering COPT from which it happens to sample a center.

Lemma 2.2. Let A be an arbitrary cluster in COPT and let C be the clustering with just one center that
was chosen with probability proportional to the weight of points in A. Then, if J(A) is the contribution
of points in A to the final objective, we have

E[J(A)] ≤
(
1 +

σ2

σ1

)
JOPT(A).

Proof. Let µA denote the weighted mean of cluster A. Since COPT is optimal, it must be using µA as its
center. Let WA =

∑
xi∈Awi. Now invoking Lemma 2.1 we note that E[J(A)] is given by

∑
µ0∈A

wo
WA

( ∑
xi∈A

wiBf (xi;µ0)
)

=
∑
µ0∈A

wo
WA

∑
xi∈A

wiBf (xi;µA) +
∑
µ0

WABf (µA;µ0)

= JOPT(A) +
∑
µ0∈A

WA
Bf (µA;µ0)
Bf (µ0;µA)

Bf (µ0;µA)

≤ JOPT(A) +
σ2

σ1
JOPT(A) =

(
1 +

σ2

σ1

)
JOPT(A),

where the last inequality follows from (2.7).

The second step consists of showing how the algorithm behaves for the remaining centers that are
chosen with the weighted farthest-first sampling.

Lemma 2.3. Let A be an arbitrary cluster in COPT, and let C be an arbitrary clustering. If we add a
random point of A as a center to C using (2.4) and (2.5), then

E[J(A)] ≤ 4
σ2

σ1

(
1 +

σ2

σ1

)
JOPT(A) .

Proof. After choosing a center x0 fromA, any point xi ∈ A will contribute wi min(D(xi), Bf (xi,x0))
to the objective. Since we sample according to (2.5), the expected value of the objective E[J(A)] is∑

x0∈A

w0D(x0)∑
x∈AwxD(x)

∑
xi∈A

wi min(D(xi), Bf (xi,x0)).
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Let c0 and ci be the centers closest to x0 and xi, respectively, From the triangle inequality we have

‖x0 − ci‖ ≤ ‖x0 − xi‖+ ‖xi − ci‖.

Then using (2.7) we can bound the divergence

Bf (x0, ci) ≤ σ2‖x0 − ci‖2 ≤ σ2
(
‖x0 − xi‖+ ‖xi − ci‖

)2
≤ 2σ2‖x0 − xi‖2 + 2σ2‖xi − ci‖2

≤ 2
σ2

σ1
Bf (xi,x0) + 2

σ2

σ1
Bf (xi, ci).

Noting that D(x0) = Bf (x0, c0) ≤ Bf (x0, ci) and D(xi) = Bf (xi, ci), we have the bound

D(x0) ≤ 2
σ2

σ1
Bf (xi,x0) + 2

σ2

σ1
D(xi).

Multiplying both sides by wi and summing over all xi ∈ A, we have (for WA =
∑
xi∈Awi)

WAD(x0) ≤ 2
σ2

σ1

( ∑
xi∈A

wiBf (xi,x0) + wiD(xi)
)
, i.e.,

w0D(x0) ≤ 2
σ2

σ1

w0

WA

( ∑
xi∈A

wiBf (xi,x0) + wiD(xi)
)
.

Now letting R(A) =
∑
xi∈Awi min(D(xi), Bf (xi,x0)), we see that E[J(A)] is upper bounded by

2
σ2

σ1

∑
x0∈A

w0

WA

(∑
xi∈Awi

(
Bf (xi,x0) +D(xi)

)∑
x∈AwxD(x)

R(A)

)

≤ 2
σ2

σ1

∑
x0∈A

w0

WA

∑
xi∈A

wiBf (xi,x0)

+ 2
σ2

σ1

∑
x0∈A

w0

WA

∑
xi∈A

wiBf (xi,x0)

= 4
σ2

σ1

∑
x0∈A

w0

WA

∑
xi∈A

wiBf (xi,x0)

≤ 4
σ2

σ1

(
1 +

σ2

σ1

)
JOPT(A),

where in the second line we simplified R(A) by using min(D(xi), Bf (xi,x0)) ≤ D(xi), while for the
third line we used min(D(xi), Bf (xi,x0)) ≤ Bf (xi,x0). The last inequality follows from Lemma 2.2.

Remark 2.3 (K-means). For f(x) = 1
2x

Tx we have σ1 = σ2, and Bregman k-means is reduces to
Euclidean k-means, and our analysis reduces to that of [5].

Remark 2.4 (Mahalanobis). For f = 1
2x

TAx, where A is a positive-definite matrix, the resulting
Bregman divergence is a Mahalanobis distance. Here, one has σ1 = λmin(A), and σ2 = λmax(A), inde-
pendent of the input data (the λs denote eigenvalues of A). The approximation ratio depends naturally
on the condition number λmax(A)/λmin(A) ofA.

Given Lemmas 2.2 and 2.3, the third step of our proof is simple as we can essentially invoke
Lemma 3.3 of [5] to show that the total error incurred via the weighted farthest-first sampling is within a
factor O(logK) of the optimal.
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Lemma 2.4. Let C be an arbitrary clustering. Choose u > 0 “uncovered”1 clusters from COPT, and let
Xu denote the set of points in these clusters. Also let Xc = X \ Xu. Now suppose we add t ≤ u random
centers to C, chosen with the weighted farthest-first sampling. Let C′ denote the resulting clustering, and
let J ′ denote the corresponding objective. Then, E[J ′] is at most(

J(Xc) + 4
σ2

σ1

(
1 +

σ2

σ1

)
JOPT(Xu)

)
· (1 +Ht) +

u− t
u
· J(Xu),

where Ht denotes the Harmonic number 1 + 1
2 + · · ·+ 1

t .

Proof. Direct from the proof of Lemma 3.3 of [5].

Finally, we have the main approximation theorem.

Theorem 2.5. A clustering C obtained via BREG++ satisfies

E[J(C)] ≤ 4
σ2

σ1

(
1 +

σ2

σ1

)
(logK + 2)JOPT.

Proof. Immediate from Theorem 3.1 of [5] by a direct application of Lemma 2.4.

3 Implications of BREG++

We now describe some important implications of our BREG++ method derived above.

3.1 Information Theoretic Clustering.
With f(x) =

∑
j xj log xj , the Bregman divergence Bf becomes the (un-normalized) Kullback-Leibler

divergence, and Bregman k-means reduces to information theoretic clustering (ITC). Even though local
and greedy methods for ITC have been well studied [6, 19, 37], approximation algorithms for it have
only been developed very recently [2, 14] (both papers are from 2008).

For ITC, our assumptions on bounded σ1 and σ2 are equivalent to those of [2] as mentioned previously.
Under these assumptions we obtain an efficient k-means type O(logK) approximation algorithm, while
Ackermann et al. [2] obtain an O(1 + ε) approximation algorithm, with an impractical running time of

O(dn2(K
ε

)
O(1)

). The even more recent paper of Ackermann and Blömer [1] yields an ITC algorithm
faster than that of [2], but still has an impractical running time of O(dKn+ d22(K/ε)Θ(1)

logK+2 n).
Chaudhuri and McGregor [14] develop an approximation algorithm ITC that does not make any as-

sumptions on the data. They first lower bound the KL-divergence using a Hellinger distance, then cluster
approximately using this distance, before recovering clusters for KL. Their method is clever, but leads to
a non-constant approximation ratio ofO(log n) (n is the number of input points). Obtaining anO(logK)
algorithm for ITC without any assumptions on the data therefore remains an open problem—though we
suspect that without additional assumptions, ITC might be inapproximable to better than a polylog factor.

Details. Observe that given the definition the Bregman divergence (2.1), using Taylor series expansion
of f around x we immediately have

Bf (x,y) = 1
2(x− y)T∇2f(ξx,y)(x− y),

where ξx,y is some point between x and y. Since ∇2f is positive definite, the constants σ1 and σ2

can be obtained by bounding the minimum and maximum eigenvalues of ∇2f . For ITC, one assumes
the input data to be normalized, i.e., for each x ∈ X ,

∑
j xj = 1. Since the Hessian for the KL-

divergence is ∇2f(x) = Diag(x−1
1 , . . . , x−1

d ) at a point x = (x1, . . . , xd), its maximum eigenvalue is
(1− ‖1− x‖∞)−1 and the minimum eigenvalue is ‖x‖−1

∞ .
1An “uncovered” cluster is one from which a center has not been chosen by the weighted farthest-first sampling procedure.
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Since the interpolating point ξx,y lies in conv(X ) for x, y ∈ conv(X ), we can select

σ−1
1 = max

y∈conv(X )
‖y‖∞ = max

x∈X
‖x‖∞.

Analogously we have,

σ−1
2 = min

y∈conv(X )
(1− ‖1− y‖∞) = min

x∈X
(1− ‖1− x‖∞).

The reduction from conv(X ) to X results from each y ∈ conv(X ) being a convex combination of the
data points, whereby its coordinates are a convex combination of the data point coordinates. This convex
combination is maximized by putting all weight on the maximum component. Thus, σ1 ≥ 1 and σ2

corresponds to inverse of the minimum coordinate entry γ in the data set, so σ2/σ1 ≤ γ−1. Ackermann
et al. [2] and Ackermann and Blömer [1] will also have a similar dependence on γ.

3.2 Mixture Modeling on Exponential Families

The parametric mixture modeling problem entails fitting a mixture of K distributions from a pre-defined
family to a set of observations. Let x denote an observation, π a prior over the mixture components,
and θh the parameters corresponding to the zth mixture component. Then, a mixture model assumes
the following generative process: (i) sample z ∼ π, and (ii) sample x ∼ p(x|θz). Given a set of
observations, the basic mixture modeling problem is that of finding the parameters Θ = (π,θz, {z}K1 )
such that log p(x|Θ) is maximized.2 More formally, if X denotes the random variable corresponding to
the observations and Z denotes the one corresponding to the mixture components, a direct calculation [7]
shows that the problem is equivalent to maximizing

JMM (Θ) = EZ|X [log p(X,Z|Θ)] +H(Z|X) (3.1)

over Θ, where

p(z|x) =
πzp(x|θz)
p(x)

,

and H(·) denotes the Shannon entropy of Z|X . For the purposes of analysis one can focus on the
expected log-likelihood of the data, i.e., the first term in (3.1). In practice, for several real datasets,
the distribution p(z|x) is typically skewed in that it has a high value ≈ 1 for some z∗, and low values
≈ 0 for other z, so that the entropy H(Z|X) is rather small. As a result, ignoring the entropy term
may be reasonable in an application. A more theoretically well motivated justification can be given
by considering “hard clustering” for the mixture modeling problem, where we focus on the family of
posterior distributions

q(z|x) =

{
1, ifp(z|x) > p(z′|x),∀z′ 6= z,

0, otherwise .

For simplicity, we let z∗i = z such that p(z|xi) > p(z′|xi),∀z′ 6= z. If JQ(Θ) is the corresponding
objective, then following [7] we have

JMM (Θ)−H(Z|X) ≤ JQ(Θ) ≤ JMM (Θ) .

Thus, JQ(Θ) forms a tight lower bound to the original objective JMM (Θ), especially when entropy of
Z|X is small, which is true for several real world problems.

2Note that the objective log p(x|Θ) is always non-positive since p(x|Θ) ≤ 1. All objective functions in this section share
the same property.
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We focus on mixture models over exponential family distributions, whose density functions can be
written as

p(x|θ) = exp(〈x,θ〉 − ψ(θz))p0(x) ,

where ψ is a convex function of Legendre [39] type known as the cumulant, θ is the natural parameter,
and p0(x) is a base measure. A particular choice of ψ determines a family, such as Gaussian or Poisson,
while a particular choice of θ determines a specific distribution in the family. The expectation parameter
µ = E[X] of an exponential family distribution is uniquely tied to the natural parameter through a
Legendre transform µ = ∇ψ(θ), and θ = ∇φ(µ) where φ is the Legendre conjugate of ψ [39].

Our results below rely on the following key connection between exponential family distributions and
Bregman divergences [8]. The density function p(x|θz) of an exponential family distribution can be
uniquely written as

p(x|θz) = exp(−Bφ(x,µ))f0(x), (3.2)

where φ is the Legendre conjugate of ψ, and µ = E[X] = ∇ψ(θ) is the expectation parameter.
Now we use BREG++ to optimize JQ(Θ) based on the expectation parameter µz of each component

z = 1, . . . ,K. The only additional step is to set (for each i) z∗i = z if xi is assigned to cluster z.

Lemma 3.1. Let ΘMM denote the natural parameters corresponding to the final mean parameters after
convergence, and let πz = |Cz|/n, where |Cz| denotes the number of elements in the z-th cluster. Then,
(recall JQ is negative)

E[JQ(ΘMM )] ≥ 4
σ2

σ1

(
1 +

σ2

σ1

)
JQ(Θ∗),

where Θ∗ denotes an optimum set of parameters.

Proof. By definition,

max
Θ

JQ(Θ) = max
Θ

EZ|X∼Q[log p(X,Z|Θ)] +HQ(Z|X)

= max
Θ

1
n

n∑
i=1

log p(xi|θz∗i )

= max
µ
− 1
n

n∑
i=1

Bφ(xi,µz∗i ) = min
µ

1
n

n∑
i=1

Bφ(xi,µz∗i ) ,

which is precisely the objective function for Bregman k-means. Thus, the result follows from Lemma 2.3,
and a change in the direction of the inequality due to conversion of the minimization problem to a
maximization problem by multiplying both sides with -1.

4 Weighted Kernel K-means

In this section we present WKKM++, an O(logK) approximation algorithm for the weighted kernel
k-means (WKKM) problem [20].

Let X = {x1, . . . ,xn} denote the set of input data points (which may or may not be available explic-
itly), and let φ : x → φ(x) ∈ H, denote the feature map that takes x to its corresponding point in an
RKHSH. Further, let w1, w2, . . . , wn denote non-negative weights corresponding to each input point.

WKKM seeks a clustering C = {C1, C2, . . . , CK} such that the following objective is minimized

J(C) =
K∑
h=1

∑
xi∈Ch

wi‖φ(xi)− µh‖2 , (4.1)

9



where µh is the weighted mean of cluster Ch, i.e.,

µh =
∑
xi∈Ch wiφ(xi)∑
xi∈Ch wi

. (4.2)

For a given clustering, the weighted centroid µh (4.2) is optimal; formally stated

Lemma 4.1 (Optimality of Mean). Let A be a set of points with weighted mean µA, and let φ(z) be an
arbitrary point. Then, ∑

xi∈A
wi‖φ(xi)− φ(z)‖2

=
∑
xi∈A

wi‖φ(xi)− µA‖2 +W‖µA − φ(z)‖2,

where W =
∑
xi∈Awi.

Proof. Elementary; similar to Lemma 2.2.

The WKKM++ algorithm proceeds exactly like the BREG++ algorithm of Section 2. Specifically,
WKKM++ selects K initial means from amongst the data points using a particular sampling procedure.
These K means are then used as an initialization for the WKKM algorithm:

1. For each i = 1..N assign point xi to its nearest mean, update corresponding cluster Ch
2. For each h = 1..K update µh using (4.2).

3. Repeat steps 1 and 2 until convergence.

This standard approach is guaranteed to only monotonically decrease the objective function. However,
the crux of the analysis is in showing that after just the weighted farthest-first initialization based on (4.3)
and (4.4), WKKM++ comes to within a factor O(logK) of the optimal. We elaborate on this below.

The first mean µ1 = φ(xi) is chosen uniformly at random from the data points. The remaining means
are chosen with a weighted farthest-first sampling procedure outlined below.

First, we define the weighting function

D(x) = min
µ∈C
‖φ(x)− µ‖2, (4.3)

which is easily computable using dot-products only because

‖φ(x)− µ‖2 = φ(x)Tφ(x) + µTµ− 2φ(x)Tµ,

and µ is just one of the points xi during the initialization.
At a given stage in the algorithm, suppose we wish to select the next mean µh. The probability that a

given point φ(xi) is chosen to be µh is set to

P (µh = φ(xi)) =
wiD(xi)2∑n
j=1wjD(xj)2

. (4.4)

The probability (4.4) is also computable using dot-products only, as it involves only the weighting func-
tion D(x), which itself is so computable. We repeatedly select means using (4.3) and (4.4) until we have
selected K different means.

Now we proceed to show that the weighted farthest-first initialization as described above is sufficient
to guarantee an O(logK) factor. First we show that WKKM++ is competitive in those clusters out of the
optimal clustering COPT from which it happens to sample a center.

10



Lemma 4.2 (First mean). LetA be an arbitrary cluster in COPT, and let C be the clustering with just one
center, which is chosen with probability proportional proportional to the weight of points in A. Then, if
J(A) is the contribution of points in A to the final objective, E[J(A)] ≤ 2JOPT(A).

Proof. Let µA denote the weighted mean of cluster A. Since COPT is optimal, it must be using µA as its
center. Let WA =

∑
xi∈Awi. With the random initialization, assuming all points in A stay assigned to

the cluster A till the end, using Lemma 4.1 we see that E[J(A)] is given by

∑
x0∈A

w0

WA

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2


=
∑
x0∈A

w0

WA

∑
xi∈A

wi‖φ(xi)− µA‖2 +WA‖φ(x0)− µA‖2


=
∑
xi∈A

wi‖φ(x)− µA‖2 +
∑
x0∈A

w0‖φ(x0)− µA‖2

= 2JOPT(A) .

Since the contribution of each point can only decrease in subsequent WKKM++ ++ iterations, we have
E[J(A)] ≤ 2JOPT(A).

Next we show how WKKM++ behaves for the remaining centers that it picks.

Lemma 4.3 (Other means). Let A be an arbitrary cluster in COPT, and let C be an arbitrary clustering.
If we add a random point from A as a center to C using the the farthest-first sampling, then E[J(A)] ≤
8JOPT(A).

Proof. After choosing a center φ(x0), any point xi ∈ A will contribute wi min(D(xi), ‖φ(xi) −
φ(x0)‖)2 to the objective. Since subsequent assignments can only decrease the contribution, we have

E[J(A)] ≤
∑
x0∈A

w0D(x0)2∑
x′∈Awx′D(x′)2

×
∑
xi∈A

wi min(D(xi), ‖φ(xi)− φ(x0)‖)2 .

Let c0, ci be the closest centers to φ(x0), φ(xi), respectively. Then, from the triangle inequality we have

‖φ(x0)− ci‖ ≤ ‖φ(x0)− φ(xi)‖+ ‖φ(xi)− ci‖ .

Further, from the Cauchy-Schwartz inequality we have

‖φ(x0)− ci‖2 ≤ 2‖φ(x0)− φ(xi)‖2 + 2‖φ(xi)− ci‖2 .

Noting that D(x0) = ‖φ(x0)− c0‖ ≤ ‖φ(x0)− ci‖, we hence have

D(x0)2 ≤ 2‖φ(x0)− φ(xi)‖2 + 2D(xi)2 .

Multiplying both sides by wi and summing over xi ∈ A we obtain

WAD(x0)2 ≤ 2

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2 + wiD(xi)


⇒ w0D(x0)2 ≤ 2

w0

WA

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2 + wiD(xi)

 .
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Hence, E[J(A)] is upper bounded by

2
∑
x0∈A

w0

WA

∑xi∈Awi‖φ(xi)− φ(x0)‖2∑
x′∈Awx′D(x′)2

∑
xi∈A

wi min(D(xi), ‖φ(xi)− φ(x0)‖)2


+ 2
∑
x0∈A

w0

WA

 ∑
xi∈AwiD(xi)2∑
x′∈Awx′D(x′)2

∑
xi∈A

wi min(D(xi), ‖φ(xi)− φ(x0)‖)2


≤2
∑
x0∈A

w0

WA

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2 + 2
∑
x0∈A

w0

WA

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2

=4
∑
x0∈A

w0

WA

∑
xi∈A

wi‖φ(xi)− φ(x0)‖2

≤ 8JOPT(A) ,

where in the first line we used min(D(xi), ‖φ(xi) − φ(x0)‖)2 ≤ D(xi)2 in the first expression, and
min(D(xi), ‖φ(xi)− φ(x0)‖)2 ≤ ‖φ(xi)− φ(x0)‖2 in the second expression, and the last line follows
from Lemma 4.2.

Theorem 4.4 (Approximation Ratio). A clustering C obtained via WKKM++ satisfies

E[J(C)] ≤ 8(logK + 2)JOPT.

Proof. Exactly follows proof structure in Section 2.

Remark 4.1 (Implications). WKKM++ has two important implications. First, by exploiting the equiva-
lence between several graph-cut criteria and WKKM [20], one can hope to obtain better graph-cuts using
WKKM++. A formal proof of this observation however remains an open problem. Second, the connec-
tion of WKKM to semi-supervised graph-clustering [30] leads to a potentially improved algorithm for
semi-supervised clustering.

5 Approximation Algorithms for Tensor Clustering and Co-clustering

In its simplest formulation, co-clustering refers to the simultaneous partitioning of the rows and
columns of the input data matrix into K × L co-clusters (sub-matrices). Co-clustering, also called
bi-clustering [15, 27] has witnessed increasing interest over the years (see [10] and references therein).
Anagnostopoulos et al. [4] seem to be the first to present an approximation algorithm for co-clustering
based on a minimum-sum squared residue criterion of [16]. They (i.e., [4]) posed two open questions:

• Could one extend their ideas to obtain approximation algorithms for Bregman co-clustering?

• Could one design approximation algorithms for 3-way co-clustering of a tensor in Rn1×n2×n3?

Below we answer both these questions in the affirmative, leading to the first (to our knowledge) approx-
imation algorithms for Bregman matrix and tensor co-clustering. In fact, our results hold for arbitrary
m-way tensor co-clustering, not just the 3-way case.

We directly develop an approximation algorithm for m-way tensor co-clustering (hereafter clustering)
that yields an approximation algorithm for Bregman co-clustering, which is nothing but tensor clustering
for m = 2. Specifically, we show a competitiveness of O(m logK) for m-way Bregman co-clustering.

Tensors are well-studied in multilinear algebra [24], but they are not so widespread in the machine
learning community. Therefore, to facilitate an easier understanding of our proofs, we briefly summarize
some important tensor notation below for those unfamiliar to it.
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5.1 Background on Tensors
Most of the material in this section is taken from the well-written paper of de Silva and Lim [18], whose
notation turns out to be particularly suitable for our analysis. An order-m tensorA may be viewed as an
element of the vector space Rn1×...×nm . A particular component of the tensor A is represented by the
multiply-indexed value ai1i2...im , where ij = 1 . . . nj for 1 ≤ j ≤ m.

Multilinear matrix multiplication. The most important operation that we do with tensors is that of
multilinear matrix multiplication, which is a generalization of the familiar concept of matrix multiplica-
tion. Matrices act on other matrices by either left or right multiplications. For an order-3 tensor, there are
three dimensions along which a matrix may act via matrix multiplication. For example, given an order-3
tensor A ∈ Rn1×n2×n3 , and three matrices P ∈ Rp1×n1 , Q ∈ Rp2×n2 , and R ∈ Rp3×n3 , multilinear
matrix multiplication is the operation defined by the action of these three matrices on the different di-
mensions of A that yields the tensor A′ ∈ Rp1×p2×p3 . Formally, the entries of the tensor A′ are given
by

a′lmn =
∑n1,n2,n3

i,j,k=1
pliqmjrnkaijk, (5.1)

and this operation is written compactly as

A′ =
(
P ,Q,R

)
·A. (5.2)

The notation (5.2) is particularly nice and may be viewed as the group action of
(
P ,Q,R

)
on A

(group-action refers to the situation when a group with a particular algebraic structure “acts” on another
set; for the multilinear multiplication notation on can view it as the set G = Rp1×n1 ×Rp2×n2 ×Rp3×n3

acting on the set X = Rn1×n2×n3). Addition in G is defined entry-wise:

(P1,Q1,R1) + (P2,Q2,R2) = (P1 + P2,Q1 +Q2,R1 +R2).

Multilinear multiplication extends naturally to tensors of arbitrary (finite) order. If A ∈
Rn1×n2×···×nm , and P1 ∈ Rp1×n1 , . . . ,Pm ∈ Rpm×nm , thenA′ =

(
P1, . . . ,Pm

)
·A has entries

a′i1i2...im =
∑n1,...,nm

j1,...,jm=1
p
(1)
i1j1
· · · p(m)

imjm
aj1...jm , (5.3)

where p(k)
ij denotes the ij-entry of matrix Pk.

Example 5.1 (Matrix Multiplication). Let A ∈ Rn1×n2 , P ∈ Rp×n1 , and Q ∈ Rq×n2 be given. The
matrix product PAQT can be written as the multilinear multiplication

(
P ,Q

)
·A.

Example 5.2 (Basic Properties). The following properties of multilinear multiplication are easily verified
(and generalized to tensors of arbitrary order):

1. Linearity: Let α, β ∈ R, andA andB be tensors with same dimensions, then(
P ,Q

)
· (αA+ βB) = α

(
P ,Q

)
·A+ β

(
P ,Q

)
·B

2. Product rule: For matrices P1, P2,Q1,Q2 of appropriate dimensions, and a tensorA we have(
P1,P2

)
·
((
Q1,Q2

)
·A
)

=
(
P1Q1,P2Q2

)
·A

3. Multilinearity: Let α, β ∈ R, and P , Q, and R be matrices of appropriate dimensions. Then, for
a tensorA the following holds(

P , αQ+ βR
)
·A = α

(
P ,Q

)
·A+ β

(
P ,R

)
·A
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Inner Product: The Frobenius norm induces an inner-product that can be defined as

〈A,B〉 =
∑

i1,...,im
ai1...imbi1...im , (5.4)

so that ‖A‖2F = 〈A,A〉 holds as usual. The following property of this inner product is easily verified〈(
P1, . . . ,Pm

)
·A,

(
Q1, . . . ,Qm

)
·B
〉

=
〈
A,
(
P T

1 Q1, . . . ,P
T
mQm

)
·B
〉
. (5.5)

Proof: Using definition (5.3) along with (5.4) we have〈(
P1, . . . ,Pm

)
·A,

(
Q1, . . . ,Qm

)
·B
〉

=
∑

i1,...,im

∑
j1,...,jm
k1,...,km

p
(1)
i1j1

q
(1)
i1k1
· · · p(m)

imjm
q
(m)
imkm

aj1...jmbk1...km ,

=
∑

j1,...,jm
k1,...,km

(∑
i1

p
(1)
i1j1

q
(1)
i1k1

)
· · ·
(∑
im

p
(m)
imjm

q
(m)
imkm

)
aj1...jmbk1...km

=
∑

j1,...,jm
k1,...,km

(P T
1 Q1)j1k1 · · · (P T

mQm)jmkmaj1...jmbk1...km =
∑
j1...jm

aj1...jmb
′
j1...jm =

〈
A,B′

〉
,

whereB′ =
(
P T

1 Q1, . . . ,P
T
mQm

)
·B.

5.2 Tensor clustering
Given the background above, we are now ready to formally state the Bregman tensor clustering problem.

Let A ∈ Rn1×···×nm be an order-m tensor. Tensor clustering refers to a partitioning of A into sub-
tensors or simply clusters, so that the entries of each cluster are as coherent as possible. The goal of
(one simple version) of Bregman tensor clustering is to partition A into sub-tensors so that the sum of
the Bregman divergences of individual elements in the sub-tensor to their corresponding cluster repre-
sentatives is minimized. The cluster representatives turn out to be simply the means of the associated
sub-tensors because we are minimizing Bregman divergences.

A cluster (sub-tensor) is indexed by subsets of indices along each dimension. Let Ij ⊆ {1, . . . , nj}
denote such an index subset for dimension j. Then the cluster representative corresponding to a sub-
tensor is simply its mean, i.e.

MI1...Im =
1

|I1| · · · |Im|
∑

i1∈I1,...,im∈Im
ai1...im . (5.6)

Assuming that each dimension j is partitioned into kj clusters, we can collect all the different repre-
sentatives (each of which can be written in the form (5.6)) into a means tensor M ∈ Rk1×...×km . Thus,
we have a total of

∏
j kj tensor clusters. Let Cj ∈ {0, 1}nj×kj denote the cluster indicator matrix for

dimension j. In such a matrix, entry i of column k is one if and only if i is in the kth index set for tensor
dimension j.

Given this notation, we can now formally state the Bregman tensor clustering problem:

minimize
C1,...,Cm

Bf (A, (C1, . . . ,Cm) ·M), s.t. Cj ∈ {0, 1}nj×kj . (5.7)

Problem (5.7) can be rewritten in a more useful form. To that end, let Cj be the normalized cluster
indicator matrix obtained from Cj by normalizing the columns to have unit-norm (i.e., CT

j Cj = Ikj ).
Then (5.7) may be rewritten as

minimize
C1,...,Cm

J(C) = Bf
(
A, (P1, . . . ,Pm) ·A

)
, where Pj = CjC

T
j , (5.8)
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In the sequel, we will refer to a clustering by its parametrizations via both indicator and projection
matrices. A little remark on the side: sinceCT

j Cj = Ikj , one can relax the “hard”-clustering constraints
on Cj to just orthogonality constraints. Indeed, such relaxations form the basis of spectral-relaxations
for Euclidean K-means as well as co-clustering [16]. However, we will not use such relaxations in this
paper.

Summary of the Algorithm: Broadly speaking, our tensor clustering approximation algorithm is
based on clustering along subsets of dimensions using a guaranteed approximation algorithm, and then
combining the resulting clusterings to obtain tensor clusters. A particular example of such a scheme
would be to cluster along single dimensions using a method such as BREG++. clustering. Note that
clustering along a single dimension in a tensor is a generalization of clustering the one-dimensional
sub-tensors, i.e. vectors, in a matrix. In a tensor, we form groups of m − 1-way tensors, for in-
stance, grouping matrices in a 3-way tensor. Thanks to the separability of our Bregman divergences,
BREG++directly extends to sub-tensor objects. Taking the 3-way example with sub-matrices A,B,
recall that Bf (A,B) = Bf (vec(A), vec(B)). So we simply treat the sub-tensors as vectors.

Our analysis below establishes that given a clustering algorithm that clusters along t of the dimensions
at a time with an approximation factor of αt, we can achieve an objective within O

(
dm/teσ2

σ1
αt) of the

optimal; the scaling factors σ1 and σ2 are defined as

σ1 = inf
x∈{aij}

y∈conv({aij})

Bf (x, y)
(x− y)2

, σ2 = sup
x∈{aij}

y∈conv({aij})

Bf (x, y)
(x− y)2

. (5.9)

Note: For simplicity of exposition we assume that we cluster an order-m tensor along t dimensions at
a time and to eventually combine the resulting m/t sub-clusterings. Our analysis can be generalized
(at the expense of laborious algebra) to the case where we cluster along partitions of varying sizes, say
{t1, . . . , tr}, where t1 + · · ·+ tr = m.

5.2.1 Analysis
In this section we prove our tensor clustering approximation theorem, which yields as corollaries

efficient approximation algorithms based on BREG++ for both Bregman co-clustering, and Bregman
tensor clustering.

Theorem 5.3 (Approximation guarantee). Let A be the input order-m tensor, and let Cj denote the
clustering ofA along the jth subset of t dimensions (1 ≤ j ≤ m/t), as obtained by a multiway clustering
algorithm with guarantee3 αt. Let C = (C1, . . . , Cm/t) denote the induced tensor clustering. Then4

J(C) ≤ 2log(m/t)σ2

σ1
αtJOPT(m)

Corollary 5.4 (Approximation with BREG++). LetA be the input order-m tensor, and let Cj denote the
clustering ofA along dimension j (1 ≤ j ≤ m), as obtained via BREG++. Let C = (C1, . . . , Cm) denote
the induced tensor clustering. Then,

E[J(C)] ≤ 4m
σ2

2

σ2
1

(
1 +

σ2

σ1

)
(logK∗ + 2)JOPT(m),

where K∗ = max1≤j≤m kj is the maximum number of clusters across all dimensions.

3By “guarantee α”, we mean that the algorithm yields a solution that is guaranteed to have an objective value within a factor
of O(αt) of the optimum.

4Here and in the sequel, the argument m to JOPT denotes the best m-way clustering to avoid confusions about dimensions.
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To establish Theorem 5.3, we will first bound the quality of a combination of dimension-wise clus-
terings for the Frobenius norm, with the help of the Pythagorean Property (Lemma 5.5). It is clear that
compressing along only a subset of dimensions achieves lower divergence than clustering along all di-
mensions. Generalizing an idea of [4], we upper bound the full combined clustering in terms of the
(approximately) optimal clustering along a subset of dimensions (Prop. 5.6). Finally, we extend this
upper bound to general Bregman divergences and relate it to the optimal tensor clustering.

In the analysis below we assume without loss of generality that m = 2ht for an integer h (otherwise,
pad in empty dimensions). We assume that we have access to an algorithm that can cluster along a
subset of t dimensions, while achieving an objective function within a factor αt of the optimal (for those
t dimensions), i.e., αtJOPT(t). For example, when t = 1 we can use BREG++ (or in theory, even the
approximation algorithms of [1]).

Lemma 5.5 (Pythagorean Property). Let P = (P1, . . . ,Pt), Q = (Pt+1, . . . ,Pm), and P⊥ = (I −
P1, . . . , I − Pt) be combinations of projection matrices Pj . Then

‖
(
P,Q

)
·A+

(
P⊥,R

)
·B‖2 = ‖

(
P,Q

)
·A‖2 + ‖

(
P⊥,R

)
·B‖2, (5.10)

where R is some arbitrary combination of m− t projection matrices.

Proof. Using the inner-product (5.4) we can rewrite (5.10) as

‖
(
P,Q

)
·A+

(
P⊥,R

)
·B‖2 = ‖

(
P,Q

)
·A‖2 +‖

(
P⊥,R

)
·B‖2 +2

〈(
P,Q

)
·A,

(
P⊥,R

)
·B
〉
.

With (5.5) the latter term simplifies to〈(
P,Q

)
·A,

(
P⊥,R

)
·B
〉

=
〈
A,
(
PTP⊥,QTR

)
·B
〉

= 0,

thus yielding the claim (5.10).

Some more notation. Before diving into the proofs, we outline some more useful notation. Since
we can only cluster along t dimensions at a time, we recursively half the initial set of m dimensions
until, after log(m/t) + 1 recursions, the sets have length t. Let l denote the level of recursion, starting
at l = log(m/t) = h down to l = 0, where the sets have length t. At level l, the sets will have length
2lt. Each clustering along a subset of 2lt dimensions is represented by the corresponding 2lt projection
matrices. We denote their combination by P l

i . At level l, i ranges from 1 to 2h−l.
For illustration, consider an order-8 tensor, and t = 2. Then h = log(m/t) = 2, so we will need

3 levels. For simplicity, we always partition the set of dimensions in the middle, i.e. {1, . . . , 8} into
{1, . . . , 4} and {5, . . . , 8} and so on, ending with {{1, 2}, {3, 4}, {5, 6}, {7, 8}. The projection matrix
for dimension i is Pi. The full tensor clustering is (P1, . . . ,P8}. So here we get

P2
1 = (P1, P2, P3, P4, P5, P6, P7, P8)

P1
1 = (P1, P2, P3, P4), P1

2 = (P5, P6, P7, P8)
P0

1 = (P1, P2), P0
2 = (P3, P4), P0

3 = (P5, P6), P0
4 = (P7, P8)

To represent a clustering of the tensor along only a subset of dimensions, we pad the corresponding P l
i

withm−2lt identity matrices for the non-clustered dimensions. We refer to this padded collection as Ql
i.

In the example above, e.g. Q0
1 = (P1, P2, I, I, I, I, I, I), Q1

2 = (I, I, I, I,P1
2 ), and Q2

1 = P2
1 . With

recursive partitions of the dimensions, Ql
i subsumes Q0

j for 2l(i− 1) < j ≤ 2li: Ql
i =

∑2li
j=2l(i−1) Q0

j .
The algorithm for the subsets of dimensions will yield the Q0

i and P0
i . The remaining clusterings are

simply combinations of those level-0 clusterings. Finally, we refer to the collection of m − 2lt identity
matrices (for simplicity, we assume that they have the correct dimensionalities) as I l, so, for instance,
Ql

1 = (P l
1,I

l).
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Note that the order of the dimensions is arbitrary, as long as the index sets remain the same and we
reorder the dimensions of all tensors and matrices correspondingly. Hence, we always shift the identity
matrices to the back for “ease” of notation. Furnished with this notation, we can now turn towards the
details of the proofs. We start with the relation of the combined clustering to a subclustering with the
Frobenius norm objective function.

Proposition 5.6. Let A be an order-m tensor and m ≥ 2lt. The objective function for any 2lt-way
clustering P l

1 = (P0
1 , . . . ,P

0
2l

) can be bounded via the subclusterings along only one set of dimensions
of size t:

‖A−Ql
1 ·A‖2 = ‖A− (P l

1,I
l
1) ·A‖2 ≤ max

1≤j≤2l
2l‖A−Q0

j ·A‖2. (5.11)

Not that the Proposition actually holds for any set of 2l sub-clusterings by permuting dimensions
accordingly:

‖A−Ql
i ·A‖2 ≤ max

2l(i−1)<j≤2li
2l‖A−Q0

j ·A‖2 (5.12)

We will prove the proposition for i = 1 for ease of notation. If m = 2ht then the factor is 2h = m/t. (If
m/t is not a power of 2, then we get the factor with h = dlog(m/t)e).

Proof. We prove the proposition by induction on l.
Base case: Let l = 0. Then Q0

j = P0
1 = P l

1 and the claim holds trivially.
Induction step: Assume the claim holds for l ≥ 0. Let us look at a clustering P l+1

1 = (P l
1,P

l
2).

ThenA decomposes as

A =
(
(P l

1,P
l
2,I

l+1) + ((P l
1)⊥,P l

2,I
l+1) + (P l

1, (P
l
2)⊥,I l+1) + ((P l

1)⊥, (P l
2)⊥,I l+1)

)
·A,

whereby the Pythagorean Property 5.5 yields

‖A− (P l+1
1 ,I l+1) ·A‖2 = ‖A− (P l

1,P
l
2,I

l+1) ·A‖2 (5.13)

= ‖((P l
1)⊥,P l

2,I
l+1) ·A‖2 + ‖(P l

1, (P
l
2)⊥,I l+1) ·A‖2 + ‖((P l

1)⊥, (P l
2)⊥,I l+1) ·A‖2,

(5.14)

Assuming without loss of generality that

‖((P l
1)⊥,P l

2,I
l+1) ·A‖2 ≥ ‖P l

1, (P
l
2)⊥,I l+1) ·A‖,

we have from (5.13) and (5.14) the following inequalities

‖A−(P l
1,P

l
2,I

l+1) ·A‖2

≤ 2
(
‖((P l

1)⊥,P l
2,I

l+1) ·A‖2 + ‖((P l
1)⊥, (P l

2)⊥,I l+1) ·A‖2
)

= 2‖((P l
1)⊥,P l

2,I
l+1) ·A+ ((P l

1)⊥, (P l
2)⊥,I l+1) ·A‖2

= 2‖((P l
1)⊥,I l,I l+1) ·A‖2

= 2‖A−Ql
1 ·A‖2

≤ 2 max
1≤j≤2

‖A−Ql
j ·A‖2

≤ 2 · 2l max
1≤j≤2l+1

‖A−Q0
j ·A‖2,

where the last step follows from the induction hypothesis and (5.12), and the two norm terms are com-
bined using the Pythagorean Property.
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The proof of Theorem 5.3 generalizes Proposition 5.6 to arbitrary Bregman divergences, and then
relates the objective for the sub-clustering to the objective for the full m-way clustering.

Proof. (Theorem 5.3.) Let m = 2ht. Via the approximation algorithm with guarantee αt, we cluster
the subsets of size t to obtain P0

i . Let Q̌0
i be the optimal subclustering of dimension set i, i.e. the result

that Q0
i would be if αt = 1. With σ1 and σ2 from (5.9), we can bound the combination Ph

1 of the
sub-clusterings P0

i :

Bf (A,Ph
1 ·A) =

∑
i1,...,im

Bf (ai1,...,im , µI1(i1),...,Im(im))

≤ σ2

∑
i1,...,im

(ai1,...,im − µI1(i1),...,Im(im))
2 = σ2‖A−Ph

1 ·A‖2

≤ 2hσ2 max
j
‖A−Q0

j ·A‖2 (5.15)

≤ 2hσ2σ
−1
1 max

j
Bf (A,Q0

j ·A) ≤ 2hσ2σ
−1
1 αt max

j
Bf (A, Q̌0

j ·A). (5.16)

Inequality (5.15) follows from Proposition 5.6, and (5.16) from the guarantee of the algorithm we used
to get the separate sub-clustering Q0

j .
Let us look at the relation between on optimal clustering Q̌0 of an arbitrary subset of t dimen-

sions and the optimal full tensor clustering ˇ̌Q0 of all 2ht dimensions. Let Čj be the cluster indi-
cator matrices of the clustered dimensions in Q̌0, and Čj their normalized versions such that Q̌0 =
(Č1, . . . , Čt,I 0)(Č1, . . . , Čt,I 0)>5. By definition, Q̌0 solves

minimize
C1,...,Ct,M

Bf (A, (C1, . . . ,Ct,I
0) ·M), s.t. Cj ∈ {0, 1}nj×kj ,

with (Č1, . . . , Čt,I 0) · M̌ = Q̌0 ·A. In that respect, Q̌0 even beats the sub-clustering ( ˇ̌C1, . . . ,
ˇ̌Ct)

taken from the optimal full m-way clustering ˇ̌Qh
1 = ˇ̌Ph

1 , i.e.

Bf
(
A, (Č1, . . . , Čt,I

0) ·
(
(Č1, . . . , Čt,I

0)> ·A
))

≤ min
B

Bf (A, ( ˇ̌C1, . . . ,
ˇ̌Ct,I 0) ·B)

≤ Bf
(
A, ( ˇ̌C1, . . . ,

ˇ̌Ct,I 0)(I, . . . , I, ˇ̌Ct+1, . . . ,
ˇ̌Cm) · ˇ̌M

)
= Bf

(
A, ˇ̌Ph

1 ·A
)
,

where ˇ̌M is the tensor of means for the optimal m-way clustering, ( ˇ̌C1, . . . ,
ˇ̌Cm) · ˇ̌M = ˇ̌Ph

1 · A.
Combining this bound with (5.16) yields the final bound for the combined clustering Ph

1 ,

Bf (A,Ph
1 ·A) ≤ 2hσ2σ

−1
1 αtBf (A, ˇ̌Ph

1 ·A) = 2hσ2σ
−1
1 αtJOPT(m),

and completes the proof of the theorem.

Special cases of Theorem 5.3 are Euclidean m-way co-clustering and Bregman co-clustering.
Corollary 5.7 (m-way Euclidean tensor clustering). For f = 1

2x
2, we have σ1 = σ2 = 1. Thus, using

KMEANS++ as the base algorithm for obtaining the combined clustering Ph
1 leads to the approximation

guarantee:
E[J(Ph

1 )] ≤ 8m(logK∗ + 2)JOPT(m).

Corollary 5.8 (Co-clustering). Let CR, CC be the clusterings of the rows and columns ofA obtained via
BREG++, and (CR, CC) the induced co-clustering. Then the expected objective value J is bounded as

E[J(CR, CC)] ≤ 8
σ2

2

σ2
1

(
1 +

σ2

σ1

)
(logK∗ + 2)JOPT(2),

where σ1 and σ2 are as defined in Equation 5.9.
5Without loss of generality, we again assume that the clustered dimensions are the first t. Otherwise, permute the dimensions
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