Perceptual Graphics:

Integrating Perception, Computer Graphics and Computer Vision

Heinrich H. Bülthoff Roland W. Fleming

Max Planck Institute for Biological Cybernetics

Cognitive & Computational Psychophysics
Max Planck Institute for Biological Cybernetics

What is CG for?

movies, TV, games, art, architecture, CAD, data visualization, surgical, military and industrial training, remote operation, ...

CG is for human observers

Simulate reality:

Generate complex, physically realistic stimuli, while maintaining precise control over stimulus variables

VISUAL PERCEPTION

Rigorous theory:

Apply rigorous computational principles to develop theories of human visual perception

Develop heuristics:

Create perceptually inspired 'short cuts' to increase efficiency, or achieve advanced effects

COMPUTER GRAPHICS

Analysis for Synthesis:

Application of segmentation, shape-from-shading, machine learning, etc. to rendering and animation

Biological inspiration:

Imitate design principles of biological systems to solve under-constrained vision problems

COMPUTER VISION

Ground Truth:

Test vision algorithms on computer generated images for which all scene parameters are known precisely

- Using Computer Graphics to study human vision
 - 3D shape perception
 - Perception of material properties (e.g. translucency, glossiness)

- Visual Psychophysics in the service of CG
 - Perceptual issues in inverse tonemapping of LDR -> HDR content

- Exploiting limits of human perception to facilitate graphics
 - BW-FIT Gaze-Contingent Display
 - Visual attention

- Exploiting ambiguity in visual perception
 - Visual Perception as inference
 - Image-based Material Editing
- Closing the loop
 - Interactivity and VR research at the MPI

- Using Computer Graphics to study human vision
 - 3D shape perception
 - Perception of material properties (e.g. translucency, glossiness)

- Visual Psychophysics in the service of CG
 - Perceptual issues in inverse tonemapping of LDR -> HDR content

Traditional Psychophysics

Vernier acuity

Sine wave

Kanizsa Square

- Traditional Psychophysics used simple stimuli
 - Easy to generate and parametrically vary
 - Allow extremely precise control
 - Answered many important basic questions
 - BUT: Can lead to studying vision in unnatural conditions

Simulate reality:

Generate complex, physically realistic stimuli, while maintaining precise control over stimulus variables

VISUAL PERCEPTION

Rigorous theory:

Apply rigorous computational principles to develop theories of human visual perception

Develop heuristics:

Create perceptually inspired 'short cuts' to increase efficiency, or achieve advanced effects

COMPUTER GRAPHICS

Analysis for Synthesis:

Application of segmentation, shape-from-shading, machine learning, etc. to rendering and animation

Biological inspiration:

Imitate design principles of biological systems to solve under-constrained vision problems

COMPUTER VISION

Ground Truth:

Test vision algorithms on computer generated images for which all scene parameters are known precisely

"Ground Truth"

Early Work (1984-1990)

Blake & Bülthoff (1990). Does the brain know the physics of specular reflection? *Nature*

Shape from X

- Shading
- Texture
- Highlights
- Binocular Stereopsis
- Motion parallax
- Pictorial cues (perspective, etc.)
- •

How do we combine these different cues?

Shape-from-Shading is a weak cue to the perception of orientation

Shape-from-Texture

 Shape-from-Texture is a weak cue to the perception of form and orientation

Phong Shading

 Better shading models improve the perception of form and orientation

Shading + Texture

 Integration of several cues provides good perception of form and orientation Bülthoff and Mallot, JOSA, 1988 Bülthoff and Yuille, Theoretical Biology, 1991

Perception of shape from shading

RADIANCE (Greg Ward) using image-based lighting

Perception of translucent materials

DALI (Henrik Wann Jensen) using BSSRDF shader

Realism with control

Identical geometry, identical lighting, identical viewpoint.
Only differ in degree of translucency

Asymmetric Matching Experiment

Test

Match

Task: adjust the subsurface scattering coefficients of the "Match" stimulus, until the object appears to be made of the same material as the "Test" stimulus

Fleming & Bülthoff (2005). ACM Trans. on Applied Perception.

Results

Image Statistics

Perceptually Inspired Heuristics

- Using Computer Graphics to study human vision
 - 3D shape perception
 - Perception of material properties (e.g. translucency, glossiness)

- Visual Psychophysics in the service of CG
 - Perceptual issues in inverse tonemapping of LDR -> HDR content

Psychophysical Methods

- Visual Psychophysics provides a rigorous set of methods for:
 - Evaluating the subjective visual appearance of images
 - Measuring the fidelity of a rendering, including detectability of shortcuts or approximations
 - Specifying perceptually meaningful parameters for systems

Cornell Box

real

simulated

Meyer, Rushmeier, Cohen, Greenberg and Torrance (1986). "An Experimental Evaluation of Computer Graphics Imagery." *ACM Transactions on Graphics*

Do HDR monitors support LDR content?

Ahmet Oguz Akyuz, Roland W. Fleming, Bernhard Riecke, Erik Reinhard & Heinrich H Bülthoff

 HDR display technology is poised to hit the mass market

• Main limitation: "What do I do with my old (LDR) movies and photos?"

wide aperture

narrow aperture

tonemapped HDR

Do HDR monitors support LDR content?

Ahmet Oguz Akyuz, Roland W. Fleming, Bernhard Riecke, Erik Reinhard & Heinrich H Bülthoff

- "Inverse Tonemapping"
- A set of very tricky, mathematically ill-posed problems
- Idea: Do some psychophysics to set the specifications for inverse tonemapping

Do HDR monitors support LDR content?

Ahmet Oguz Akyuz, Roland W. Fleming, Bernhard Riecke, Erik Reinhard & Heinrich H Bülthoff

- Subjective ratings for :
 - Realism
 - Visual Appeal
 - Depth
- HDR is generally rated more appealing and more realistic than standard imagery
- Surprise 1: tonemapped images are often no better than the best single exposure from a bracketed sequence
- Surprise 2: Simple linear inverse tonemapping can produce images comparable to true HDR content

Brightness is more important than contrast in the HDR experience

- Exploiting limits of human perception to facilitate graphics
 - BW-FIT Gaze-Contingent Display
 - Change blindness demo
 - Explanation of top-down attention and bottom-up salience
- Exploiting ambiguity in visual perception
 - Visual Perception as inference, with some example ambiguities
 - Image-based Material Editing

Ultra-high resolution: the future of digital imagery

Ultra-high resolution: the future of digital imagery

Gigapixel displays

- Enables new modes of user interaction
- Applications in:
 - Industrial data visualization
 - Scientific and medical imaging
 - Entertainments industry

8.5 Gigapixel image

http://haltadefinizione.deagostini.it/

Ultra-high resolution: the future of digital imagery

Sony 4K Projector

The Red One: 4K film camera

Pixel-mania

Samsung SCH-B600

Seitz Roundshot D3

Pixel-mania

But how many pixels can the human eye actually see?

Seitz Roundshot D3

Inside the human eye

The retina

- The retina is like the photographic film of the human eye.
- The fovea is a special high-acuity "hot spot"

Photoreceptors: The pixels of the eye

Cross-section through the retina

Visual acuity

- The resolution of human vision falls off dramatically as you move away from the foveal "hot-spot".
- Your impression that the whole world is sharp and high resolution is really an illusion!

So, how many pixels?

- The number of pixels you can actually see at any single instant is surprisingly low: ~ 1Mpixel!
- If you are very close to the screen, you can see the pixels in front of you, but not in the periphery
- If you are far enough away to see the edges of the screen, you can't resolve the individual pixels any more

Key idea

Modify the resolution of the display depending on where the viewer is standing and where they are looking: "Gaze-contingent display"

- Technical Challenge: Track the viewer's eyes, head and body to work out where they are and what they are looking at.
- Why? Enormous computational savings
- Why? Massively enhances user interaction

Multi-resolution display

- High resolution where the viewer is looking
- Low resolution everywhere else
- Seamless illusion of very high visual fidelity, but at low computational load.

Multi-resolution display

- High resolution where the viewer is looking
- Low resolution everywhere else
- Seamless illusion of very high visual fidelity, but at low computational load.

Multi-resolution display

- High resolution where the viewer is looking
- Low resolution everywhere else
- Seamless illusion of very high visual fidelity, but at low computational load.

Traditional eye-tracking

- User must be seated with fixed head position
 - Static, unnatural viewing conditions
 - Limited field of view

Technology

High speed eye tracker

Infra-red position trackers

Technology

Combined eye- and head-tracking system

System in use with a freely moving user

The user can move around, explore and interact with the data on the screen.

Visual Attention

Change Blindness Ron Rensink, UBC Vancouver

Change Blindness – Trans-saccadic Memory Ron Rensink, UBC Vancouver

Change Blindness *Ron Rensink, UBC Vancouver*

Saliency and Rendering

Idea:

- 1. prerender a low-cost version of the scene
- 2. Evaluate salient (visually important) regions automatically
- 3. Render with high fidelity only where this is required

The 90th Frame

The Saliency map of the 90th Frame

Outline

- Exploiting limits of human perception to facilitate graphics
 - BW-FIT Gaze-Contingent Display
 - Change blindness demo
 - Explanation of top-down attention and bottom-up salience
- Exploiting ambiguity in visual perception
 - Visual Perception as inference
 - Image-based Material Editing

Perception as Inference

- The optics of the eye project the 3D world onto a 2D image plane on the retina.
- What we as behaving organisms care about is the 3D structure of the world. Unfortunately the projection from 3D to 2D is not invertible.

Perception as Inference

- Goal of human visual perception:
 - Reconstruct the complex, dynamic, 3D world around us.
- Problem:
 - Mathematically 'ill-posed'
 - Retinal image is ambiguous

Perception is under-constrained

- Vision is an inverse problem
 - not well-posed in the sense of Hadamard (1902)
 - a solution exists
 - the solution is unique
 - the solution depends continuously on the data
- A single image with many interpretations

The Necker Cube

- The brain makes assumptions about the world in order to solve the inverse problem of vision
 - small angular variations
 - planar surfaces
 - compact form
- A single cue can disambiguate the 3D structure

Ernst & Bülthoff, TICS **8(4)**, 162-169 (2004)

Perception is not always "true"

Visual Illusions

- As with many so-called illusions, this effect really demonstrates the success rather than the failure of the visual system.
- Of course, it makes sense if the visual system is trying to infer properties of the world --- that is the shade of paint --- instead of trying to measure properties of the retinal image --- that is the retinal intensity ---, which are of no survival value.

Image-based material editing

Erum Kahn, Erik Reinhard, Roland Fleming & Heinrich Bülthoff

- Given single photograph as input, modify material appearance of object.
- Physically correct solution not possible: aim for 'perceptually correct' solution.
- Exploit assumptions of human visual to develop heuristics.

transparency

Image-based material editing

Erum Kahn, Erik Reinhard, Roland Fleming & Heinrich Bülthoff

- Re-texturing
- Medium gloss to matte or glossy
- Opaque to transparent or translucent
- Arbitrary BRDFs

transparency

Image-based material editing

Erum Kahn, Erik Reinhard, Roland Fleming & Heinrich Bülthoff

- Re-texturing
- Medium gloss to matte or glossy
- Opaque to transparent or translucent
- Arbitrary BRDFs

new BRDF

Processing Pipeline

Processing Pipeline

How **not** to do shape-from-shading

Try using the state-of-the-art algorithms and you will generally be disappointed!

input

reconstruction

How **not** to do shape-from-shading

Try using the state-of-the-art algorithms and you will generally be disappointed!

input

reconstruction

How **not** to do shape-from-shading

Try using the state-of-the-art algorithms and you will generally be disappointed!

input

reconstruction

Dark is Deep

In other words ...

$$z(x, y) = L(x, y)$$

input

initial depth estimate

intensity

- The 'recovered depths' are conditioned using a **bilateral filter** (Tomasi & Manduchi, 1998; Durand & Dorsey, 2002).
- Simple non-linear edge-preserving filter with kernels in space and intensity domains.

Bilateral Filter: 3 main functions

- 1. De-noising depth-map
 - Intuition: depths are generally smoother than intensities in the real world.
- 2. Selectively enhance or remove textures for embossed effect

Bilateral Filter: 3 main functions

- 3. Shape-from-silhouette, like level-sets shape 'inflation' (e.g. Williams, 1998)
 - Intuition: values outside object are set to zero, so blurring across boundary makes recovered depths smooth and convex.

- Diffuse surface reflectance leads to clear shading pattern
- Silhouette provides good constraints

original

reconstructed depths

- Strong highlights create large spurious depth peaks
- Silhouette is relatively uninformative

original

reconstructed depths

Light from the side

Shadows and intensity gradient leads to substantial distortions of the face

original

reconstructed depths

Substantial errors in depth reconstruction are not visible in transformed image

correct viewpoint

transformed image

Why does it work?

 Generic viewpoint assumption (Koenderink & van Doorn, 1979; Binford, 1981; Freeman, 1994)

Piano-Illusion

Shigeo Fukuda

- wrong assumptions can lead to perceptual illusions (Beuchet Chair)
- the brain assumes that parts in close proximity belong together
- this assumption can be wrong in rare cases
- an "accidental view" leads to the wrong 3D interpretation

Proximity assumption works in most cases

- 2D images usually are sufficient for the correct interpretation of a scene
- only from a single viewpoint (accidental view) the proximity assumption leads to the wrong conclusion

Dwarfs and Giants

- high level interpretation (size, shadows) is ignored
- occlusions can solve the perceptual puzzle

Perception Action Cycle

VR Psychophysics closed loop

Omni-Directional Treadmill

 Unconstrained walking in all directions (2D), creating a truly immersive locomotion interface for VR

Omni-Directional Treadmill

 Unconstrained walking in all directions (2D), creating a truly immersive locomotion interface for VR

MPI Motion Simulator

Helicopter Simulator

Forums for Perceptual Graphics Research

ACM Trans. on Applied Perception

Symposium on Applied Perception in Graphics and Visualization

Thank You