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What is CG for ? 

movies, TV, games, art, architecture, CAD, data visualization, 
surgical, military and industrial training, remote operation, … 

Dinesh Pai The Matrix 
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  Using Computer Graphics to study human 
vision 
  3D shape perception 
  Perception of material properties (e.g. 

translucency, glossiness) 

  Visual Psychophysics in the service of CG 
  Perceptual issues in inverse tonemapping 

of LDR -> HDR content 



  Exploiting limits of human perception to 
facilitate graphics 
  BW-FIT Gaze-Contingent Display 
  Visual attention 

  Exploiting ambiguity in visual perception 
  Visual Perception as inference 
  Image-based Material Editing 

  Closing the loop 
  Interactivity and VR research at the MPI 



  Using Computer Graphics to study human 
vision 
  3D shape perception 
  Perception of material properties (e.g. 

translucency, glossiness) 

  Visual Psychophysics in the service of CG 
  Perceptual issues in inverse tonemapping of LDR -> 

HDR content 



  Traditional Psychophysics used simple stimuli 
  Easy to generate and parametrically vary 
  Allow extremely precise control 
  Answered many important basic questions 
  BUT: Can lead to studying vision in unnatural conditions 

Vernier acuity Sine wave Kanizsa Square 
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Todd & Mingolla (1984). The 
simulation of curved surfaces from 
patterns of optical texture. 
Journal of Experimental Psychology 

Blake & Bülthoff (1990). Does 
the brain know the physics of 
specular reflection? 
Nature 



Shape from X 

  Shading 
  Texture 
  Highlights 
  Binocular Stereopsis 
  Motion parallax 
  Pictorial cues (perspective, etc.) 
  … 

  How do we combine these different cues? 



Shape-from-Shading 

  Shape-from-Shading is a weak cue to the
 perception of orientation 
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Shape-from-Texture 

  Shape-from-Texture is a weak cue to the 
perception of form and orientation 
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Phong Shading 

  Better shading models improve the 
perception of form and orientation 
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Shading + Texture 

  Integration of several cues provides good 
perception of form and orientation 
Bülthoff and Mallot, JOSA, 1988 
Bülthoff and Yuille, Theoretical Biology, 1991 
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Perception of  
shape from shading 

Perception of  
translucent materials 

RADIANCE (Greg Ward) 
using image-based lighting 

DALI (Henrik Wann Jensen) 
using BSSRDF shader 
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Identical geometry, identical lighting, identical viewpoint. 
Only differ in degree of translucency
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Asymmetric Matching Experiment 

Test Match


Task: adjust the subsurface scattering coefficients of the 
“Match” stimulus, until the object appears to be made of 
the same material as the “Test” stimulus 

Fleming & Bülthoff (2005).  ACM Trans. on Applied Perception. 
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Results 
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21 output crop cube 

original diffuse high-pass filter invert 

linear mix with original 



  Using Computer Graphics to study human 
vision 
  3D shape perception 
  Perception of material properties (e.g. 

translucency, glossiness) 

  Visual Psychophysics in the service of CG 
  Perceptual issues in inverse tonemapping of LDR -> 

HDR content 



  Visual Psychophysics provides a rigorous set 
of methods for: 

  Evaluating the subjective visual appearance of 
images 

  Measuring the fidelity of a rendering, including 
detectability of shortcuts or approximations 

  Specifying perceptually meaningful parameters for 
systems 



Meyer, Rushmeier, Cohen, Greenberg and Torrance (1986).  "An Experimental 
Evaluation of Computer Graphics Imagery."  ACM Transactions on Graphics


real simulated 



  HDR display technology is 
poised to hit the mass 
market 

  Main limitation: “What do I 
do with my old (LDR) 
movies and photos ?” 

wide aperture 

tonemapped HDR 

narrow aperture 



  “Inverse Tonemapping” 

  A set of very tricky, 
mathematically ill-posed 
problems 

  Idea: Do some 
psychophysics to set the 
specifications for inverse 
tonemapping 



  Subjective ratings for : 
  Realism 
  Visual Appeal 
  Depth 

  HDR is generally rated more 
appealing and more realistic 
than standard imagery 

  Surprise 1: tonemapped 
images are often no better 
than the best single exposure 
from a bracketed sequence 

  Surprise 2: Simple linear 
inverse tonemapping can 
produce images comparable 
to true HDR content   



  Exploiting limits of human perception to 
facilitate graphics 
  BW-FIT Gaze-Contingent Display 
  Change blindness demo 
  Explanation of top-down attention and bottom-up 

salience 

  Exploiting ambiguity in visual perception 
  Visual Perception as inference, with some example 

ambiguities 
  Image-based Material Editing 
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Ultra-high resolution: 
the future of digital imagery  
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Ultra-high resolution: 
the future of digital imagery  

http://www.gigapxl.org/gallery-AngelWindow.htm 
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Gigapixel displays 

  Enables new modes of user interaction 
  Applications in:  

  Industrial data visualization 
  Scientific and medical imaging 
  Entertainments industry http://haltadefinizione.deagostini.it/ 

8.5 Gigapixel image 
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Ultra-high resolution: 
the future of digital imagery  

Sony 4K Projector 
The Red One: 
4K film camera 
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34 

ht
tp

://
w

w
w

.ro
un

ds
ho

t.c
h/
 

Seitz Roundshot D3 

Pixel-mania  

160  
Mpix! 



35 

Inside the human eye 
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The retina 

  The retina is like the photographic film of the 
human eye. 

  The fovea is a special high-acuity “hot spot” 

Photoreceptors: 
The pixels of the eye 

Cross-section through 
the retina 
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Visual acuity 
Based on Millodot et al. (1975) 
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“20/20” 

Distance of target from fixation 
(degrees) 

  The resolution of 
human vision falls 
off dramatically 
as you move away 
from the foveal 
“hot-spot”. 

  Your impression 
that the whole 
world is sharp and 
high resolution is 
really an illusion! 
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So, how many pixels? 

  The number of pixels you can actually see at any 
single instant is surprisingly low: ~ 1Mpixel ! 

  If you are very close 
to the screen, you can 
see the pixels in front 
of you, but not in the 
periphery 

  If you are far enough 
away to see the edges 
of the screen, you 
can’t resolve the 
individual pixels any 
more 
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Key idea 

  Technical Challenge: Track the viewer’s eyes, 
head and body to work out where they are and 
what they are looking at. 

  Why?  Enormous computational savings 
  Why?  Massively enhances user interaction 
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Multi-resolution display 

  High resolution where the viewer is looking 
  Low resolution everywhere else 
  Seamless illusion of very high visual fidelity, but at low computational 

load. 



41 
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Multi-resolution display 

  High resolution where the viewer is looking 
  Low resolution everywhere else 
  Seamless illusion of very high visual fidelity, but at low computational 

load. 
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Traditional eye-tracking 
  User must be seated with fixed head position 

  Static, unnatural viewing conditions 
  Limited field of view 
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Technology 
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Technology 

  The user can move around, explore 
and interact with the data on the 
screen. 
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Visual Attention 

www.ornl.gov 
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Change Blindness 
Ron Rensink, UBC Vancouver 
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Change Blindness – Trans-saccadic Memory 
Ron Rensink, UBC Vancouver 
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Change Blindness  
Ron Rensink, UBC Vancouver 
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Saliency and Rendering 

Idea:  
1.  prerender a low-cost version of the scene 
2.  Evaluate salient (visually important) regions automatically 
3.  Render with high fidelity only where this is required  

Yang & Chalmers (2005). 



  Exploiting limits of human perception to 
facilitate graphics 
  BW-FIT Gaze-Contingent Display 
  Change blindness demo 
  Explanation of top-down attention and bottom-up 

salience 

  Exploiting ambiguity in visual perception 
  Visual Perception as inference 
  Image-based Material Editing 
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  The optics of the eye project the 3D world onto a 2D image 
plane on the retina. 

  What we as behaving organisms care about is the 3D 
structure of the world.  Unfortunately the projection from 
3D to 2D is not invertible. 

Image [2D] World [3D] 
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  Goal of human visual 
perception: 
  Reconstruct the complex, 

dynamic, 3D world around 
us. 

  Problem: 
  Mathematically ‘ill-posed’ 
  Retinal image is 

ambiguous 



Perception is under-constrained 

  Vision is an inverse problem 
  not well-posed in the sense of Hadamard (1902) 

  a solution exists  
  the solution is unique  
  the solution depends continuously on the data 

  A single image with many interpretations 

    The Necker Cube 

  The brain makes assumptions about the world  
in order to solve the inverse problem of vision 
  small angular variations 
  planar surfaces 
  compact form 

  A single cue can disambiguate the 3D structure 
Ernst & Bülthoff, TICS 8(4), 
162-169 (2004) 



Perception is not always “true” 
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  As with many so-called illusions, this effect really demonstrates
 the success rather than the failure of the visual system. 

  Of course, it makes sense if the visual system is trying to infer
 properties of the world --- that is the shade of paint --- instead
 of trying to measure properties of the retinal image --- that is
 the retinal intensity ---, which are of no survival value. 
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Presented at 

  Given single photograph 
as input, modify material 
appearance of object. 

  Physically correct solution 
not possible: aim for 
‘perceptually correct’ 
solution. 

  Exploit assumptions of 
human visual to develop 
heuristics. 
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Presented at 

  Re-texturing 

  Medium gloss to matte or 
glossy 

  Opaque to transparent or 
translucent 

  Arbitrary BRDFs 
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Presented at 

  Re-texturing 

  Medium gloss to matte or 
glossy 

  Opaque to transparent or 
translucent 

  Arbitrary BRDFs 
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Texture 
mapping


output image


bilateral 
filter


hole 
filling


environment


depth map


alpha matte


segmentation


Processing Pipeline 
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How not to do 
shape-from-shading 

Try using the state-of-the-art algorithms and you will 
generally be disappointed! 
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Try using the state-of-the-art algorithms and you will 
generally be disappointed! 

How not to do 
shape-from-shading 
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Try using the state-of-the-art algorithms and you will 
generally be disappointed! 

How not to do 
shape-from-shading 
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We use a simple but suprisingly effective heuristic: 

In other words … 
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  The ‘recovered depths’ are conditioned using a bilateral filter 
(Tomasi & Manduchi, 1998; Durand & Dorsey, 2002). 

  Simple non-linear edge-preserving filter with kernels in space and 
intensity domains. 
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Bilateral Filter:  
3 main functions 

  1. De-noising depth-map   
  Intuition: depths are generally smoother than intensities in the real 

world. 

  2. Selectively enhance or remove textures for embossed effect 
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  3. Shape-from-silhouette, like level-sets shape ‘inflation’ (e.g. 
Williams, 1998) 
  Intuition: values outside object are set to zero, so blurring across 

boundary makes recovered depths smooth and convex.  

Bilateral Filter:  
3 main functions 
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Forgiving case 

  Diffuse surface reflectance leads to clear shading pattern 
  Silhouette provides good constraints 
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Difficult case 

  Strong highlights create large spurious depth peaks 
  Silhouette is relatively uninformative 
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Light from the side 

  Shadows and intensity gradient leads to substantial distortions of the face 
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Importance of viewpoint 
  Substantial errors in depth reconstruction are not visible in transformed 

image 
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Importance of viewpoint 
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Importance of viewpoint 
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Importance of viewpoint 
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Importance of viewpoint 
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Importance of viewpoint 



79 

Importance of viewpoint 
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Why does it work ? 
  Generic viewpoint assumption (Koenderink & van Doorn, 1979; 

Binford, 1981; Freeman, 1994) 



Piano-Illusion 

Shigeo Fukuda 



Wrong assumptions 
  wrong assumptions can lead to perceptual illusions (Beuchet 

Chair) 
  the brain assumes that parts in close proximity belong together 
  this assumption can be wrong in rare cases 
  an “accidental view” leads to the wrong 3D interpretation 



Proximity assumption works in most cases 

  2D images usually are sufficient  
for the correct interpretation of a scene 

  only from a single viewpoint (accidental view) 
the proximity assumption leads to the wrong 
conclusion 



Dwarfs and Giants 

  high level interpretation (size, shadows) is ignored 
  occlusions can solve the perceptual puzzle 
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  Unconstrained walking in all directions (2D), creating
 a truly immersive locomotion interface for VR 

87 

Omni-Directional Treadmill 



  Unconstrained walking in all directions (2D), creating a 
truly immersive locomotion interface for VR 
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Omni-Directional Treadmill 
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MPI Motion Simulator 



Helicopter Simulator 
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ACM Trans. on Applied Perception 
Symposium on Applied Perception 

 in Graphics and Visualization 
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Thank You



