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Abstracts

RKHS representation of measures applied to homogeneity,
independence, and Fourier optics

Bernhard Schölkopf, Bharath Sriperumbudur, Arthur Gretton,
Kenji Fukumizu

A symmetric function k : X 2 → R, where X is a nonempty set, is called a pos-
itive definite (pd) kernel if for arbitrary points x1, . . . , xm ∈ X and coefficients
a1, . . . , am ∈ R, we have ∑

i,j

aiajk(xi, xj) ≥ 0.

The kernel is called strictly positive definite if for pairwise distinct points, the
implication

∑
i,j aiajk(xi, xj) = 0 =⇒ ∀i : ai = 0 is valid.

Any positive definite kernel induces a mapping

x 7→ k(x, .)

into a reproducing kernel Hilbert space (RKHS) satisfying

〈k(x, .), k(x′, .)〉 = k(x, x′)

for all x, x′ ∈ X .
Consider two sets of points X := {x1, . . . , xm} ⊂ X , Y := {y1, . . . , yn} ⊂ X .

We define the mean map µ by

µ(X) =
1
m

m∑
i=1

k(xi, ·).

One can define a classification rule in H based on the closest mean, i.e., using a
hyperplane with normal vector µ(X) − µ(Y ) [4]. This begs the question: when
is this normal vector zero (in which case it does not define a hyperplane)? For
polynomial kernels k(x, x′) = (〈x, x′〉+1)d, this amounts to all empirical moments
up to order d vanishing. For strictly positive definite kernels, the means coincide
only if X = Y , rendering µ injective:
Lemma. Assume X,Y are defined as above, k is strictly pd, and for all i, j,
xi 6= xj, and yi 6= yj. If for some αi, βj ∈ R− {0}, we have

(1)
m∑

i=1

αik(xi, .) =
n∑

j=1

βjk(yj , .),

then X = Y .

To see this, assume w.l.o.g. that x1 6∈ Y . Subtract
∑n

j=1 βjk(yj , .) from (1),
and make it a sum over pairwise distinct points, to get

0 =
∑

i

γik(zi, .),
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where z1 = x1, γ1 = α1 6= 0, and z2, · · · ∈ X ∪ Y − {x1}, γ2, · · · ∈ R. Take the
RKHS dot product with

∑
j γjk(zj , .) to get

0 =
∑
ij

γiγjk(zi, zj),

with γ 6= 0, hence k cannot be strictly pd.

The mean map has some other interesting properties. Among them is the fact
that µ(X) represents the operation of taking a mean of a function on the sample
X:

〈µ(X), f〉 =

〈
1
m

m∑
i=1

k(xi, ·), f

〉
=

1
m

m∑
i=1

f(xi)

Moreover, we have

‖µ(X)− µ(Y )‖ = sup
‖f‖≤1

|〈µ(X)− µ(Y ), f〉| = sup
‖f‖≤1

∣∣∣∣∣ 1
m

m∑
i=1

f(xi)−
1
n

n∑
i=1

f(yi)

∣∣∣∣∣ .
If Ex,x′∼p[k(x, x′)], Ex,x′∼q[k(x, x′)] <∞, then the above statements generalize

to Borel measures p, q, with the difference being that the mean map is defined as

µ : p 7→ Ex∼p[k(x, ·)],
and the notion of strictly pd kernels is replaced by that of characteristic kernels
[1]. In this case, the mean map can be viewed as a generalization of the moment
generating function Mp of a random variable x with distribution p,

Mp(.) = Ex∼p

[
e〈x, · 〉

]
.

If we restrict the class of distributions, the class of kernels for which µ is injective
gets larger. To see this, consider a bounded translation invariant kernel k(x, x′) =
ψ(x− x′), with continuous ψ : Rd → R, which by Bochner’s theorem corresponds
to a finite nonnegative Borel measure Λ. In that case, we have

‖µ(p)− µ(q)‖ = ‖F−1[(φ̄p − φ̄q)Λ]‖,
where φp is the characteristic function of the measure p, ‖.‖ is the norm of the
RKHS, F−1 is the inverse Fourier transform, and the bar denotes complex conju-
gation. Roughly speaking, this shows that p and q can be distinguished as long as
the spectrum Λ of the kernel is nonzero wherever the spectra of the distributions
might differ. If supp(Λ) = Rd, the kernel can distinguish all Borel distributions; if
supp(Λ) ⊂ Rd has a non-empty interior, it can still distinguish Borel distributions
with compact support, subject to certain technical conditions (for details, see [5]).

The map µ has applications in a number of tasks including testing of homo-
geneity and independence [2, 3]. One can also establish a link to wave optics,
which we will briefly sketch presently. We consider p as the intensity distribution
of the light coming from an object which we would like to image. On the way to
the sensor, there is an aperture with indicator function L (i.e., L takes the value
1 in the aperture, and 0 elsewhere). In the setting of Fraunhofer diffraction, the
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image intensity arising from a point source is the squared Fourier transform of L,
i.e., the Fourier transform of the convolution of L with itself, Λ := L ∗ L. For
instance, in the 1-D case, if L is the indicator function of an interval, then Λ is a
B1-spline. Under the assumption of incoherent light, the image of p would thus
be the convolution of p with the Fourier transform of Λ, equalling the map µ(p)
induced by the translation invariant kernel associated with the Fourier transform
of Λ. If the image has compact support, and the aperture has non-empty interior,
then the imaging process is thus invertible.
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