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Abstract

Most of the functionality of the brain is thought to emergenfrcommunications
between neurons using spikes. Thus, for investigatingaldunction it is essential
to monitor spiking activity of neurons. Experimentally nseged signals, however, do
often not directly reflect spiking activity of neurons, bastead comprise a mixture
of biophysical events from various origins. In this disaédn | investigate the inter-
dependence of two signals: extracellularly measured sgikictivity and local field
potentials.

First, by means of machine learning techniques | ask to wégiae spike trains can
be inferred from simultaneously measured local field pag¢sifrom primary visual
cortex and lateral geniculate nucleus of non-anesthetretianesthetized macaque
monkeys.

Second, using an information theoretic approach | furthemsthat in primary vi-
sual cortex of macaque monkeys, spikes are related to LARatisois in a stimulus
dependent manner. In particular, information about a seer@movie can be pre-
dicted with higher precision from spike trains, when the gghaf local field potential
oscillations is taken into account.

The structure of experimental spike trains in response tiorabscenes is rich, with
periods of reliable high activity bursts intermingled witing silent periods. | develop
a neural network model based on many anatomical partitielsnf the primary visual
cortex of macaques in order to compare the statistics ofgiike $rains generated by an
artificial neural network under similar stimulus condit®To achieve a close match to
the data free parameters of the model are optimized usinganethod for comparing
multi-dimensional distributions, called Maximum Mean &ispancy §IMD).
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Zusammenfassung

Es wird im Allgemeinen angenommen, daf3 die FunktionswessedEhirns haupt-
sachlich auf der Kommunikation mittels Aktionspotentiaismschen Neuronen beruht.
Daher ist esiir die Untersuchung neuronaler Funktion essentiell, dagiffevon Neu-
ronen zu beobachten. Experimentell gemessene Signalgesiadh taufig nicht un-
mittelbar auf die Aktiviit von Neuronen ziickfuhrbar, sondern setzen sich aus ver-
schiedensten biophysikalischen Vargen und Quellen zusammen. In dieser Disser-
tation untersuche ich die Aldimgigkeit zwischen zwei solcher Signale: extrazalul
gemessene Aktivitt neuronaler Impulse und lokale Feldpotentiale (LFP).

Zunachst untersuche ich mittels Techniken des Maschinellendrs inwieweit
neuronale Impulse anhand der lokalen Feldpotentiale vgesagt werden dnnen.
Die neuronalen Daten sind im praren visuellen Areal sowie im seitlichen Kniatker
von arasthesierten und unasthesierten Rhesusaffen aufgenommen wurden.

Danach zeige ich mittels eines Ansatzes aus der Infornsttieorie, dal3 im pri-
maren visuellen Kortex verschiedene Stimuli eine #BlicheAnderung der Phasen-
beziehung neuronaler Impulse zu tiefen Frequenzen der bER®rrufen. Dasithrt
dazu, dal’3 Szenen eines Films weit besser aus der Feuemategesagt werdendn-
nen, wenn zuizlich die Phasenbeziehungen zu LFPs beachtet werden.

Die Struktur experimentell gemessener Zeitreihen nedest@apulse, welche durch
die Stimulation mit Filmen ndtlicher Szenerien erzeugt werden, ist komplex und
variabel: Haufig folgen Phasen véRlich hoher Aktiviit lange Zeiten der relativen
Stille. Ich entwickle ein knstliches neuronales Netzwerk, das viele anatomische De-
tails des prinaren visuellen Areals von Rhesusaffenimsichtigt, um die Statistik
der Impulszeitreihen destkstlichen Netzwerks mit denen der Reatliunterahn-
lichen Stimulusbedingungen zu vergleichen. Um eiriiglichst nahdJbereinkunft
zu erreichen, werden freie Parameter des Netzwerks mitieklsr neuen Methode
zum Vergleich multidimensionaler Wahrscheinlichkeit$ggungen, kurz Maximale
Mittelwert Diskrepanz ¥IMD), optimiert.
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Chapter 1
Introduction

“Dald in der morphologischen Kette der Thiere das Nerversysand
spater das Gehirn siclentwickelt giebt einen Anhaltspunkt — estwick-

elt sich das Fihlen, wie sich sgter das Bilderschaffen und Denken en-
twickelt. Ob wir es schon noch nicht begreifen: aber wir sehefd s
so ist. Wir finden es unwahscheinlich, Lust und Schmerz schaheis
Organische zu versetzen: und es ist immer noch auch beimdiiemsler
Reiz eine Stufdyeidesnicht da ist”

[Friedrich Nietzsche, 1885]



1. INTRODUCTION

Due to the small size of neural cells, their electrochememethmunications, and
the complexity of a neural system, it is impossible for us humto directly perceive,
observe or manipulate neural activity. Thus sophisticagethiniques have been de-
veloped to indirectly access and visualize brain activityts functional state. These
techniques necessarily rely on measuring a particularcasgdeneural systems and
therefore not only show an incomplete picture of the undegyprocesses but may
indeed be subject to artifacts not relevant for informapoocessing.

One prominent example is BOLD-fMRI, a popular non-invageehnique that re-
lies on changes in the blood oxygen Iedlel (Ogatal. (1992)). Changes in the blood
oxygen is only a very indirect measurement of neural agtigitd it is not immedi-
ately clear how and to what extend it actually reflects braotesses. However, it has
been shown by combined electrophysiological and fMRI mesamants that the time
course of the fMRI signals can be mapped to firing activity lnGal area (Logothetis
et al. 42001)). The correspondence is reflected best in its higtelziion to the power
in cortical local field potentials (LFP). Similarly, extratular voltage measurements,
such as LFP, not only record voltage fluctuations attribute@ single neuron but
instead comprises the activity of many cells around thetedde tip together with var-
ious oscillatory activities originating from various seas. LFP is thus only a “crude”
measure of neural activity (Henrie & Shaplév (2b05)). Outlafse reasons, there is
necessarily a strong interest in establishing the bioglaysrigins, the information
content, and interdependence of different signals.

Commonly, all indirect signals are tried to relate to spikawjivity of single neu-
rons, which are often considered the actual carrier of mfaion in the brain. How-
ever, in recent years the view is emerging that other sigisalsh as LFP, may partly
originate from elements of the neural system, which aresilfiinteresting to observe
in the sense that they contribute to the computational fanatf the neural system.
For instances one could take advantage that LFP seems t rafietly synaptic activ-
ity dLogothetis ‘(200%)), which means that also synaptieesioriginating from further
away or from completely different areas are locally obsklwa

In this dissertation | investigate some of these questiongwo neural signals:
extracellularly measured spiking activity and local fietwtgntials from macaque mon-
keys. In Chapter 2 | analyze the interdependence of LFP andtsineously recorded
spikes by means of support vector machines and linear gresodels. | show that




spiking activity is, on a larger time-scale, reliably redtto the local field potentials.
| use non-linear and multidimensional machine learnindgntégues to directly infer
spiking activity from features of the LFP. By analyzing treafures which are most
important for this prediction task, | show further that difént features of the LFP, i.e.
high-y power and the phase of low frequency oscillations, carryaalle information
for spike prediction. Furthermore, both contributions tediction performance are
rather independent, suggesting that both features camelsfo partly unrelated as-
pects of the neural circuit. For instance results suggestithv frequency oscillations
are good predictors for clusters of spikes.

Having established and characterized the relationshig=6f to spiking activity in
a wide range of data in detail, | ask in Chapter 3 whether tHatiom is relevant for
information processing. Indeed, one finds that the gainformation about naturalis-
tic scenes in a movie stimulus, by hypothesizing a phade+o§ code rather than by
a spike count code, is considerable in the same data of V1 chquees. This phase-
of-firing code relies on the relative position of spikes witha oscillation cycle of very
low frequency components of the LFR (10 Hz). The extra information available in
the phase of firing is crucial to disambiguate between siigligditing high spike rates
of similar magnitude. Thus, | challenge the view of LFP as amportant epiphe-
nomenon, because the spiking activity in respect to thdlascn cycle of the LFP do
indeed code for ovei0% more information than can be extracted from the spike count
alone.

Machine learning approaches applied to data analysis, i@ itathe first part of
this dissertation, are very important, since they are ablénd regularities in great
amounts of data with minimal hypothesis bias from the ingesbr. A complimentary
approach to investigate brain function is to understancetyithg laws and principles
by using mechanistic mathematical models. If a mathematicalel captures the
computational functions of the real system, it is capablgetoeralize its behavior and
one might be close in truly understand the complex system.

Today, modeling all details of a neural system is still ingobke. However, one
goal when employing artificial neural networks is that astehe statistics of its ac-
tivity is realistic. Asserting realistic spiking dynamias a model network circuit is
crucial, if one would like to use the network as a scaffold iforestigating realistic
information processing. Therefore in Chapter 5, | developoalehof the early visual
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pathway (LGN and V1), bearing many anatomical details, andpgare this state-of-
the art network model with the same experimental dataset instihe previous chap-
ters, which are recorded analogously from V1 and LGN. In lsytems, in the model
and the experimental data, | characterize statistics ohthwal activity and compare
trial-to-trial variability.

The V1 model extends over (at leaSt} 5 mm cortical surface. Itis adapted specif-
ically to the anatomy of macaque monkeys. The vertical cotore structure between
layers builds on earlier work dv Haeusler & Ma&ss (2007), mcdrporates realistic
functional and structural connection profiles betweenicaktaminae. Moreover, pre-
ferred orientation of neural sites is used for defining theamic input projections as
well as the superficial long-range connectivity.

Besides developing the network model and characterizegpiking activity, |
optimize parameters of the network model in order to matetfiting statistics of the
real system, by applying a new method for comparing effityemtultidimensional
probability distributions. This new technique, using thexMnum Mean Discrepancy
(MMD), is introduced in Chapter 4. Basically, the method finds afion (from
a given function space), that, when applied to two randonabées, shows greatest
difference in the means. Using an (universal) recurrenhddeHilbert space, | show
how to useMMD to perform a statistical test for the two-sample problend &ast its
performance against existing methods.

From the modeler’s perspective it is interesting to see tanapart current network
models are from the reality, as it is represented by experiaiéata. Since the network
model of Chapter 5 and the monkeys in the experimental datsharen the very same
movie stimuli, a direct comparison of data and model is gmesi However, | find
that experimental data is still far from being exactly refuoed by a state-of-the-art
network model of the primary visual area, suggesting thatyngetails of this complex
system still remain unknown.




1.1 Publications and contributions

1.1 Publications and contributions

The data analyzed in all Chapters were recorded in the N. lbegist lab. They were
generously made available to me for the research of thiedason by N. Logothetis
(Max-Planck Institute for Biological Cybernetics). Datareienostly recorded by Y.
Murayama, but also other employees the lab were involved.cémpleteness of the
presentation, | describe the recording setup in this thé¥xause the subset of data
used and the preprocessing methods differ slightly fronptdrao chapter, | include
a brief experimental methods section describing data attegpr and preprocessing in
each chapter. This achieves also a low degree of interdeperdetween chapters
and thus allows to read each chapter rather independently.

The chapters are based on the following publication andritanions:

e Chapter 2 is based on the following publication:

RASCH, GRETTON, MURAYAMA , MAASS, & L OGOTHETIS(2008). In-
ferring spike trains from local field potential3ournal of Neurophysiology
99(3), 1461-76

Y. Murayama and N. Logothetis were responsible for coltegthe experimental
data. A. Gretton, W. Maass, and N. Logothetis superviseavtiré.

e Chapter 3 is based on the following publication:

MONTEMURRO, RASCH, MURAYAMA , LOGOTHETIS & PANZERI (2008).
Phase-of-Firing Coding of Natural Visual Stimuli in Primavisual Cor-
tex. Current Biology 18(5), 375-80.

The techniques in information bias correction describethenmethod section
of Chapter 3 were developed by the co-authors M. MontemurdoSarPanzeri.
They are stated here for completeness. The bulk of the papsrcomposed
in team work by M. Montemurro, M. Rasch and S. Panzeri, underi¢ader-
ship of the first and the last author, which contributed mastMurayama and
N. Logothetis were responsible for collecting the expentaédata.

e Chapter 4 is based on the following publications:
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BORGWARDT, GRETTON, RASCH, KRIEGEL, SCHOLKOPF, & SMOLA
(2006). Integrating structured biological data by kernelximum mean
discrepancyBioinformatics 22(14), e49—-e57.

GRETTON, BORGWARDT, RASCH, SCHOLKOPF, & SMOLA(2007). A
Kernel Method for the Two-sample-probleddvances in Neural Informa-
tion Processing Systemsds. Schlkopf, Platt, Hofmannl9, Cambridge,
MA, The MIT Press.

GRETTON, BORGWARDT, RASCH, SCHOLKOPF, & SMOLA(2007). A
Kernel Approach to Comparing DistributionBroceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI;AB37-1641,
AAAI Press, Menlo Park, CA, USA.

GRETTON, BORGWARDT, RASCH, SCHOLKOPF, & SMOLA (2008). A
Kernel Method for the Two-sample-problemsubmitted to Journal of Ma-
chine Learning Resarch.

The theoretical development and proofs of the Maximal Memti2pancy were
done by the co-authors A. Gretton, A. Smola, K. Borgwardtl Bn Sclolkopf.
They are incorporated in this thesis for completeness.tigigated in its refine-
ment, implemented all statistical tests and ran most of #r@pmance experi-
ments.

e Chapter 3 is based on the following manuscript:

RASCH, SCHUCH, HAUSLER, LOGOTHETIS& M AASS (2008). Compar-
ison of firing characteristics of a state-of-the-art netwmiodel of macaque
V1 to experimentally recorded data under semi-natural mstimulation.

Manuscript.

K. Schuch collaborated with the python implementation & YHL model and
S. Hausler contributed the basic generic microcircuit modafework. N. Lo-
gothetis was responsible for the experimental data and Vésslaupervised the
work.

In the following chapters | will write in the first-person pal pronoun, to empha-
size the collaborative character in the presentation.



Chapter 2

Inferring spike trains from local field
potentials



INFERRING SPIKE TRAINS FROM LFPSs

We investigated whether it is possible to infer spike traaislg on the basis of the
underling local field potentials (LFPs). Employing suppgettor machines and linear
regression models, we found that in the primary visual cof¥#) of monkeys, spikes
can indeed be inferred from LFPs, at least with moderate ss:cAlthough there is
a considerable degree of variation across electrodes, theffequency structure in
spike trains (in the 100 ms range) can be inferred with reabtsmaccuracy, whereas
exact spike positions are not reliably predicted. Two kinti$eatures of the LFP
are exploited for prediction: the frequency power of bandshi& high~-range (40-
90 Hz), and information contained in low-frequency osailas (< 10 Hz), where
both phase and power modulations are informative. Inforara@nalysis revealed
that both features code (mainly) independent aspects afike-to-LFP relationship,
with the low-frequency LFP phase coding for temporally clestespiking activity.
Although both features and prediction quality are similaridg semi-natural movie
stimuli and spontaneous activity, prediction performadaeing spontaneous activity
degrades much more slowly with increasing electrode distambe general trend of
data obtained with anesthetized animals is qualitativelyrared in that of a more
limited data set recorded in V1 of awake monkeys. In cont@she cortical field
potentials, thalamic LFPs (e.g. LFPs derived from recogdiim dLGN) hold no useful
information for predicting spiking activity.

2.1 Introduction

In a typical electrophysiology experiment, the signal nueeg by an electrode placed
at a neural site represents the mean extracellular fielchpatémEFP) from the weighted
sum of all current sinks and sources along multiple cellsa mhicroelectrode with a
small tip is placed close to the soma or axon of a neuron, themteasured mEFP
directly reports the spike traffic of that neuron and frediyethat of its immediate
neighbors as well. If the impedance of the microelectrodsuificiently low and its
exposed tip is a bit farther from a single large pyramidal, & that action potentials
do not predominate the neural signal, then the electrodenmamtor the totality of the
potentials in that region. The EFPs recorded under thesditomms are related both
to integrative processes (dendritic events) and to spikegeted by several hundred
neurons.



2.1 Introduction

The two different signal types can be segregated by frequleand separation. A
high-pass filter cutoff of approximately 300-500 Hz is usedanost recordings to ob-
tain multiple-unit spiking activity (MUA), and a low-pasétér cutoff of ca. 300 Hz to
obtain the so-called local field potentials (LFPs). A largenter of experiments have
presented data indicating that such a band separation ddesd underlie different
neural events (for references see for inst$nce Logon?X)).

In summary, depending on the recording site and the elespaaperties, the MUA
most likely represents a weighted sum of the extracelluttioa potentials of all neu-

rons within a sphere of approximately 140-30t radius, with the electrode at its
center ‘(Henzeet al{ 42006)). Spikes produced by the synchronous firings of many
cells can, in principle, be enhanced by summation and thiecthel over a larger dis-
tance‘(Arezzcet all 41979)4 Huang & BuchwaHl (1977)). In general, experimeraigeh
shown that large-amplitude signal variations in the MUAgameflect large-amplitude
extracellular potentials and that small-amplitude fasivéyg is correlated with small
ones‘(BuchwaId & Grova (19%0); Gasser & Gruncifést (inQ)J\,@r & Buchwalth
1970):‘ HurJt‘(l%‘ﬂ: Nels&)n (1966)).

The low-frequency range (i.e. the LFPs) of the mEFP signalhe other hand,

represents mostly slow events reflecting cooperativeigctivneural populations. Ini-
tially these signals were thought to represent exclusiggiyaptic events (Ajmone-
Marsan ‘(1965); Buchwalét al. 41965); Fromm & Bond‘(lgfu, 19%7)). Evidence
for their origin was often gathered from current-source sign(CSD) analysis and
combined field potential and intracellular recordngs @darf &1985); Nadasdgt al{
(1998)). Mitzdorf has suggested that LFPs actually reflagemhted average of syn-
chronized dendro-somatic components of the synaptic Egfaa neural population
within 0.5-3 millimeters of the electrode tﬂo (Juergmsal\ 4199%; Mitzdorf ‘(1987)).
Later studies, however, provided evidence of the existefather types of slow ac-

tivity unrelated to synaptic events, including voltageyeledent membrane oscillations
(e.g. ‘ Kamondiet all 199%)) and spike afterpotentials. Taken together, LFpgere
sent slow waveforms, including synaptic potentials, aibéentials of somato-dendritic
spikes, and voltage-gated membrane oscillations, thattdafie input of a given corti-
cal areas as well as its local intracortical processindutting the activity of excitatory

and inhibitory interneurons.



INFERRING SPIKE TRAINS FROM LFPSs

Given the different natures of LFPs and MUA, we felt that itulbbe interesting
to address the question of whether one can infer spiking ofams from the locally
measured field potentials. Herein we address this questiastraightforward manner.
We use methods derived from the field of machine learning irat@mpt to infer
exact spike timings from the underlying LFPs. We comparedabteuracy of spikes
trains predicted by supervised learning algorithms on awahge of recordings from
the primary visual cortex (V1) as well from the lateral ganae nucleus (LGN) of
anesthetized and awake macaques and investigate whatfkeatures of the LFP are
important for inferring spikes from LFP.

2.2 Methods

2.2.1 Data acquisition

Electrophysiological data recorded from 9 anesthetizelPaswvake monkeydMacaca
mulattg are included in the present study. All animal experimeneenapproved
by the local authorities (Regierungspraesidium) and arillincompliance with the
guidelines of the European Community (EUVD 86/609/EEC) far ¢tlare and use of
laboratory animals. Surgical procedures are describesivblsre ‘(Loqothetiset al
(2002)).

To perform the neurophysiological recordings in anesteetimonkeys, the an-
imals were anaesthetized (remifentanil (typi¢ak - kg~' - min~1)), intubated and
ventilated. Muscle relaxation was achieved with mivacwri@img - kg~ - h~'). Body
temperature was kept constant, and lactated Ringer'signlutas given at a rate of
10ml - kg~' - h~!'. During the entire experiment, the vital signs of the mon&ay the
depth of anesthesia were continuously monitored. Dropsefophthalmic solution
of anticholinergic cyclopentolate hydrochloride weretilhesd into each eye to achieve
cycloplegia and mydriasis. Refractive errors were measarel contact lenses (hard
PMMA lenses by Whik GmbH, Germany) with the appropriate diepbower were
used to bring the animal’s eye into focus on the stimulusel&imultaneous record-
ing of neural activities were made from the primary visuater using 8-16 electrodes
configured in 4x4 or 2x8 matrices in a grid of 1-2mm. Electroigs were typically
(but not always) positioned in the upper or middle corti@ldrs. The impedance
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of the electrode varied from 300 to 800 kOhm. In the case oukaneous LGN
recording, an additional set of drives usually comprisirg @ectrodes was addition-
ally positioned. The electronic interface, including sy holder and preamplifier, was
custom-designed to minimize cross-talk of signals betveectrodes (typically about
1ppm). The signals were amplified and filtered into a band 8kHz (Alpha Omega
Engineering, Nazareth, Israel) and then digitized at 21wt 16bit resolution (Na-
tional Instruments Co., TX USA), ensuring enough resolufarboth local field and
spiking activities. Binocular visual stimulation was pided through a two-fiber optic
system (Avotec Inc., FL USA) after fine alignment to each efdéimimal’s foveas by a
modified retinoscope coupled with a stimulus projector bold

In the case of the anesthetized animals we differentiatedset two different con-
ditions: spontaneous activity ("spo”) and movie-drivertiad@stm”). In the former the
input screen is blank for about 5 minutes. In the latter a 4i€ute segment of a com-
mercially available movie is shown. Movie frames were synaized with the refresh
rate of the monitor (60 Hz, two syncs per movie frame) and ca¥&-12 degrees of
the visual field. Most of the electrodes were confirmed to laakeceptive field within
the movie presentation area (see Fig. 2.2.1 B for an examidiple trials of movie
presentations and spontaneous activity are run within ecerding session (intermin-
gled with recordings of other stimuli not considered heFeghm these data we include
1304 recorded time series in the present study, which wetgal$ throughout this
paper. The data set comprises recordings from 9 animalsatell in 12 recording
sessions. From each session we take 5 repeats of movie fase@and 5 repeats of
spontaneous activity trials (with the exception of j97nmwhere only one movie trial
is available). To avoid any subjective selection bias alasueed electrode channels
per session are included. This results in 670 trials for suoUs activity and 634 for
movie stimulus recorded using 134 electrode placementsiedare identical within
a session but may differ between sessions.

In 3 sessions (two anesthetized monkeys) up to 4 electrodes simultaneously
placed in the LGN. Thus stimuli reflected in these data (1@@sjrare exactly identical
to those in corresponding recordings of the V1 data. Data fasvake monkeys are
more limited and were only included in the present study toatmrate results for
the data described above. They are recorded using 1-4 éstfomin chronic implants
penetrating V1 (see Tolias et al. 2007 for detailed desonpf surgical methods and
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Figure 2.1: A: Representative electrode recording from Session a98nmb5 of an etzesth
monkey. Upper plot shows the instantaneous firing rate of an experino@ngdnovie pre-
sentation for a V1 electrode in a small time region. Movie presentation startsaalflank
period. Recording time of 170 sec duration starting 5 seconds after moset mnused for
prediction performance evaluation and is called a trial (see Methods).loWes plot shows
the LFP trace corresponding to the V1 electrode ab8vehows the arrangement of receptive
fields relative to the movie presentation area for Session a98nm5, where sienuitaV1 and
LGN recordings are available. Other sessions have similar electrodegaments.
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2.2 Methods

recording setup) in a total of 56 trials. Unlike the data franesthetized animals the
stimulus conditions here are mixed, with spontaneousisc(ino task) and a fixation
task showing gratings of different orientations. All data processed in the same way
as outlined in the next section.

2.2.1.1 Processing

The data preprocessing steps are as follows. Electrodalsigrere decimated to
7 kHz. Spiking activity is inferred from high frequenciestbe resulting signal (see
below). The recording hardware introduces a high-pass fitth a cutoff < 1 Hz;

1 Hz is thus the lowest frequency considered here.

The 7 kHz signal is low-pass filtered with a cutoff frequen€80 Hz and resam-
pled first to 500 Hz for computational convenience. The tasylisignal is low-pass
filtered at 90 Hz to derive local field potentials (LFPs). Fawlpass filtering we use
a custom finite impulse response filter (FIR), namely a Kargadow FIR filter with
60 db attenuation in the stopband, a 0.01 db passband rgopdea transition band of
1 Hz. To eliminate possible phase shifts, signals were édtéorwards and backwards
(using MatLab filtfilt function). The signal is then resangbk® a final sampling rate
of 200 Hz.

Good properties of FIR filters are won at the expense of laitgr Bizes (a few
seconds). However, since we discard leading and trailimggrs of > 15 seconds of
each trial, filter on- and offset artifacts are of no concesreh

2.2.1.2 Spike extraction

Spike times are detected by applying a threshold to the pags-filtered 7 kHz signal
described above (4th order Butterworth, cutoff frequen@® 5z). Since this MUA
signal is usually asymmetric, the detection threshold iematically applied to that
side where spike waveforms exhibit greater deflection. Tadadependency of the
size of spikes the threshold is applied at 3.5 times the atandeviationo of the
"noise component” of the MUA signals is estimated by calculating the standard
deviation of the signal neglecting the 4.55% Qo) absolute highest values divided
by the percentage of variance which is kept in general, wieéing the probability of
values absolute- 20 to zero.
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Visual inspection confirms that spikes are detected wellthdéf assumption of a
Gaussian "noise component” is correct, then the rate of glyodetected spikes is
about 1.6 Hz (for = 3.5). Note that the resulting spike trains will most likely indie
spikes from multiple neurons (see Disccusion 2.4). Becaogst recordings were
done with single tip electrodes we do not employ any kind desgorting.

2.2.2 Learning to infer spike trains

The learning algorithm has to learn to map from LFP wavefofarsother LFP fea-
tures) to spikes. ldeally, the learning algorithm shoultpatiall predicted real-valued
spike timings at once if the LFP time course is given as inpiiis task requires too
much data, however. Instead, we simplify the task by assyithat spikes are inde-
pendent and that the spike-to-LFP relationship remainstemnover time. With these
assumptions one can use a binary classifier, which yieldpréatiction of a spike (or
no spike) at time¢. Concatenating the prediction for eactesults in a predicted spike
train for a given LFP. Note that the independence assumptes not imply that pre-
dicted spike trains are necessarily uncorrelated, as teahporrelation can be induced
by the underlying LFPs.

In supervised fashion the binary classifier is trained ontas&aining examples
and tested on a distinct test set. We train a binary classiii€FP features summarized
in the sample vectors; ,i = 1,..., L, to predict the label; € {1,—1}. i is theith
point of the discrete LFP time series with sampling freqyehA at recording time
t; = iA+ty. Thusy; = 1 states that there occurs (at least) one spike within time;pin
andy; = —1 indicates no spike. In this framework prediction is temgigreestricted
to the sampling resolution of the LFPs, making it necessatyirt the spike timings.
The sampling interval\ is 5 ms, in accordance with the sampling frequency of the
LFP signal (200 Hz).

2.2.2.1 Learning algorithms

A support vector machine (SVM) was usgd iVab ik (1999)) ademrnin Iorlth
hl Bp i20 6)

For a more detailed introduction to SVMs, see for exam Burge
1998)‘ Schlkopf & Smol$ ‘(200&)) Support vector machines perforrmlvymIaSS|f|-
cation in a supervised fashion.
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Briefly, the model can be stated as follows Eoé 20 6)etails)
h(x) =w/®(x)+b (2.1)

where one looks for the decision boundary or weight vesatob is a bias term an@

a projection into a space of features. Support vector mashihoose the hyperplane
which has the widest margin between both classes ratherathambitrary separating
hyperplane. This is achieved by enforcing appropriate taimgs in the optimization.
For non-separable problems, such as our real-world datjrdgroduces the concept
of soft margins, i.e. in the optimization one now allows focarrectly classified ex-
amples, where an additional parametéregulates the penalty.

SVMs have the power to do nonlinear separation (seen frorsppetive of the
input space) by choosing an appropriate kernel which intplidefines the feature
map®. Herein non-linear radial basis function kernels (RBF kdshare used.

As a simple alternative to SVMs we used standard linear ssgpa (with a constant
bias term) on the label vector and the samples (se 2006)). Briefly, using
a linear modeh,.,(x;) = w’x; + b we calculated the optimal weight vecter: by
minimizing the mean squared err@,..,(x;) — y;)*) on the training samples. Class
labels on the test set were obtained by thresholding witrsidpe function, i.e.y; =

sign(hyq(%;))-

2.2.2.2 Extraction of LFP features

An LFP feature could be any aspect of the LFP which one migétrdieelpful for in-
ferring whether there is a spike#tor not. In our analysis, we used the LFP at different
lags with respect to;, its power at different frequencies, and the phase of @ditts

at particular frequencies (also at different lags). Muétifeatures are simply concate-
nated in the sample vectat. Note that each dimension of the resulting samptes

is normalized to zero mean and unit standard deviation.uresaire extracted prior to
dividing the samples into test and training sets.

If g(¢;) represents the (normalized) voltage at sampling bin , a feature may
be defined ag.(t;) := g(t;1x), Wherer = kA represents the time lag (we neglect
boundaries to simplify description). Featur€gt;) represent simply the LFP time
course relative to sample tintg
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Another type of feature, which we denak®(¢;), is the estimated power at (cen-
ter) frequencyf of the LFP time course at timg,,. To obtain an estimate for
the power at a given frequency and time, we calculated thetsgggam, employing
the multitaper approach introduced by Thomgon (Jarvis &aM(R001); Percival &
Walden (2002); Thomson (1982)). As spikes are single evantbe time scale o,
we chose a high temporal resolution at the expense of freyuessolution. We set
the moving window to 150 ms and the time-bandwidth produdt.& which implic-
itly sets the half bandwidth td/ = 10.67 Hz. Spectral estimation was averaged over
two Slepian tapers. As this window setting does not allowueatte power estimation
below 20 Hz we used larger windows for bands below 20 Hz (500amd below 6 Hz
(2 s). This reduced the half bandwidth to 3.2 Hz and 0.8 Hz ifequiencies below
20 Hz and 6 Hz, respectively. We also tried Morlet waveletthwariable bandwidth
per frequency, but this did not alter prediction performanc

To access phase information at particular frequencies efiLtFP, we first band-
pass filtered the recorded signal with the FIR Kaiser filters(ibed above) with a
bandwidth of 2 Hz (Fig. 2.6) or 4 Hz (Fig. 2.7), and then usedHtiibert transform to
extract an instantaneous phasgt;) at frequencyf. From these signals we defined
phase features; (t;) := cos(¢(tiyx)) having a lag ofr = kA. These features have
identical phase information as the bandpassed signalgddeaoid of any amplitude
modulation. Additionally, we used; ,(t;) := sin(¢;(t;+)) in the feature analysis of
Fig.[2.6 to help the classifier linearly extract phase logkah phases where the cosine
would be near the zero crossing.

2.2.2.3 Performance measures

The kappa measure was used as a measure of perfornl;ance (MDI).( Letp,

be the fraction of samples having target labet {—1,1} and predicted labet €
{—1, 1} and letq, andg, be the fraction of samples in the test set which have the label
[ in the target or the label in the prediction, respectively. Then the chance level for
classification is given by, = ¢_1¢_1 + ¢1¢:. If we definepy = p_; _1 + p1 1 to be the
overall fraction of correctly classified samples (both pesiand negative), then is
given by

)= PO P (2.2)
1 - Pe
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This measure is a normalized above-chance classificatten tacan be easily seen
that x equals zero if prediction is at chance level, iig.= p., and equals one if the
predicted classification is perfect, i,@, = 1.

Another performance measure is the Spearman rank cometgtbetween smoothed
predicted spike trains and target spike trains. This mighg g more intuitive picture of
the prediction quality. If not stated otherwise, spikerisaare smoothed by a Gaussian
kernel of width 25 ms.

Yet another measure for prediction quality is the mutuadinfation between class
labels. The mutual information (MI) between target spikeand the prediction out-
come of a classifie€’(#) using LFP feature$’ and labels. := {—1, 1} is:

1(5:C(F) =33 pilog, f;q

leL rel

(2.3)

where we take the probabilities defined above. This estonaif Ml is different to
non-parametric approaches in that it can only access depewgdvhich is in reach of
the classifier; thus, one has to make sure that the classafuies the main aspects of
its dependency. Note that we use the naive estimator forahuttormation (without
bias correction‘ (Panzest al{ dZOO'}))). Since all Ml value calculations involve an
identical number of bins — namely two, one for each class —amenevertheless safely
compare results even for classifications with different bars of features. However,
the absolute Ml values might be biased.

To access redundancy, synergy, and independence of irﬂom&ﬁolaet al\ 2003);
Schneidmaret al. 42003)) conveyed by two featurdg and F; about the spiking ac-
tivity S, we estimate mutual information using two classifiers edion features’
and F; individually, yielding I(S; Fy) := I(S; C(Fy)) andI(S; Fy) = I(S; C(Fy)).
Then a third classifier is trained on both features jointlglding 1(S; F, F») =
I(S;C(Fy, Fy)). If both features carried independent information from ploént of
view of the classifier, both features together would condantical information as in-
dividual features, i.el (S; Fi, F») = I(S; 1)+ 1(S; Fy). If both features were related
by a one-to-one mapping (completely redundant informadioout the spikes), then all
terms would be equal,(S; F1) = I(S; F») = I(S; F1, F»). If the two features did not
carry information individually, i.e.J(S; F}) = I(S; F,) = 0, but carried information
together,/(S; Fy, F») > 0, they would be termed (completely) synergistic. Thus we
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define a normalized degree of synergy of information abaeisfhikes (as measured by
the classification algorithm) Js (Schneidmﬁrall 2003))

1(S; Fr, Fy) — I(S; Fy) — 1(S; Fy)

syn(Fy, F»|S) == (5. F,. )

(2.4)

This measure ranges froml in the case of completely redundant informationi tor
completely synergic information. The meassyea(F}, F5|S) is zero if both features
F, and F;, convey independent information about the spikes

To analyze prediction accuracy on different time scales,used spectral coher-
ence‘(Jarvis & Mitra‘ (2001)). Spectra were again estimatadmultitaper approach
designed for point events (Jarvis & MiHa (2001)). Here timetbandwidth product
was set tdI'W = 3 using the average ok = 5 tapers, yielding a half bandwidth of
W =0.001 HzforT =17 s.

2.2.2.4 Performance evaluation

We evaluated the prediction performance for each trial isgply, using 10-fold cross-
validation. We analyze a 170 second region, avoiding theaad-offset of the movie
stimulus. Spontaneous activity trials are also restrietedl70 s duration. In the case
of tetrode recordings, performance is estimated as theagegrerformance of the four
wires of the tetrode.

Hyperparameters for the SVM algorithm were estimated devi@. The RBF ker-
nel width p was selected by a heuristic procedure. We toti be 1.77 (or 3.54) times
the median distance of all Euclidean distances in the tigiset. For each trial we
chose that” (andp) showing the best performance (averaged over 10 crosdatein
runs on a logarithmic grid of 25 values from 0.25 to 400). Wsueailly confirmed
that this range is appropriate for our data (not shown). Walubke [ibSVM library
(http://lwww.csie.ntu.edu.tw/cjlin/libsvm/) for all SVMalculations.

Since the sample sizes were heavily biased towards theive@adn-spiking) class
we randomly picked approximately the same number of sangjlbsth classes from
the training region. This effectively changes the loss fiomcfrom equal loss to higher
importance for spikes (about a 5-fold increase, dependimip@ mean firing rate). We
used 1000 and 1200 samples for spiking and non-spikingesa@s the maximum
available in the training region with a constant class jatitd empirically found this to
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be a good compromise between prediction quality and cortipotd speed, as more
than 1000 samples only marginally improved the results §hatwn). Training the
classifier on all possible samples was prohibitive due tetit@mous sample size. We
tried to employ class biasing in tlie parameter% (Musicaet al. 42003)), but this only
increased computation time with little gain in predicticumadjty.

The test set was always a temporally contiguous region tmdgature correlation
of trained and tested samples which might lie nearby in tieerandomized set of
samples were used.

2.2.2.5 Feature selection algorithm

We now describe how to determine the usefulness of difféieatures for spike pre-
diction. Whereas features important for the SVM classifiertard to interpret, in the
case of linear regression (with squared loss) one can darvanalytical expression
for the prediction error of a set of features involving orhetspike triggered averages
and correlation among features. Based on this predictioor,eve derived an algo-
rithm which forwardly selects a small subset of featuresadig much larger pool of
features. As explained below, the selected subset will siavimal prediction error
compared to other subsets with the same number of featurébat sense the subset
of features selected by our algorithm represents the mestiigatures from a given
pool. As this feature selection can be efficiently done fagdnéeature pools, we re-
stricted feature analyses to linear classification, rathen using the SVM classifier.
This is not too restrictive in our case, as linear classikcatchieves almost 90% of
the performance of an SVM classifier (see Results section).

In linear regression we look for the optimal weight vectorwhich has minimal
error in a mean squared sense,

e(w) = ((yi —w'x;)?) (2.5)

where the brackets indicate averaging over all sampleMinimizing the error is
straightforward and results in the optima¥™* of

w* = (xx]) 7 (yix,) (2.6)

INote that the optimailv in the above statements has only minimal error for the regpesand that
there may be a better weight vector for classification. Wdawdhis here for the sake of simplicity.
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provided that the estimated correlation matfix= (x;x; ) has full rank. We note that
we have a binary classification, henges {—1,1}. Thus

C_1 (&1
)= ——L 2 2.7
(yixi) o+ C 1 o1ty 1 (2.7)

wherem_; andm; are the class means for the non-spiking and spiking clasgeoe
tively, andc_; andc¢; are the number of samples in each class. With the conditiain th
each feature is normalized to variance one and zero meal2.&cpduces to

w'=cA 'm,; (2.8)
with ¢ := q%_l The minimal error is then given by
e(w*) =1—c*m] A 'm,. (2.9)

In other words, the error of the linear regression is onlyetejent on thespike
triggered averagam; and the correlation among features. We note that if we sstri
ourselves to the use of features (the dimensions af) out of a pool of N > n
features, the above equations remain valid if the cor@tatnatrix and the mean are
also restricted to these features only (thatddhas sizen x n with rankn andm, is
n-dimensional).

In order to select a set of features we employ the following iterative algorithm.
We start with the feature which has highest spike triggevedage, i.e f; = argmax;|(m, ),
(the variance of each feature being normalized to one). hssww that, — 1 features
are already selected. Then we search througivalt n + 1 remaining features and
choose one that minimizes the error (Eq. 2.9), where theicdsh of the correlation
matrix is now enforced on the features rather than om — 1 (and analogously with
m; ). We stop this iteration when the desired number of featureg N is selected.

This algorithm is highly efficient in finding a good set of fesds, since we need
only to calculate the correlation matrix between the selédeatures and all other
features (which costs much less effort than calculatingriefl pairs).

2.3 Results

This section is organized as follows. After showing the gahepike-to-LFP relation-
ships present in our data, we report the population perfooador the task of pre-
dicting spike trains from LFP, focusing first on data from \flanesthetized monkeys
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(9 monkeys) collected during the presentation of 5Smin of carcial movie stimuli
and equally long periods of spontaneous activity. We thenpaoe these results with
a more limited set of sessions recorded from V1 of awake mgsk2 monkeys) and
with results on data from LGN of anesthetized monkeys (2 regak Finally, we in-
vestigate which LFP features are important for the prealictask and which aspect of
the spikes they code for.

2.3.1 Average spike-to-phase and LFP-power relation

Figurel 2.2.1 shows spiking activity and (normalized) LFPs @epresentative elec-
trode. Relationships between spiking activity and undeg\.FPs are visualized in
Fig.2.2.

In Fig. 2.2 A the spike-triggered average (STA) of the LFPsuofexample elec-
trode during movie stimulus is plotted. Clearly, there is@ér relation between spikes
and LFPs. One notes a sharp negativity at spike positionrattizee lag and a promi-
nent upswing for positive time lags, i.e. after spiking haswred. Likewise, in the
spike triggered average of the spectrogram (Fig. 2.2 B) pasvenhanced in the high-
frequency range (40-90 Hz) during spiking activity. Enhament of power at high
LFP frequencies as a response to spikes is common amongpdieststimulus condi-
tions, and monkeys, as we will see in the next sections.

Figure 2.2 C shows the probability of spiking activity at thecillation phase of
a particular LFP frequency for the same example electrodeaweraged over 30 re-
peats of the movie presentation (about 120 min recording)tin®ne notes that the
phases of all LFP frequencies are at least weakly relatediking activity (Raleigh
test of non-uniform angular distribution). Most strikiggbpikes are relatively tightly
locked to phases of low frequencies up to 10 Hz. The gengrailithis behavior is
illustrated in Fig! 2.2 D, where the phase preferred by spikeplotted as an average
across all data from V1 (anesthetized animals). The averaggerred phase shifts with
frequency from the onset of a positive half wave to the vatieyhe LFP oscillation
(compare to Fig. 2/2 E). This behavior is very consistergardless of whether activ-
ity is spontaneous or movie-driven. For some electrodepitiierred phase-frequency
dependence is slightly different (as in the example of[Fig.@for high frequencies).
For a few electrodes the phase-to-spike relation seemsnorbered atr (not shown).
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Figure 2.2: Spike-LFP relationships for one electrode in V1 of an anesthetized mahkey
movie stimulation (A-C), and across all recordings from V1 in anesthetizetkeys (D-E).
A: Spike-triggered average LFP. For significance levels inter-spikes/aiseare shuffled and
the standard deviation of the resulting STA calculatBdSpike-triggered average of the LFP
spectrogram (see Methods), with power series normalized to zero mdaticenlard deviation
one. Power at high frequencies is clearly modulated by spiking activitgreds power at
lower frequencies shows only diffuse dependency on spiReBrobability distribution of LFP
phases at a particular spiking position. LFP phases are computed viathitbesform (1 Hz
bands). Here all spikes over 30 repeats of movie-driven activity ataded (same electrode
as before). Note that the color map shows only a narrow range of lpitiiles and that values
above or below the limits are truncated. Black dots indicate the preferrediiean) phase.
No phase locking of spikes would result in a uniform distribution at 2% per\While locking
to low frequencies is strong, locking to high frequencies is only weak jbegent). PloD
shows the average preferred phases for all electrodes acrosesihatized data individually
for movie-driven activity ("movie”) and spontaneous activity ("spon®ars indicate standard
errors. The phase range containing half of the spikes around thermefphase is indicated
by the shaded are& illustrates the interpretation of phase, showing that spikes are locked at
very low frequencies to the onset of a positive half wave and at higiuéecies to the valley.
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The gray shaded area in Fig. 2.2 D shows the (average) phage wathin which
50% of the spikes fall. It would be zero for perfect phase inglandr for no phase-
spike relation. One notes that this range is somewhat smfalldow frequencies
(0.85r), but approaches 0.@8or frequencies higher than 20 Hz, indicating that the
phase locking is far from perfect at all frequencies, andsigeeially weak for high
frequencies.

In summary, we have seen that there is indeed a consistatibredhip between
LFPs and spiking activity on average. In the next sectiongsketo what degree it is
possible to exploit these relations (and maybe other in&ion available in the LFP)
in a systematic way to infer spikes from the LFP.

2.3.2 Population prediction performance

In Fig.[2.3 a typical example of a predicted spike train isidig together with the
utilized LFP features. Panels A and B show 8 seconds of LFEtgggam and the
time course in the test region, respectively. Small veftices in panel B indicate
spike times before binning to 5 ms resolution. Several egtng points can be noted.
As expected from the LFP-to-spike relations discussedandht section, spikes pref-
erentially occur in the upswing and valleys of very low anddmen LFP oscillations,
as seen for instance at times 171 s and 173.4 s in panel B.i&waliy, the power of
multiple frequencies is enhanced when a burst of spikingigcbccurs, as suggested
by Fig. 2.2 B, but the frequency response to bursts is difusa variable (compare
the burst at 173.4 s to that at 174.5 s). The clustering ofispikctivity on a time
scale of a few hundred milliseconds in this example is abtwplite typical in our V1
data (see below). For the single spikes in between the ctustefeature of the LFP is
immediately predictive.

Figure 2.3 C shows target and predicted spiking activitfr®diction of spikes is
made for individual sample times at a resolution of 5 ms uaisgt of LFP time course
and frequency features (see below). Concatenating thegti@diover time yields a
predicted spike train which is compared to the target spimt One notes that the
prediction captures at least approximately the overalicstre of the spike train. The
occurrence of bursts of spiking activity, which are asswtlavith easily seen traces
in the LFP time course and spectrogram, is predicted wellveMkeless, the exact
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Figure 2.3: Example of spike prediction from LFP (anesthetized monkey, Sessiom#8n
spontaneous activity). Pan&lshows the (normalized) spectrogram of the 8 seconds of LFP
activity, the time course shown in pang! Simultaneously recorded spikes are indicated by
marks before binning to the LFP resolution (5 ms). Pahshows the binned target spikes and
their spike density function (blue) together with the predicted spikes andspiée density
function (red). The prediction is relatively good & 0.40, r95,s = 0.60) on this trial, but
other trials show even better performance (compareiq, values of other trials in Fig. 2.4 B
"spo”). One notes that regions of high activity are well predicted, whasrthe location of
single spikes is less accurate. Classification is done with the SVM-RBF aadsiined on

the region 35-160 sec using the same features as for the populationesn@ig 2.4).

24


Chapters/lfppred/figures/predpaper_figure4.eps
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onsets and offsets of the bursts are somewhat inaccurdte prédiction. Even some
smaller bursts and single spikes are closely predicted.§1$)2although no clear mark
in the LFP time course or spectrogram can be seen with thedreje However, their

length (176.6 s) and exact position (176.3 s) sometimes seaocurate. There are
also occasions where spikes are simply missed (172.9 shocésed (173.9 s).

Prediction performance is evaluated in different ways. @wasure is the per-
formance, a measure which is defined on the samples in thedieahd is positive for
above-chance classification; it equals one for perfectiflaation (see Methods 2.2
for definitions). In contrast, the correlation measuyg(see Methods 2.2) is defined
as a local average in the time domain and is therefore lesstiserto small temporal
inaccuracies. The performance measurd the predicted spike train in Fig. 2.3 C has
a value ofx = 0.40, which is relatively good (but not the best possible, seewgl
Rank correlation i%25,,s = 0.60.

In the example of Fig. 2.3, the predicted spike train reseslihe original to a
certain degree. We ask whether this prediction qualityiearover to LFPs recorded
from different monkeys, electrodes and stimulus condgiofror that we estimated
prediction performance using a large data set (see Meth@s|aferences are made
on the basis of a set of LFP features, with which we observegpamtence between
spikes and LFPs in the previous section. In the populatialyais we include as
features the time course around each sample position (imdowi of 100 ms before
and 300 ms after spike position) and an estimate of the frecyueontent of LFPs
at zero time lag By (t;) see Methods 2.2), resulting in a total of 116 features. This
feature set generally produced good performance (with soregble computational
speed) over a wide range of data. For the prediction itsetiralimear support vector
machine is employed with radial basis functions such asdt€¢8VM-RBF) and linear
classification (see Methods 2.2 for details).

In Fig./2.4 the prediction performance over all trials is leaéed (on 10 cross-
validation runs) and averaged. The anesthetized V1 data kedteled "spo” for spon-
taneous activity and "stm” for movie stimulus driven adiyviWe shall focus on this
data for the moment. The remaining conditions shown in thos pill be discussed
below.

Plot A shows the average performanctor the SVM RBF classifier and for linear
classification. From the results we draw the following imégy First, since perfor-
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Figure 2.4: Population performance for spike prediction from LFE. Average prediction
performancex for SVM and the linear regression classifier across conditions (arizstie
monkey V1, movie stimulus ("stm”), anesthetized monkey V1, spontaneouwsta¢tspo”),
awake monkey V1 with mixed stimuli ("awake”), and spontaneous activity orieastimulus
driven activity in anesthetized monkeys from LGN, "spo (L)” and "stn)’(Lrespectively).
Prediction is above chance level for all conditions (see Results secti@gfdficance tests).
B: Prediction accuracy of the non-linear classifier evaluated by ranklegion between target
and predicted spikes train smoothed by a Gaussian kernel of widtf25 ms. Red horizontal
lines indicate the average performance within each condition, and its staedar. Small
black lines show the quality on individual trials. In some cases predictionsyi@dy accurate
results, with correlations as high as 0.8-0.9. Black curves on the sidexcbfa®ndition are
smoothed histograms over trials. Symbols indicate the average performfainde/mlual ses-
sions (i.e. one day of recording). Average session performancedusear the overall mean,
but variance for individual electrodes is higli. Cross-electrode prediction. LFPs are taken
from one electrode and spikes from another. Relative prediction agesemuch faster with
increasing electrode distance in the "stm” condition than for the "spo” comdi#olinear fit
of the data points is also shown. Vertical lines indicate standard eDor&verage prediction
performance for simultaneous LGN and V1 recordings (3 sessions, Reysh Performance
is compared for available cross-electrode gf@diction from differezdsaand with average per-
formance when using the same electrode for spikes and for LFPs.
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mance measure is greater than zero for above-chance prediction it can luktbat
both classifiers can exploit information in the LFP time c®uto predict spiking ac-
tivity (all conditions highly significant; T-test < 10, Wilcoxon signed rank test
for zero mediarp < 107%). Second, prediction quality for the stimulus conditiordan
for spontaneous activity differs only slightly: indeed,eocannot reject the hypothe-
sis that the underlying distributions have identical me@inw®-sided unpaired T-test
p = 0.21, linearp = 0.18). However, if one compares pairwise recordings during
spontaneous activity and stimulus presentation done w#htical electrodes, mean
and median prediction performance on spontaneous acvignificantly better than
on stimulus-driven activity (one-sided paired T-test 10~%, linearp < 10~*; for the
distribution free Wilcoxon matched-pairs signed-ranisspe< 10~%, linearp < 1073).
Average prediction performance for spontaneous actigity+ 0.211 + 0.006 (linear

k = 0.185 4+ 0.005) andx = 0.201 + 0.005 (linearx = 0.175 + 0.005) for stimulus
driven activity.

Third, non-linear margin classification is consistentlyteethan linear classifica-
tion (one-sided paired T-test "stmy’ < 109, "spo” p < 10~°%; Wilcoxon matched-
pairs signed-ranks tegt< 10-9). It amounts to about a 12% increase in performance
on average. This suggests that the mapping from LFP features-linear. However,
since a simple linear regression classifier already achialraost 90% of the accuracy
of the non-linear classifier, one could state that the LFRufeaspace exploited here
seems expressive enough for this task.

We found that for individual trials performance varies wideFor selected trials
prediction performance can reagh= 0.65. Plot B of Fig./ 2.4 shows the rank cor-
relation measure,s,,s of the SVM RBF prediction. Each thin short line represents
performance for an individual trial. While the correlaticor some trials is as high as
0.8-0.9 on this moderately small time scale (25 ms), it iscghzero in others. There
are some trials where prediction fails completely in eactihefconditions. The failing
trials are not all from the same sessions, since the sesseamsn(markers) tend to
cluster around the overall mean.

There is not much variability in performance over time: therage standard devi-
ation for thex performance of 5 repeats of 170 ms recordings for the sarctreties is
0.023+0.002 for stimulus—driven activity, 0.028.002 for spontaneous activity and
0.045t+0.002 for both together. This is in contrast to the varianc®ss electrodes

27



INFERRING SPIKE TRAINS FROM LFPSs

recorded simultaneously. Here the average standard agvi@h ~) is 0.113:0.004
for stimulus-driven and 0.1300.005 for spontaneous activity. The roughly 25-fold
increase in variance across electrodes compared to walbittrode variance suggests
that prediction performance is a matter of which electralbeing observed, rather
than stimulus condition or time. Electrode tips might beipased in a region where
the arrangement of current sources and sinks might differ (@ deep or superficial
layers), or where active neurons might be less well corelatith the bulk activity of
the cortex. Since we cannot distinguish the layers from Wwielectrodes record, we
cannot pursue this further.

Up to now we have presented only results for recordings fraho¥anesthetized
monkeys. We also have a limited amount of data available dmvhere monkeys
were awake and behaving. The stimuli for the awake data sahated and include
spontaneous activity and fixation tasks. Another pool ofdamnsists of recordings
from LGN of anesthetized monkeys (see Methods 2.2).

We see from Fig. 2/4 A that prediction differs quite dradticéor the different
data types. Spike prediction for the anesthetized monké&y fdtam V1 is more than
5 times better than in the LGN, where performance is hardbvalthance: on average
k = 0.035 4+ 0.005 (linear x = 0.033 £ 0.005) for movie-driven activity and: =
0.027 £ 0.003 (linearx = 0.022 + 0.003) for spontaneous activity.

As in V1, there is little difference between spontaneousmangie-driven activity
in LGN, although there is a reversed tendency for spike ptemh to be easier on
movie-driven activity than on spontaneous activity. Tleisdency is barely significant
(one-sided paired T-tegt = 0.02, linearp = 0.01; Wilcoxon matched-pairs signed-
ranks tesp = 0.05, linearp = 0.08).

We find that average prediction performance on awake data=9.063 + 0.005
(linearx = 0.046 £ 0.005). This is much worse than on anesthetized data (unpaired
T-testp < 107°), but still significantly better than on LGN data (all ungairone-sided
T-testsp < 0.05). Figure 2.4 B reveals that individual trials have a cortielaof target
and prediction similar to that in anesthetized monkeys.r& hee trials with correlation
up torys,,s = 0.6, whereas in the case of the LGN, no trial exceeds 0.3 coiwelat
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2.3.3 Cross electrode predictions

The area of cortex which contributes to the generation ofd.BRlifferent from that
producing our spiking signal (see Introduction|2.1). Thusnight be interesting to
see how the relationship between the two signals changbgisiance. As recordings
were done with multiple electrodes simultaneously (in tatadset from anesthetized
animal), we tried to infer spikes from LFPs collected withotdifferent electrodes. In
Fig.[2.4 C the average performance is plotted against thiéni@nsional) distance of
the electrode tips. To facilitate comparison, performaiscevaluated relative to the
average performance achieved using the spiking signal frenelectrode from which
the LFPs were taken.

One notes that prediction performance drops to about 40%n vehectrodes are
1 mm apart (the minimal distance in our recording setup)erkgtingly, for stimulus-
driven activity performance degrades significantly witktdnce (rank correlation be-
tween distance and relative kappa performance using alsunements:—0.20, p <
10~%), whereas for spontaneous activity no significant cori@tatvith distance can be
found for distances up to 1 cm (rank correlation 0.015; 0.2). Note that the number
of samples becomes relatively small for distances grelger & mm since rectangular
electrode grids with 1mm spacing are used for most sessibmsever, we can safely
compare spontaneous and stimulus-driven activity bectheselectrode placements
do not change with the condition.

As LGN data was collected while other electrodes simultasgorecorded from
V1, we can investigate whether the LFPs of V1 can be predmtetthe basis of spikes
from LGN and vice versa. This is shown in Fig. 2.4 D averageer @ata from the 3
sessions recording simultaneous measurements from V1 Ginl(see Methods 2.2).
Performance is averaged either across electrode preakc(regardless of distances)
or over all predictions using the same electrode for bothalgy Although results are
difficult to interpret because of the limited size of the ds#éd, one notes that using
LFPs from LGN and spikes from V1 results in performance abdvance, whereas
LFPs from V1 seem to hold no information about spikes in LGNp@ired Wilcoxon
signed rank test for median performance different from zsignificance level 0.05).
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2.3.4 Temporal accuracy of predicted spike trains

We found an averagevalue of about 0.2, which is well above chance but nevertisele
far from perfect prediction at = 1. On the other hand, in example Fig. 2.3 C some
features of the target spike trains seem to be captured ywéhdoprediction, especially
regions of high and low activity, which alternate on a timalewf about 0.5 s in this
example. Thus one might ask at what time scale the predigithg activity most
closely resembles the target spiking activity, or at whairig accuracy the prediction
fails.

To answer this we evaluated the coherence between targetredidted spike train
(Fig.[2.5). Coherence is a correlation measure in the freqjueomain. Coherence at a
particular frequency makes a statement about the exaabhé&ss prediction on a time
scale of one over that frequency. We also estimated the texh@ocuracy directly in
the time domain (by varying the correlation kernel width)es one arrives at similar
conclusions (not shown).

In Fig.[2.5 one observes that coherence is low for high fraqies and rises for
low frequencies. Thus the general resemblance of a predspié&e train might be
adequate, but the exact spike position is often predictéial same jitter. This is also
evident in the example of Fig. 2.3.

Coherence drops at about 25 Hz for the anesthetized V1 daia.tifife scale is
comparable to a spike train whose spikes are jittered by S@usandom noise with
a standard deviation of 25 ms. Coherence levels of such saateaata are indicated
by the dashed lines in Fig. 2.5. Since the jitter destroysnédirmation in the high
frequencies, the plateau at low coherence for the surrodgti® can be taken as a
significance level for the coherence estimation. In sut@data low frequency aspects
stay completely intact (thus coherence of 1), but for predispike trains this is only
partly the case. However, average coherence rises coablgidor larger time scales
compared to smaller ones, suggesting that at least in atsobs®ls, slow structure
is well predicted.

Data from the awake monkey is less coherent at low frequerimié much more
so than for data from LGN, where almost no significant cohegas observed, even
for low frequencies. Note that we have far fewer trials forat& and LGN data, so
averaging is less effective in smoothing.

30



2.3 Results

1 — == — === — _
> > N —stm
500ms 100ms  25ms 10ms 5ms —spo
081 \ VN — awake
\ \ \ N \ —stm (L)
\ \ \ \ \ —spo (L)

Coherence

1 10 100
Frequency [Hz]

Figure 2.5: Coherence levels of predicted and target spike trains. Coherencétedphgainst
frequency and is averaged over all trials for each condition. For cdsgrawe included surro-
gate data, in which spike trains were generated with the same ISI distributiothesritonkey
data. Gray dashed lines show coherence between surrogate spikenldis jittered version
with Gaussian noise of different standard deviatiendgrom 5 ms to 500 ms, as listed in the
plot). Coherence drops for higher frequencies, suggesting thatemage prediction is only
reasonably good for slow structure in the spike trains. Note that the et@ierence level is
at about 0.15 here, as shown by the surrogate data. Chance levalstéoto zero because
coherence is estimated on 10 CV-regions (each 17 s duration) and dslgcgrently averaged
over all trials. Colored regions indicate standard errors.
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In summary, predicted spike trains are seldom accurate pika §ming precision
of below 25 ms, as suggested by comparison to a jitteredarerdithe original spike
train. On the other hand, predicted spike trains captutesire on a larger time scale
reasonably well, say for clusters of high spiking activitythe 100 ms range.

2.3.5 LFP features important for inferring spikes

For determining the usefulness of particular LFP featuoesfferring spiking activity,
we iteratively select a small number of features out of adgrgol of features. The
selected subset shows minimal prediction error for a givemlver of features, and
therefore selected features can be seen as the most import@nediction. As spike
prediction in LGN is almost impossible, only V1 data are gmat in the following.
We consider a feature pool consisting of phase and poweuresa; , ¢, and
q},gk). Phase is estimated on 45 frequency bands each 2 Hz widk thiei power
featuresP;, have different frequency resolutions (see Methods 2.2}tirsek ap-
propriately, we include time lags of up to 3 s in both diresiqbefore and after;).
Out of this pool of features, containing togeth®r = 138115 features, only up to
m = 10 features are selected for each trial individually usingalg®rithm outlined in
the Methods 2.2 section. Figure 2.6 D shows that, on avessdecting only 10 fea-
tures out of the huge pool is enough for a linear classifiepfw@ach the performance
of the linear classifier used previously (Fig.[2.4), whichpéoged 116 general features
(dashed line). For the first five selected features the ggpeiformance is highest.
Figures 2.6 A-C show histograms of = 5 selected, most important features ag-
gregated for all trials. Phase- and power-related featarescolored blue and red,
respectively. Analogous to previous results, useful fietudiffer only slightly be-
tween stimulus-driven activity (Fig. 2.6 A "stm”) and spantous activity (Fig. 2.6 B
"spo”): stimulus induction does not seem to induce a gendrahge in the prefer-
ence of features for spike-LFP interaction. One notes thdtoth spontaneous and
stimulus-driven activity power fluctuations in the highband (40-90 Hz) are pre-
ferred features. Selected frequencies are biased towagtsvhlues, with 80-90 Hz
being the most likely selection. Indeed, high-frequencwgofeatures are selected
as the first and most useful feature in about 90% of the treadsl (n 82% in awake
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Figure 2.6: Most useful LFP features for spike prediction. Distributionmef= 5 selected
features per trial, pooled over all trials. Color plots show the density of élected features
in the feature space (frequency and time lag). Each feature is reppddmna Gaussian with
95% of its density falling into the width of correlatedness (i.e. the time window amadi-b
width of spectral estimation for power features; we have chosen a qued#lation period
for phase features). Marginal plots show the marginal distribution of istedram for abso-
lute lags up to 3 seconds, where colors code for feature type (pByye(red), phase features
bfk andq@fJC (blue)). PanelA-C show conditions "stm”, "spo” and "awake” (as described in
Fig.[2.4). See Results section for discussion. P&ndPerformance of linear regression re-
stricted tom selected features relative to the performance of the full linear clasSibeavoid
overfitting, performance is tested on a time region of each trial which wagssat to estimate
the importance of featuresAx denotes the difference in prediction performancbetween
the restricted linear classifier using uprtoselected features and the full linear classifier,;
with 116 features (as in Fig. 2.4YAx) divided by the mean performance of the full classi-
fier is plotted against the number of selected featute€ne observes that performance with

selected features approaches the full classifier.
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animals) (not shown). The time lags of the selectgzbwer features are almost sym-
metrically distributed around zero (with a small bias todvaositive lags) in a zone
spanning approximately 50 ms to either side. There are smsyimmetrical peaks
at 150 ms, which may be attributed to the power estimatiorgre/ve use a moving
window of 150 ms duration. Likewise peaks at 80 Hz and 60 Hzrreduced by
spectral estimation as the bandwidth is roughly 20 Hz (sethbiks 2.2).

We identified low-frequency information as a second classseful LFP features,
in particular phase information of low-frequency bandsolellO Hz. Time lags of
selected phase features are mostly positive, meaninghbatirhe of the feature is
most informativeafter the spike. Useful lags vary from -50 ms to 200 ms, depending
on the frequency, and they can be as long as 500 ms for thetiiegaency band (up
to 2 Hz). Time lags vary according to an oscillation periodhs low bands. Power
modulations in the low-frequency bands are selected almaotftan. The time lags of
these features are distributed widely, which is caused byldhg window setting of
2 seconds needed to estimate power at low frequencies (sthedse.2).

Bands from 10 to 40 Hz, especially 15 Hz to 30 Hz, seem to be neshim-
portant for inferring spikes. Despite a small number of &rad features in the "spo”
condition, phase information for-bands (e.g> 40 Hz) does not play a role, either.

For the awake animals results are hard to interpret, giverithited amount of
data (see Fig. 2.6 C). However, it seems that the overalltsir@ics similar to the V1
data of anesthetized monkeys in having high-frequency péeetures as well as very
low-frequency phase features for positive lags. Howeherd seems to be an increase
of selected power features for intermediate frequencies.

Both feature types, meaning high-frequency power featareand zero lag and
low-frequency information, either low-frequency powerlow-frequency phase fea-
tures with positive lags, are often jointly selected amdregd optimized features. This
shows that individual trials have similar features. We fadmat in 75% (’stm”), 59%
("spo”), and 72% ("awake”) of the trials both types of feasrrare jointly selected,
more specifically a high-frequency power feature (above 4Pwith absolute lags of
less than 250 ms and a low-frequency phase feature (belovez 1 @ith positive lags or
a low-frequency power feature below 10 Hz. In absolute tdrigh-frequency powers
are preferred over low-frequency features ("stm” 61% vs%24spo” 62% vs. 19%,
awake 47% vs. 24%). In "stm” and "spo” conditions low-freqag phase features
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with positive lags are selected slightly more often in camaltion with high gamma
powers than low-frequency power features ("stm” 49% vs. 42%60” 38% vs. 33%),

whereas low-frequency powers are preferred in the awakditon (28% vs. 60%).

Neither of the low-frequency features is present in abodo 25 the trials when the
first 5 selected features are considered. However, thisvddops to about 5% when
the first 10 selected features are examined.

In summary, our analysis shows that two feature types are use$ul for predict-
ing spikes: power in the higher bands ¢0 Hz) and (to a lesser degree) low-frequency
information (< 10 Hz), which can be power modulation or phase information Vags
around and after the spike.

2.3.5.1 Population statistics of low frequency phase feates

Low-frequency phase features indicate spike positiorativel to the low-frequency
oscillations of the LFP. This feature thus carries the infation of the phase lock-
ing to lower bands (Figures 2.2 C and D). However, from thenpof view of phase
locking it is surprising that the informative lags are asyetntally distributed around
the spiking position. This indicates that it is not merelg tbcking to a phase that is
important, but that instead the LFPs at low frequenciedaysp consistent slow oscil-
lation following spiking activity, and spikes are locked to the onset of tisail@tion.
In contrast LFPs before spikes are less well determined erage. This asymmetry
of the phase locking to lower bands can be seen in the spdgeted average LFP
(STA), as pointed out earlier (Fig. 2.2 A).

The form of the STA is stereotypical for the majority of eledes in V1. As
we showed in the Methods section, a high value in the STA is@deature for
classification (given some covariance constraints). Thagypical form of the STA
explains why the phase features for positive lags are ctamiig selected among the
best features. To show the generality of the form of the STéuindata, we select two
particular phase features,, and¢g. Featurep, is determined by the position of the
first maximum (peak) for positive lags of the 1-4 Hz bandpdssréid LFP (cross in
Fig.[2.7 A). To reject any amplitude modulation in that bareltake the cosine of the
time course of the phase instead of that of the LFP (see Ms}hddhe second phase
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featuresgp is the valley nearest to zero lag in the 4-8 Hz band of the LE& {8
Fig.[2.7 A).

In Fig./2.7 B the distribution of these two features is showa scatter plot across
all trials. Note that the feature, (black crosses) lies very consistently at mean lag
around 1121 ms, although the height differs somewhat (see margin#iilalisions
in attached plots). The featurgs (green stars) is likewise consistent across trials.
However, the height distribution of this second featurghtimargin plot) is more
skewed to lesser values than for featdrg suggesting that it might be less useful
for prediction. There is also a minority of trials in whichitieer feature was well
expressed, indicated by the scattered outliers.

2.3.5.2 Information conveyed by low-frequency bands and gh-frequency power
features

To compare information conveyed by different features alpikes we use the mutual
information between target spikes train and predictedesptkain (see Methods 2.2).
Mutual information between the class labels is a lower bdenthe mutual informa-
tion contained between the signals under consider&tiors(mbger & MaasH (2005)).
Itis only a lower bound, since a classification method migiittd use all the informa-
tion contained in the signal. However, it is unlikely that@rinear SVM classifier
would miss much of the dependency in our data, since theorkdtip between fea-
tures and spikes seems to be mostly simple proportiond&igcall that for our data a
linear classifier already achieves about 90% of the perfooa®f a non-linear classi-
fier.

First we tested prediction performance for single-frequyepower and low-phase
features individually using the SVM classifier. In Fig. 2.7€ show the average infor-
mation about the spikes at different frequencies for amdizild monkeys V1 (blue bar
plot). The information change with frequency closely rebla the number of selected
power features per frequency from our selection algorithrtne previous section. We
note that on average frequencies around 80 Hz convey theinfoshation about the
spikes. If one uses all the features tested here simultahg@yerage performance
reache$).037 + 0.002 bits, which is 35% higher than when the best individual featu
is used.
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Figure 2.7: Information about spiking activity conveyed by phase features argliémcy
power featuresA: Spike-triggered averages (STA). LFP STA (blue line) as well as the STA
for the 1-4 Hz (black line) and 4-8 Hz (green line) band-pass filtereld. L the latter cases

all power modulation is discarded (see Methods), yielding purely phelated signals. The
definitions of phase featuregs, (black cross) andp (green star) are indicate®. Distribution

of lags of feature® 4 and¢p for all trials of the anesthetized V1 dat@: Information about
spikes conveyed by single featurd3. Redundancy of information about spikes conveyed by
any combination of LFP features. Color coding indicates the amount ofnmafion synergy
(see Methods 2.2, Elg. 2.4). See Results 2.3 for discussion.
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Information contained in the power decreases monotoriedth frequency. This
decrease can also be seen on the level of individual triatssfrown). If one uses either
one of the low-frequency phase featuresand¢z on its own, information drops to
about half forgp, and much lower forpz in comparison to the best power feature
(black and green lines in Fig. 2.7 C, respectively). Despit usefulness of low-
frequency power modulation in combination with high-fregay powers (as shown
in the feature selection), low-frequency power exhibitengo performance as a single
feature than the phase features (in particular in compatiso 4, see Fig. 2.7 C). Note
that the timing resolution of the phase features is muchdrigis phase is defined at
any moment in time, whereas power has to be estimated witvin@ow of sufficient
length. The induced temporal correlation of nearby timenfsofor the low frequency
power seems to be too high to predict spike times on its own.

If two LFP featuresF; and F, conveyed independent information about spiking
activity S, the normalized measure for synergy of informatign( £y, F5|S) (Eq.2.4)
would be zero. In general, this measure ranges from minusareampletely redun-
dant information to one for completely synergistic infotina (see Methods 2.2 for
details).

Figure 2.7 D shows the average normalized synergy of infaonabout the spikes
for all combinations of features. Here synergy of inforroatis calculated on the basis
of single trials, where trials having joint information n&ignificantly above zero in-
formation are excluded (Wilcoxon signed-rank test, p-gabove 0.1). Generally, in-
formation conveyed by high-frequency bands is mainly iregdefent from information
contained in low-frequency bands. The information in indiiial high-power features
is more redundant (e.g. for 87 Hz and 50 Wgn(Psopn., Psru.|S) = —0.40 £ 0.02)
than between high-power features and phase features, wtienmation is nearly in-
dependent (synergy values with high-frequency power feataround-0.2; for in-
stancesyn(¢, Paig.|S) = —0.21 & 0.01 andsyn(¢g, Paig.|S) = 0.14 + 0.02).
Phase feature z, becomes more redundant with power for decreasing frequ@ng.
syn(ég, Pog.|S) = 0.45 £+ 0.03), whereasp 4, redundancy is relatively low even with
low-frequency powers (e.gkyn(¢a, Pop.|S) = 0.23 £ 0.03). However, redundancy
between any two low-power features is much higher. Both @lfi@atures convey al-
most independent information about spikegi(¢ 4, ¢5|S) = —0.05 + 0.02).
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Note that the high redundancy of information in two highgsency powers which
are less than 20 Hz apart is a result of spectral estimatibighws done on the band-
width of 21 Hz (see Methods 2.2).

In summary, both feature types, high-frequency power aneftequency informa-
tion, seem to code for mostly independent information, &two high-power features
convey more redundant information.

2.3.5.3 Prediction performance is related to clusters of skes

We noticed that generally prediction performance is supesn data where spikes
tend to cluster to bursts of activity with relatively londesit periods in between. This
can be seen if one correlates the inter-spike interval aoeiffi of variation (ISI-CV)
with prediction performance. If spikes are temporally tdusd, many short inter-
vals are interspersed with few very large intervals, cagsiarge value for ISI-CV,
the ratio of standard deviation to mean of the inter-spikeriral distribution. Thus
ISI-CV can be seen as an approximate measure for the degrempbtal clustering
of spike trains. One notices a strong correlation between&t-CV and prediction
performance (rank correlation 0.86), whereas predictieriggmance is only poorly
correlated with the firing rate (0.47). This behavior can éersalso for individual fea-
tures. High-frequency power features have the highesetadion with I1SI-CV (0.92),
whereas correlation with single phase features is lower (264 for¢4). Correlation
with rate for both features is much lower (high gamma freqyeh 34, phase feature
¢4 0.44). We found that if one defines larger clusters of spikburst events directly
and discards single spikes in between (seeFig. 2.8), lowepfemtures are locked to
the timings of such bursts and the performance of phaserteatuis highly corre-
lated with the burst rate (rank correlation 0.82). In ourdbutefinition (see caption of
Fig. 2.8) the average burst lengthlig2 & 1 ms, which suggests that low frequency
phase information preferentially codes for (rather surgd) bursts of activity.

2.4 Discussion

Local field potentials are the best indicators of integeatactivity in an area. They
reflect the area’s input activity in terms of population éatory and inhibitory post-
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Figure 2.8: Locking of high spiking activity events to phases of slow LFP oscillationselde
high spiking activity event (burst) is defined as having at least 10 spi@g&es constituting a
burst have to occur within a maximal mean inter-spike interval of 5 ms, andspiit contained
in a burst are deleted. Bursts have to occur at least 25 ms apart fdnoteer, otherwise they
are regarded as one continuous event. The middle position is taken as thedfraimgvent.
The probability of event times occurring in a particular phase of the 1-4 $tdlation of
the LFP is plotted for individual electrodes (averaged over ca. 10 tealsrded at the same
electrode site). Electrodes are sorted according to the performané¢dhe low-frequency
phase feature 4. For about 60% of all electrodes burst times are locked consistently to the
upswing of a wave in the low LFP band. For most of the rest of the eledrtmbefew or no
bursts are found when the above definition of a burst event is appliesers illustrated in the

right margin plot. Burst rates correspond well to the performancgsofrank correlation 0.82,
lower plot).
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synaptic potentials, but also the area’s regional prongs&iecause they are directly
affected by dendritic spikes, voltage-gated oscillatiand various after-potentials —
all markers of diverse neural computations (see Bk}z%) for an overview). Not
surprisingly, an increasing number of studies report tepécificity and usefulness in
the search for neural correlates of behaJior (Kreiregaal. ZOOé); Leeet al{ 2005);
‘MNewsome ‘(ZOO%J; Osipovet al. d200é)4 Rubincet al. 42006)4 Scherbergeat al{
(2005)). Although these studies show that LFPs conveymédion that is to some de-
gree independent of spiking activity, it has been suggestelddemonstrated by many
researchers that spikes synchronize to - or that synchabaizgives rise to - specific
oscillation frequency of the LFPs, in particukabands ¢ 40 Hz) in visual cortex and
f-band (4-8 Hz) in the hippocampus (s @) and references therein).

Herein we investigated the relation of spiking activity teR.on a more fundamen-
tal level by asking which aspects of the LFP can generallyxpéoéed to predict spike
times. Unlike other approaches in which simple linear iatgion between both sig-
nals is tested (e.g. with means of coherence or correlatiba)lassification approach
used in our study can exploit multiple different featureshaf LFP simultaneously in a
non-linear way to infer spiking activity from LFPs. We foutitht when the best single
feature is used, performance drops to about 70%, showirightbtiple features are
essential. The non-linear component in the code is rathatl shut there is still an
average increase of 12% when SVM classifiers are employed.

In contrast to V1, the prediction of spikes from LFPs is (aéthampossible in the
LGN. The reason for this could be that spiking activity midpet less correlated and
thus have less effect on the LFP, or alternatively that thengrical arrangements
of current sources and sinks in the thalamus generates foeéhials of lower spa-
tial specificity than those observed in cortex. Furthernmtbes fact that 80% of the
LGN input is cortical and modulatory is an additional potahteason for the LFP-
spiking decoupling in this nucleus. Neuromodulation migkplain our observation
in simultaneous thalamus-cortex recordings that V1 LFmoapredict LGN spiking.
LGN-LFP, on the other hand, is a reasonable predictor of ikirsp, likely because
the former is a better indicator of local LGN activity thataerrelated with the V1
LFPs, which in turn can predict the spiking of this corticeda

From the point of view that LFP is mostly generated by thditgtaf synaptic input
and local processing in a region one might ask whether it ssipte to predict spikes

»
mis )%
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solely on the basis of information preceding the actual tohthe spike. To evaluate
this possibility we recomputed prediction performancetfad same feature types but
with shifted lags, so that only causal information of the LisPncluded. When we
did this, prediction performance dropped to 68% of the ayenaon-causal classifier
used for the population analyses, which is still well abokiance level. However,
conclusions about the relation between synaptic input aitdng output are difficult
to draw from this number. For instance it is likely that dugdmporal correlation in
the spike train (and various LFP bands) neighboring timekentime series are good
predictors for each other.

2.4.1 LFP features related to spiking activity

Besides having generated and visualized concrete spikes tiaferred solely from
information contained in the LFPs, our analysis revealedéhfeatures which are the
most important carriers of information about spiking aityivn the LFP and estimated
their relative importance and redundancy properties.

The first and most useful feature for inferring spike traire LFPs is the power
modulation of high-frequency components in the upp&and from 40 Hz to (at least)
90 Hz. This is in good agreement with other studies, whiclelestablished a link be-
tween gamma frequency bands and spiking acthtlity (Csicmaiil 42001%)). The bio-
physical origin of gamma frequencies in the LFP remains &tfop current research.
The rather fixed relationship between spikes and LFPs ovada mange of data and
conditions could reflect physical constraints (layeredaargation of the cortex, distri-

bution of sinks and sources) or inherent properties of thealenetwork topology and
function. For instance, gamma activity might be the effédast inhibitory circuits on
the LFPs (se‘e Bartat al. 4200‘}) for a recent review).

In contrast to power modulations, phase in thenge is much less important for
prediction than one might have expected from the well-dcented fact that spikes are
synchronized in this rangls (Gray al\ 4198%; Kreiter & Singer‘ (1992)). Our stimuli
consist of cinema movies of several minutes duration antbaoing a mixture of ob-
jects, faces, actions, colors, and edges. Thus, specigcibbépcoding might be only

weak and cluttered with other aspects of the code, as thelstsncomprises multiple
objects at any given time. Because we assume a station&erkpP relation for the
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duration of a trail (170 s), more subtle aspects of the m@hasuch as transient rapid
neuron-to-neuron synchronizations would be averaged mditfzerefore not detected
as a useful feature. Another possibility for the relativémyportance of gamma phase
features might be that different subgroups of neurons ptaeghe MUA signal lock

to different phases in the gamma cycle, as suggested fdyitahy and excitatory neu-
rons ‘(Hasenstaubt al. (2005)) In general, if two subgroups of units present in the
MUA signal locked to different feature of the LFP, our cldissition method should
not degrade in performance, as it can exploit many featunegl&neously. However,
the relative usefulness of both features would indeed dseren the average features
analyses.

Locking to phases of higher frequencies is difficult to detescause even a small
amount of jitter in spike time precision abolishes lockir&uch jitter might be intro-
duced during binning of the spike timings to LFP samplingheon (5 ms). Thisis in
contrast to the effect of a small amount of jitter at loweginencies. Accordingly, the
phases of low frequency components are indeed useful foiqtireg spiking activity.
Moreover, our analysis suggests that the oscillation phatlew frequencies code for
larger bursts of temporally correlated spiking activity. fact, the high probability of
spikes occurring in clusters in our V1 data helps to infekspifrom LFPs. Predic-
tion quality is highly correlated with I1SI-CV, because on@ @aedict spiking activity
on a time scale of- 25 ms, rather than reaching single spike precision. In the LGN
data, where the spikes are less clustered (low ISI-CV, avendd.14-0.05 compared
to 2.4+0.05 in anesthetized V1 and #8.05 in awake V1), it is almost impossible to
predict spikes from LFPs. Since we observe stronger cliastéor anesthetized data,
we conclude that this might be partly an effect of anestf@ia*iadeet all 41993)).

The low-frequency power modulations which are selectedsa$ulifeatures in a
part of trials probably have origins similar to those of thewsphase features, and
may code for the relative amount and size of clusters of @gtifhus low-frequency
power modulations might provide a slow changing state Wégiavhich is useful in
combination with the fast-changing high-frequency powessindicated by the low
redundancy values.

About half a century ago, several studies were conductedwatiempted to relate
electrical encephalographic signals (EEG) to spikingvégti Then it was found that
spikes occur preferably at the negativity of 0.2-2 Hz Wa%smm & Bond ‘(1964)).
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Since EEG has a similar basis of origin as LﬁPs (Nunez & Shiinin‘(ZOd6)), this
confirms our findings, where spikes occur at the minimum togiphase of the slow

oscillation. It is not just the negativity that is importahiowever, but also the peak
that is seen following the spikes. This is similar to slowealeep of cats as seen
in the spike-triggered averade (Destemml\ 4199%) and is taken to the extreme in
spike-wave complexes, which can be observed in cases @papil(e.g. Destexhe
et al. (2001a)). In the latter case, it was suggested that the stmitiye wave form
after a burst of activity is accompanied by neuronal sileacd can be explained by
slow inhibitory effects mediated by GAB,MDestexheet al. 420015)). Although, we
observe neither clear up and down states nor any patholqegc@adic activity in the
LFPs of our data, the similarity of the STA suggests that qudtesses may play a
role during more physiological states, albeit in a much veedérm.

2.4.2 Effects of spike detection method

The spiking signal used in this paper is generated by a sitmpéshold-based pro-
cedure for detecting spiking events from the recordingsis Tetecting procedure is
prone to false-positive detection, as well as to a smalsstion of missed spikes orig-
inating at larger distances or from neighboring intern@gro With our method we
expect a false-positive rate of 2 Hz, if one assumes thatspde values (i.e. noise)
in MUA amplitudes are subject to Gaussian distribution (gethods 2.2). Thus the
spiking signal contains not only the activity of multipleurens and possibly of dif-
ferent cell types, but also noise spikes. Since noise s@kesld be independently
distributed with respect to time, false positive labelswdtoactually reduce perfor-
mance compared to the "true” spiking signal. We tested highike detection thresh-
olds, where the contribution of noise becomes negligiblg. (¢or 5 times SD only
0.05 Hz), and found instead reduced prediction performaalteough performance
still remained well above chance (not shown). Since it wasn@sed that in principle
spikes arising from up to 1000 neurons could detected by @geslectrode (Henze
et al. (2000)), a spiking signal generated with a higher threshaltinclude fewer
smaller spikes from neurons that are further away, and parate only those neurons
which happen to be in the immediate neighborhood of thereldettip. Thus the spik-
ing signal becomes more local and its relationship to thatikely global LFP signal
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is naturally weaker. Therefore noise spikes are not likelattificially enhance our
performance results, but influencing the number of neurdmsse spikes are detected
via threshold will have an effect.

Similarly, spike sorting yielding multiple single unit agties rather than multi-
unit activity would naturally decrease prediction perfamse, since spiking signals
become more local and, additionally, the prediction taskiahange from binary
classification to a more difficult multi-label classificatitask.

2.4.3 Encoding of the stimulus

We found that the relationship between LFPs and spikes isstlomchanged during
stimulus-driven activity compared to spontaneous agtivithis finding corresponds
well to the results of other% (Fiset al\ 20041); Kenetet all 2003); Vincentet all
d;()?)), who found that the structure of spontaneous agtigirich and sometimes
even resembles stimulus-driven activity. While there is anegal change in the struc-
ture of features, there are of course transient aspectedtimuli encoded by spikes
(and LFPs) that have an effect on the spike rate, for examyddgh increases dur-
ing stimulus presentation (not shown). Because of the engaf the changing movie
stimulus over time, the temporally contiguous training sest sets might differ in their
LFP-spikes relation, i.e. in their sample distributionbu$ movie encoding might ex-
plain why prediction performance on spontaneous actiatglightly better than on
stimulus-driven activity.

Effects of stimulus encoding might also explain the obd#vathat the LFP is
"more global” during spontaneous activity in that predictiof spikes degrades much
more slowly with increasing cortical distance than duritighsllus presentation. Thus
the stimulus actually decorrelates neural activity spigtim comparison to sponta-

neous activity.

Note that we do not analyze features which actually encoienration about the
stimuli. Information contained about stimuli will be analyzed inaatficoming pa-
per kBeIitskiet aI.dZOO'})). Belitski et al. analyze the information contentrefjuency
power about the stimulus (movie) in the very same data sétwthanvestigate here.
Although we show here that the structure of spikes to LFP de@¢€hange consider-
ably during spontaneous activity, Belitski et al. neveleke show that very low and
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very high oscillation powers of the LFP are highly infornvatabout the stimuli. They
find that high LFP power series (50-120 Hz) contain inforimmatabout the stimulus
which is partially redundant with that in power series dedirom the spike trains. In
this respect, their results complement ours.

2.4.4 Conclusion

We conclude that to a certain degree spikes can be inferced BFPs; a fact that
reflects the interaction of these signals. However, we fiad thillisecond precision,
which has been shown to be used for temporal co&iinq (Maineej&dsvski ‘(1995)),
cannot be inferred from LFP. The temporal aspects of nei&lrgy used for infor-
mation coding, rate coding, or coding on spike timing, remaitopic of current re-
search (Rieket al. (1999)). We might conservatively say that whether or noy e
important for coding, time-varying rates on the scale ofigl@mhundred milliseconds
can be moderately well inferred from the LFPs, but that exauings cannot. Thus,
given our results, it should in principle be possible to depean appropriate method-
ology that permits the extraction of certain spiking featifrom signals measured by
methods relying on LFP-like signals, such as fM‘RI Lo dtheital.dZOOl)) or optical
recordings (Grinvald (198#); Grinvald & HiIdeshéi (20D4\evertheless, the strong
dependence of spike predictability on electrode positigggests that the reliability of
such predictions may depend on the brain site. Finally, alsethat in the thalamus is
practically impossible to predict spikes from the LFP swgigéhat computations based
on input, local processing and output - as instantiatederdifferent frequency bands
of the mEFP - can only be helpful for structures with the appaie element geometry
(e.g. fascicles of pyramidal cells vs. potentially closgefiarrangement of thalamic
neurons) and the proportion of driver to modulator affesent
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Chapter 3

Phase-of-firing coding of natural
visual stimuli in primary visual cortex

“Die Wahrnehmung der Sinne geschieht uns unbewul3t: alles,uwas
bewu(3t wird, sind schon bearbeitete Wahrnehmungen”

[Friedrich Nietzsche, 1885]
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PHASE-OF-FIRING CODING IN V1

3.1 Abstract

We investigated the hypothesis that neurons encode richaistic stimuli in terms of
their spike times relative to the phase of ongoing networkuatons, rather than only
in terms of their spike count. We recorded Local Field PaogatLFPs) and multi-
unit spikes from the primary visual cortex of anaesthetimadaques while binocularly
presenting a color movie. We found that both the spike caamdsthe low-frequency
LFP phase were reliably modulated by the movie and thus ceaviejormation about
it. Moreover, movie periods eliciting higher firing ratesalelicited a higher reliability
of LFP phase across trials. To establish whether the LFP plaasehich spikes were
emitted conveyed visual information that could not be exé@ by spike rates alone,
we compared the Shannon information about the movie carnedpike counts to
that carried by the phase of firing. We found that, at low LF&Rjfrencies, the phase of
firing conveyed 54% additional information beyond that @yad by spike counts. The
extra information available in the phase of firing was crud¢@tisambiguate between
stimuli eliciting high spike rates of similar magnitude.ush phase coding may allow
primary cortical neurons to represent several effectivensti in an easily decodable
format.

3.2 Methods

3.2.1 Experimental Methods

Four adult rhesus monkeys (Macaca mulatta) participatatiese experiments. All
procedures were approved by the local authorities (Reggsprsidium) and were in
full compliance with the guidelines of the European Commu(tUVD 86/609/EEC)
for the care and use of laboratory animals. Prior to the erpants, form-fitted head
posts and recording chambers were implanted during aniasamd sterile surgical
procedure (see ng Logothets all 42002) ). To perform the neurophysiological
recordings, the animals were anaesthetized (remifer{tspical 1microgram/kg/min)),
intubated and ventilated. Muscle relaxation was achievédmivacurium (5mg/kg/h).

Body temperature was kept constant, and lactated Ringdtsien was given at a rate
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of 10ml/kg/h. During the entire experiment, the vital sigishe monkey and the depth
of anesthesia were continuously monitored. For the protesed in these experiments,
we had previously examined the concentration of all stressibnes (catecholamines)
dLogothetiset al\ ({1999)) and found them to be within the normal limits. Drogs o

1% ophthalmic solution of anticholinergic cyclopentolhterochloride were instilled
into each eye to achieve cycloplegia and mydriasis. Reveetrors were measured
and contact lenses (hard PMMA lenses by Whilk GmbH, Germant)) thie appro-
priate dioptric power were used to bring the animal’s eye iimcus on the stimulus
plane. The electrophysiological recordings were perfatnwéh electrodes that were
arranged in a 4 x 4 square matrix (interelectrode spacing@drom 1 mm to 2.5
mm) and introduced each experimental session into thexctiteugh the overlying
dura mater by a microdrive array system (Thomas Recorditg, Giessen, Germany).
Electrode tips were typically (but not always) positionadhe upper or middle cor-
tical layers. The impedance of the electrode if the lastespigcurred more than one
millisecond earlier. All results in the main text were olpied from the spikes detected
with this simple threshold method, which is good to detedtespimes but not to iso-
late single units. Thus the spikes used for the analysiesemted the spiking activity
of a small population of cells rather than well separate#tespirom a single neuron.
Unless otherwise stated, all results reported were oldaisang these unsorted spikes.

3.2.1.1 Spike sorting for control analysis

To check that the amount of information in the phase-ofgirihd not change when
considering only spikes from well-isolated single neur@@ee Information Analysis
Section below), we sorted the spikes from a selected nuntbelannels which ap-
peared to be suitable for the task. For spike sorting we Usedtethod described by

‘Quirogaet al. dZOOJl). The spike waveforms were extracted around the tietetimes
as described above (in a region of 0.75ms before to 1.75resthft detected spike).
These spike forms were interpolated and 10 wavelets feafuniéh 4 scales) were ex-

tracted ‘(Ouiroqeet al. (2004)). From these feature pool the 10 most salient feature
(KS-test) were used as input for the clustering algorithme tén sorted the spikes
using the paramagnetic algorithm‘of Quiroglaa” 42004). For each electrode a few
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reasonable clusters were selected by visual inspectioneo$pike waveforms ensur-
ing a reasonable distinguishable average waveform amarsgecs. After this initial
selection, spikes which initially were not classified in atgalar cluster (or belonging
to not selected clusters) were forced to belong to the neaedscted cluster (Maha-
lanobis distancé (Quirogat al. (2004))). A cluster which maintained very similar
waveforms after this step was deemed to be a well-isolatesteri and was considered
for further analysis. Otherwise the cluster was not considéurther for spike sorting.
In this way, we obtained 71 well isolated clusters from 37rcieds.

3.2.1.2 The power spectrum of LFPs

To document the spectral content of the LFPs, and assessedvP power changed
over different segments of the movies, we divided each mmi@ non-overlapping
time windows of lengthl” = 2.048 s comprisingl. = 1024 datapoints sampled at
500 Hz. The power of the neural oscillation in each time windowswaantified by
computing the power spectrum at each frequency, indepdéyden each trial. The
power spectrum in each window was obtained using the mpéiteechnique (Percival

& Walden @2)), because it provides a very efficient wayitaudtaneously control
the bias and variance of spectral estimation by using mel&tepian data tapers. The
Slepian functions are defined in terms of their lengtim time and their bandwidthl”

in frequency. We varied 1/ between 1 and 8 obtaining essentially identical spectra. In

the following, we will present results obtained usihy/ = 2. To reduce the spectral
bias, the average over tapers was computed using the aglgptgedure described in
Percival & WaldeH (2002).

Figure 3.1 A shows the average spectrogram across all meais and windows.
The highest LFP power was at low frequencies § Hz), and the power decreased
steeply at increasing frequencies. We compared the awtd€fe spectrogram evoked
during the movie to the LFP spectrogram of the same electdodieg spontaneous
activity (measured in the absence of visual stimulatiorije €voked and spontaneous

LFP spectrograms were similar at frequencies lower than 25kt there was an
increase of power during movie stimulation at very low freqay & 4 Hz). Consistent
with previous studie% (Frieet al\ dZOOd)); Henrie & Shapl@ (20b5)), we found a very
substantial power increase over spontaneous activity @htbvie-evoked responses
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in the gamma frequency region 40-120 Hz. This power increase proportionally
higher at 70-100 Hz.

To compare the LFP spectrum with the spectrum of the stimdjusmics, we
also computed the power spectrum of the contrast variatroeach 2.048 s window
of the movie. Contrast in each frame was computed by takingstaedard devia-
tion of luminance of all pixels in a frame and divided it by thean of luminance
in that frame. The resulting spectrogram was then averagedtmme windows. The
resulting average spectrum of contrast variations in theiendropped with increasing
frequency and at low frequencies it could roughly be apprated as / f? (where f
is the frequency).

It is interesting to consider at which LFP frequencies theegras more modulated
by the movie, and at which frequencies the power is morebigian a trial-by-trial
basis. To address this question, we computed, indepegdentach frequency and
electrode channel, the coefficient of variation (CV) acréesmovie time (i.e. across
stimulus) of the mean power. This (denoted as “Signal CV”)rgifi@s the degree
to which the signal changes with the stimulus, and thus caengially encode the
stimulus. We then computed, again for each frequency andnehathe “Noise CV”:
this is the CV across trials of the fluctuations about the meare&ch stimulus. In
other words, it quantifies the average unreliability of tlwsvpr, across trials at fixed
stimulus. The magnitudes of the noise and signal CV cannoireetly compared,
because they are computed over a different number of datdaspoHowever, noise
CV or signal CV at different frequencies can be directly comeparfrequencies of
higher signal CV have a better capacity of following the slimsdeatures in the movie,
and thus to transmit information. Frequencies with lowerdddCV are more reliable
across trials and thus can represent the stimulus moréheli@igure 3.1 B shows that
(on average across all channels) the noise CV is relativalylestacross frequencies
(apart from an increase in the range 16-24 Hz). The signal @\Whe other hand, is
maximal for low frequencies« 12 Hz) and high gamma frequencies (60-100 Hz).

3.2.1.3 Spike probability as function of phase across all LF frequencies

Figure 3.2 reports the population average of the probgtfia spike being emitted at
a given phase, for each frequency band. We found that the ppabability was modu-
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Figure 3.1: Spectral properties of LFPSA: The spectrogram averaged over the movie time
is plotted (solid black line). The dashed line is the average spectrograngdpontaneous
activity, showing an increase of power at very low frequenciesgl (Hz) and in the 20-150 Hz
bands during visual stimulatiorB: The average signal and noise CV of LFPs as function of
frequency.
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Figure 3.2: Phase locking properties of V1 neurons under natural visual stimulafitme
color plot shows the probability (per unit angle) of finding a spike lockied eertain phase
as function of the LFP frequency, averaged across the whole datdsetircles represent the
preferred phase in each frequency class (angular mean).

lated by LFP oscillations at all frequencies. The prefepledse for spiking was depen-
dent on frequency. The preferred phase in the 1-4 Hz frequexmge was (on average
across the population).97 (middle of the raising phase). The population-averaged
preferred phase value decreased as the LFP frequencysedieand saturated around
1.27 (just before the trough of the oscillation) for high freqoess.

3.2.1.4 Circular statistics

The angular mean across trials of the LFP at a given time windiaring the movie
was computed ag (Fisker (1993))

¢ = arg (exp(i¢;)), (3.1)

whereg; is the series of phase values at each {ijakg denotes that we are taking the
argument of the complex number, afd.) is the average across trials at fixed time

window.
The circular variance{r i1993)) across tri#dl/AR) of the phase was com-
puted as

CVAR = 1 — |{exp(id;))| . (3.2)

CVAR values range from O (perfectly repeatable phases) to 1 ¢grarqghases over the
circle).
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3.2.2 Information theoretic analysis
3.2.2.1 Definition and meaning of Information

The mutual information (abbreviated to “information” inigtpaper) between a set of
stimuli S and a set of neural responsgésis defined as‘ (Cover & ThorHa (1991);

‘Shanno‘n‘ (1948)):

P(rls)

I(S;R) = P(s)P(r|s)log, 0y (3.3)

where P(s) is the probability of presenting stimulus P(r|s) is the probability
of observing response given presentation of stimulug P(r) is the probability of
observing responseacross all trials to any stimulug(S; R) quantifies how much of
the information capacity provided by stimulus-evokedefi#nces in neural activity is
robust to noise. An alternative but equivalent interpietaof 7(.S; R) is that it quanti-
fies the reduction of uncertainty about the stimulus thatxsagained from observation
of a single trial of the neural response. When base-2 logastare used, as in Eq. 3.3,
information is measured ihits. One extra bit of information reduces the uncertainty
about the stimulus after one observation of the neural respby a factor of 21 (S; R)
is zero only when the stimulus and the response are statigtiodependent quanti-
ties, indicating that no knowledge about the stimulus cagdieed by observing the
response. When stimulus and response present statistgegiiificant covariations,
then the value of information is positive. The more the reses and the stimuli are
mutually predictable, the largdi(.S; R). Unlike other simpler correlation measures,
information has the unique advantage of capturing all mear dependences of any
statistical order that may be present in the data.

3.2.2.2 Quantifying the information carried about a movie $imulus

To quantify how neural responses encode movie stimuli, wepedged the information
that the neural responses convey abshich part of the movievas being presented.
This was done (followinb de Ruyter van Stevenirmlal\ 4199%); Stronget al\ deQé))
by dividing the movie presentation time into a number of mweflapping windows
of size At, and considering each different movie window as a diffegimhulus s
(because the associated neural response is evoked by anatioibiof visual features
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happing in its immediate past). Since our definition of “stios” does not need to
spell out which visual features (e.g. contrast, orientgtietc) are encoded, the in-
formation we compute is about all the possible visual aitgb that may activate the
neuronal signals, and does not rely on any ad-hoc assumspdioout stimulus selec-
tivity (Llle Ruyter van Steveninoét al. ,M)). This makes this formalism particularly
suited to the analysis of neural responses to complex, aletic stimuli.

We note that, since the response collected in individuathaivs is considered sep-
arately, this quantification of information ignores thearrhation potentially presentin
the correlation between the times of the spikes emittedffarént stimulus windows.

3.2.2.3 Representation of the spike count and phase-of-ing codes

Although the evaluation of information does not require adyhocassumption about
what are the relevant stimulus features, it does requirexplicé representation of the
neural response. By specifying the neural response information can be us@dabe
different neural codes and compare their efficiency in aapgunformation about the
stimulus. In particular, here we estimated the amount @rmtion about the stimulus
conveyed by two candidate neural codes: gpé&e count codand thephase-of-firing
code

We proceeded as follows. Each movie had a durafioof 3.5-6 mins, and was
repeatedV, times (V, varying from 12 to 44 depending on the experimental session;
57 out of 78 recordings were obtained with = 30). Each of the spike trains corre-
sponding to those stimulus presentations was divided ioeaverlapping time bins of
durationAt, which were labeled by an ascending numieFhen, the actual response
r at a particular time bis, was determined according to which of the two codes was
analyzed.

When considering thepike count codé¢he neural response was equal to the
number of spikes n fired in that time window. In this case, E§.l&comes:

Lot (S R) = ZP P(nls)log, P(?’)) (3.4)

where P(n|s) is the probability of observing n spikes in window s. As wedise
short stimulus windows4t¢ = 4 ms unless otherwise stated; see below) most of the
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time windows contained either 1 or zero spikes. We verifieditiiormation loss re-
sulting from assuming a binary spike train, rather than wersg the full spike count
(n=0,1,2,...) in each window, was negligible and statistical insignificé > 0.9;
bootstrap test). For simplicity, we therefore present ltesebtained with a binarized
0-1 code.

In the case of thgghase coddéhe neural response was coded as a spike train
where at the position of each spike we added a “lakeihdicating the phase of
the LFP oscillation at that particular time. In practicestivas achieved as follows.
Since the phase is a continuous quantity, to sample therezfjprobabilities from the
finite dataset we discretized the possible values of thegobgsliving the cycle 0-z
into a numberd of uniformly spaced bins. (We note that, for each given rdcws
site, frequency range and number of equispaced phase bins tsed, we set the
exact boundaries of the phase bins so that to extract maxnfaimation from the
phase code under these conditions. We found that, in gertbeamaximal values
of information were obtained when setting the starting poinone of the bins to be
equal to the preferred phase of firing. This corresponded divigion of phase in
quadrants as reported in Fig. 3.8 H.) The phase lal{fel = 1, ..., ®) thus indicated
the number of the bin to which the continuous phase valuenigeld. If there was
one or more spike at the time bin corresponding to tinen the response was set
equal to the phase bin at the time of the occurrence of thesfige in the stimulus
window. Later spikes were rare as there was typically onlyougne spike per stimulus
window (see above). However, neglecting later spikes cdnreduce information due
to the “data processing inequalitk/”( Cover & ThonHas (199T}erefore this procedure
ensures that the information value estimated for phase isa®wer bound to its real
value. In summary, symbolsl“— ®” were used to code the angle bin at which a
spike was emitted, and symbol “0” was used to denote the absdra spike; thus the
neural response in a given time bin can take oné &f 1 different symbols, and the
information in Eq. 3.8 becomes as follows:

(5 Ra) = 3 P(5) Y Pl o, Ty 35)
s »=0

In Eq. 3.5, P(¢|s) is the probability of observing the symbalin response to
stimuluss. In this chapter (unless otherwise stated), the phasetoftfinformation
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values were obtained by dividing the phase into quadrargs (ising® = 4 bins),
which amounts to registering the phase with a precision &f rad. However, the
number of phase bins is a somehow arbitrary quantity. Tonedé the phase precision
needed to read out the phase information, we varied thegioeowith which the phase
was quantized for the information calculation and we agskt®e effect of the choice
of the number of phase bins. Results are reported in FigV8t8n dividing the period
in two halves (i.e phase precisiea 7; & = 2), the information in the 1-4 Hz LFP
phases was reduced by a factor of 22% with respect to the mioakkeg information
obtained with ar /2 precision (quadrants). When registering the phase withigicet
7/4 rad (period divided intab = 8 bins), no information was gained with respect to
then /2 rad precision case. This indicates that a precision whs not enough to read
the whole information in phase, whereas a precision/dfdid not add anything useful
to what already obtained with/2. Thus,7/2 appears to be the precision needed to
read out the phase code. This is compatible with the phasdilal/ values reported
in Fig./3.9. These results extended to higher LFP frequsrasewell: results for the
4-8 Hz LFP were reported in Fig. 3.3.

3.2.2.4 Effects of variation of the size of the stimulus winde

The sizeAt of the “stimulus” time window (in which the response is cortgaliwith
the aim of reconstructing by which movie part it was provokisch free parameter of
the analysis. In all the results and figures in this chapteused At = 4 ms unless
otherwise stated. We tested the effect of varylxigon the 1-4 Hz LFP phase of firing.
We found that the extra amount of information (beyond thatied by spike counts)
obtained by labelling the spikes with the phase of thel-4HPR increased from 55%
with At = 4 ms, to 62% withAt = 8 ms and to 73% withAt = 16 ms. Average
information results at other LFP filtering frequencies aparted in Fig. 3.4 for the
At = 4 ms andAt = 8 ms cases. The increase of phase-of-firing information viaigh t
size of At is compatible with previous analytical resul‘ts (Panzeri én@ltz kzooh))
showing that (for relatively small stimulus windows) therexinformation in a spike

time code typically increases monotonically with the sizéhe time window consid-
ered (either linearly or as the third power of the time windi®pending on the relation
between spike timing precision and the temporal scalesrofiis-induced responses

57



PHASE-OF-FIRING CODING IN V1

~
o

| B 1-4Hz
| B 4-8Hz

o))
o

Phase code
information gain [%]
] w n wi
o o o o

—_
o
T

[=]

7T /2 . /4
Phase precision

Figure 3.3: Effect of phase precision of phase-of-firing information. The petage of extra
information (above and beyond spike counts) of the phase code asofuint the precision
used to sample the phase. Results are reported as in&#M over the dataset. Grey and
black histograms report the phase code information gain obtained usingzlafhdi4-8 Hz
LFPs, respectively.

dPanzeri & Schulﬂz‘ (20&)15; Panzexi al{ 42001))). We decided to focus our presenta-
tion mainly on the results obtained using a stimulus windédwA® = 4 ms because
() this fine resolution permitted a computation of phaseirgdnformation even for
high frequency LFPs up to the gamma range (ii) we aimed atigray conservative
estimates of the extra information that can be extractea fftee phase of firing.

3.2.2.5 Estimation of information from limited samples

In order to estimate information it is necessary to estintlageconditional probability
P(r|s) from the experimental dataset. Given that the amount ofaai data is lim-
ited, the estimation of the probabilities suffers from randstatistical errors. These er-
rors translate into a bias in the estimation of the informaﬁPanzeri & Trevéslb (1996);

‘Panzeriet all 42007)), which for limited data sets can represent a sigamti¢raction

of the total information. If information is computed dirgcfrom Eq.[3.3, the bias is
positive and is bigger for the phase-of-firing code than fukes count code. If this
positive bias remains uncorrected, it may lead to mislegadonclusions of important
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Figure 3.4: Broad band vs narrow band phase-of-firing information. Histogramstipéoin-
formation rates (meatt SEM over the dataset) carried by the spike count (denoted as “count”
in the x-axis label) and the LFP phase at which spikes were emitted as funttiom consid-
ered LFP frequency band (indicated in the x-axis lab&l)Results obtained using a stimulus
window At = 4 ms. B: Results obtained using a stimulus winddw = 8 ms.

phase-of-firing effects just because of a bias artifact. diwect for this problem, we
have implemented a two step procedure (developed followlosely ideas presented
in Montemurroet aﬂ 42007£ b)) that has two advantages: (i) it gives a mucheigid-
timation of the information than that obtained using Eq.(@)3n conditions in which

there are not enough data to fully remove the bias, the smsifiual bias is negative.
Consequently, our information estimations typically regerat tight lower bounds that
are tighter for spike count than for spike timing codes. Tinigkes our conclusion
about the extra information in phase code conservative:atteal amount of extra
information in the phase code is likely to be slightly highteain the one reported.

The first step in the bias correction is given by a quadraticagolation (Strong

et al. (1998)) of the information values. This method assumes tiatestimated
information, can be approximated by a second order polyabmil/n, (wheren,

is the number of repetitions of the movie used to estimateirifiemation), that is

I = L.y + a/ns + b/n?, wherel,,, is the result of the direct application of Eq. 3.3
to the data, and andb are two parameters that depend on the stimulus-responke pro
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abilities. For a particular experiment consisting /8f repetitions of the movie, we
obtained different raw estimates of the information. Thstfone was the result of
applying Eq. 3.8 to the full original dataset, where= N,; a second set of estimates
corresponded to random selectionsmf = N,/2 of the trials; and the third corre-
sponded to the estimation of the information from randorec@ns fromn, = N, /4

of the total available trials. Then, these estimates weo#teal against /n,, and a
guadratic polynomial was fitted by least squares. The asytieptalue of the infor-
mation was then taken as the intersection of this polynomuiti the vertical axis
(which is equivalent to taking the limit/n, — 0). This correction was applied both to
the spike count code and the phase code information, ginagarresponding values
Leount @NALphase-

The second step consisted in improving this estimate by seba bootstrap pro-
cedure. For the estimation of the information in the spikarntaode the bootstrap
procedure consisted in obtaining an estimate of the infaoma/.oun_boots, from
a dataset created from the original one by randomly perrgudihthe spike counts
across all time windows for all trials independently. Whee titumber of trials is very
large, the value of the information obtained from the transfed dataset must be zero,
since all the information that the neural response carrrliithe stimulus was com-
pletely destroyed by shuffling. However, due to finite sampleffects, the quantity
Leount—boots Will be nonzero. The final corrected estimate of the spikentanforma-
tioN Ieount—correctea Was obtained subtracting out this small residual bias tedelby
bootstrap: dount—corrected = Leount = Leount—bootss WNEI€eount—boots WaS also corrected
with the quadratic extrapolation method.

The bootstrap procedure was also applied to the phasehwg-finformation, as fol-
lows. We created a shuffled dataset in which, in each indalithial, we left all the
positions of the spikes unaltered but paired them with ramgshuffled values of the
phases observed in correspondence to a spike. We dallgd 1..ts the information
estimated from these shuffled data. The information coathin the spike counts was
unaffected by this procedure, but all the extra informatigrthe phase of firing was
completely erased. However, due to a residual Bjas. noots Will still be slightly
larger than/ ... corrected fOr @ dataset with a limited number of trials resulting from
the use of several phase symbols that determine the respobtsEme in each stim-
ulus time window. Therefore, we computed an estimation ler bias of the phase
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Figure 3.5: Performance of the information bias correction method on simulated data. To
assess the bias correction methods we simulated spike trains and phase $&pileds that
preserved the same statistical structure of real experimental datasetshelvapplied the
information estimation methods described in the text to compute the values of thaartifan
(normalized in bits/s) available in the spike count code (lower curve) anghise code (upper
curve) as a function of the logarithm of the number of trials. The overatlaiaing bias is
negative, affecting more the information in thase cod¢han that in thespike count code

code aiasphase = Iphase—boots — Leount—corrected, WHEre again we previously corrected
Iohase—boots USING the quadratic extrapolation method. Finally, theected value of
the information for the phase code was computef},as.—corrected = Iphase — PiaSphase-

We verified the performance of the bias correction method bgms of the follow-
ing numerical simulation. For a given experiment we meastine time varying firing
rate from the available spike trains. From the set of phabeled spikes, we also
measured the probability of each phase in correspondenaespoke for every time
window. Then, a simulated set of spike trials was generasatjuian inhomogeneous
Poisson process with the same spike rate as in the real exgdri In order to create
the phase-labeled set of spike trains we labeled each spikeding to the real prob-
ability of each label for every time window. In this way we dd@reate any number
of trials of a simulated set of spikes and labeled spikesdbaserved the statistics of
a real experimental data set. In generating these data,medbithe phase into 4 bins,
exactly as in the phase-of-firing information calculatioegorted in Fig. 3.10.
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Figure 3.5 reports the behaviour of the bias correction waston simulated data
with the statistics of one of the available experimentabses (animal A98). For a
number of trials less than 30 the overall remaining bias gatiee, affecting more the
estimation of the phase code information than the spike tooagte information. This
means that when the number of trials is less than 30, our astimof the advantage
of the phase code over the spike count code is very consevdiihe mathematical
reasons why the bias is mostly negative are investigatedt'mildn‘ Montemurrcet al
2007b):‘ Panzeret al. 200'}) and originate from the fact that bootstrap corrextio
tend to overestimate the bias). When the number of trialsgetar equal than 30, any
relative residual error in the corrected information esties is negligible and thus the
estimates are in practice unbiased. This suggests that idata-size range collected
experimentally our information estimates are precise,@mly potentially affected by
a small residual bias which is slightly higher in the phasgecimformation. This leads
to conservative estimates of the amount of extra infornmaiticthe phase code and to
conservative conclusions about the importance of the pbafieng in information
processing.

3.2.2.6 Information at fixed spike rate and independence ofpske count and
phase coding information

An interesting and still highly debated Harris (2005); Heet al. (2002); Mehtzet al
(Woz) question is whether phase and spike rate are jusyj Ipeoduced by the same
mechanism and thus reflect largely redundant informatiotif, instead the phase-of-
firing information contributes information about the stiimuhich is genuinely novel
with respect to that carried by spike counts. The findingdresal in Fig/ 3.10 A and
Fig./3.4) that the information in phase-of-firing is highlean the information in spike
counts is not enough to address this question. In fact, sgpp@ are labeling the
spikes with an informative phase signalbut the value of the phasein response to
the stimulus is determined deterministically by the valfighe mean spike court
to that stimulus, i.ep = ¢(n). In this case, spike count and phase-of-firing cannot
convey information about independent or different aspettie stimulus. However,
even in this situation the information in phase of firing mayl be bigger than the
information in spike counts if the phase reports the stirmuhore reliably than the
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spike rate itself. Thus, it is important to develop measuhes determine whether
the information conveyed by phase-of-firing and counts isdme extent novel and
unrelated.

One way to demonstrate that phase of firing encodes feattitbe gtimulus not
encoded by spike counts is to show that the phase of firinglem&ddiscern between
stimuli which cannot be possibly distinguished on the basispike counts alone.
Stimuli that cannot be distinguished on the basis of firirtg elone are stimuli with
the same spike count distribution in response to the stimudithe short-stimulus
windows regime considered here, this amounts to the stihading the same mean
spike count. Therefore, for each recording channel, we tdk movie parts eliciting
exactly a certain spike rate, and we computed what we called “the phase-of-firing
information at fixed spike rate”, i.e. the information between the phase of firing and
the stimuli at fixed spike rate, as follows:

o !/
I (51 ) = 3 5 3 P01 log, 1) (3.6)
—

/

S

where in Eq. 3.6 the sum ovefis restricted to stimuli with a spike count exactly
equal ton (whose total number i§;). The spike count code conveys no information
about these fixed-rate movie parts. If the phase of firing tallforedundant to the
spike rate, then it will too convey zero information abouefixrate movie parts. If
instead the phase of firing conveys significant informatibaid the fixed-rate movie
parts, then the phase code must contains novel and indepteinflermation to that
provided by spike counts, because stimuli undistinguihflom spike count alone
would become distinguishable from the phase of firing. Tlausseful test that some
of the information convey by the phase of firing is genuinadyel with respect to that
carried by spike counts is to test that .. (S; Re) > 0 for some range of spike rate
n. Results for the 1-4 Hz LFP phase were reported in|Fig.|3.10tBeomain text. As
reported in the main text, we found that ... (S; Re) was significantly positive for
all firing rates> 1 Hz, and it was as high at 30 bits/s at spike rate80 spk/s. This
demonstrates that the phase of firing conveys some novehiatmon with respect to
spike rates, and suggests that this information is padituuseful to disambiguate
stimuli eliciting sustained spike responses with equalrsith.
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It is intuitive that more information is to be gained by labglthe spikes with a
phase which is not redundant to the spike rate than whenitgpbgbikes with a phase
totally redundant to the spike rate. To quantify how muchitaaltal phase-of-firing
information about all stimuli we gained because the phdselilzg is not a redundant
function of the rate, we introduced a further measure thatalled the “phase-of-firing
information in the redundant count-phase (RCP) cdgep_phase(S; R ), Which is the
information that would be obtained if we kept the same oVeliatribution of observed
phase values but we destroyed any possible way for the pbasery some informa-
tion about the stimulus which is independent from that adsaf his phase distribution
redundant with the spike rate can be constructed by fordiegphase distribution to
become a function of just the spike rate and not of the indi@idtimuli at fixed rate. In
practice, the redundant phase distribution can be builabgomly associating, within
each trial, the observed phase responses to a randomlyeskstonulus with the same
mean spike rate rather than to the stimulus that elicited¢dmsidered phase response.
In this way, the phase distribution to any stimulus beconmig @ function of the mean
spike rate to that stimulus, i.e2(¢|s) = P (¢|n(s)), and Ircp—phase(S; Re) €an be
expressed as:

P(¢[n)

P0) (3.7)

®
1
TRcP—phase (S5 Re) = E R E P(¢|n)log,
an ™ ¢=0

where the sum over stimuli in the information definition waplaced by a sum
over all possible spike rate values P(¢|n) is the probability of observing phasge
in any window eliciting a mean spike raig and is constructed by pooling together all
phase values obtained with the different stimuli at fixe@.rdf Ircp_phase (EQ.[3.7)
is considerably smaller thah,... (EQ./3.5), it means that a substantial part of phase-
of-firing information about all stimuli is due to the fact tithe phase labeling is not a
redundant copy of the rate.

We computedrcp-pnase fOr our dataset considering the 1-4 Hz LFP phase and we
found that/rcp—pnase Was 40% smaller thaf, .., suggesting that a substantial part of
the extra amount of information gained by the knowledge efithase of firing reflects
novel information about the stimulus with respect to thawvpted by spike counts.
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Figure 3.6: Distribution of phase-of-firing information. Population scatterplot of thageh
code information of the 1-4 Hz LFP vs the spike count information. TheeathBhe plots the
line in which the two informations would be equal.

3.2.2.7 Population average vs population distribution oflte information in the
phase of firing

Figure 3.10 A of the main text shows that, on average over tpaifation, the infor-
mation in the 1-4 Hz LFP phase of firing was 55% higher thanrferimation in spike
counts. How typical is phase coding across the whole papulaf sampled neurons?
Figure 3.6 is a plot for all neurons of the information in spitounts versus the infor-
mation in the 1-4Hz LFP phase of firing. All channels but one significantly higher
information (bootstrap tesp, < 0.01) in the phase code than in the spike count code,
and most channels presented a large amount of extra inflarmiatthe phase of firing.
This suggests that phase coding is common across the emtmgesd population, and
not restricted to a few highly informative neurons.

3.2.2.8 Information obtained when labeling spikes with LFPenergy-of-firing as
well as phase

In this study we decided to consider whether the LFP phasiatvgpikes were emit-
ted is informative. The choice of considering the spike tignielative to the LFP phase
and not other characteristics of the LFP was somehow arpitniad motivated by the
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theoretical and experimental literature that previousipaentrated on phase coding
and its advantages. However, since the LFP is related to slegree to the synaptic
input to a cortical area and thus reflects the “context” inchtgpikes were generated,
itis plausible that spikes are informative also with respeothers features of the LFP.
To investigate this issue, we computed, from the band-pasBE's, also the instanta-
neous amplitude of the LFP fluctuation by taking the absolute value of the &tilb
transform in each time point. We then computed, as befoesinfiormation that is ob-
tained by labeling the spikes with the instantaneous aog#it. We found, although
there was more information in the LFP amplitude at the timepking than in spike
counts, that the information in the LFP amplitude at the tohBring was always less
than the corresponding information in the phase of firingsu®s for the 1-4 Hz LFP
band are reported in Fig. 3.7. An interesting question istivrethe information in
the amplitude at the time of of firing is independent or recamtdo that carried by the
phase of firing. To address this issue, we computed the irgftom that is obtained by
labeling the spikes simultaneously with both the LFP phamkthe amplitude at the
time of firing. Figure 3.7 shows that the information in thedglitude and phase” at the
time of firing was equal to the information in the phase of @itihis means that the
LFP amplitude at the time of firing, though informative ineills conveys information
which is redundant to the information carried by the phaskrioig. Consistently, we
found that LFP amplitude and phase tended to be correlatidxdipresence of a spike
(Fig.[3.7 B). Interestingly, amplitude and phase were oolyalated during firing, and
they were not correlated in the absence of a spike (Fig. 3.Ti)s, it appears that
it is natural and sensible to refer spike times to LFP phaatger than to other LFP
variables.

3.2.2.9 Information in the phase of firing of isolated neuroms

As reported above, the spikes used for the analysis repeastdre spiking activity of a
small population of cells rather than well separated spiies a single neuron. For a
fraction of channels, it was possible to separate someesingts. As reported above,
we could isolated 71 units from 37 channels. We checked vengitle phase-of-firing
conveyed information also when considering the isolateitsurThe results were as
follows. ForAt = 4 ms, the 1-4Hz LFP phase of firing information about the movie
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Figure 3.7: Labeling spikes with different LFP feature#\: Histograms plot the informa-
tion (mean+ SEM over the dataset of channels for whieh30 movie repetitions could be
collected) carried by the spike count (denoted as “count” in the x-ax@d)tdty the LFP am-
plitude at which spikes were emitted (denoted bYit the x-axis label); by the LFP phase at
which spikes were emitted ¢” in the x-axis label); and by the simultaneous phase and ampli-
tude at which spikes were emitted(& ¢” in the x-axis label).B: Joint probability density
(per unit angle and per uni) of phase and amplitude in correspondence of a spike. Results
are expressed in terms of the angular distahde from the neuron’s preferred phase in the
corresponding window and of the amplitudeResults are averaged over all channels and time
windows containing a spikeC: Joint probability density (per unit angle and per unit epsilon)
of phase and amplitude in absence of a spike. Results averaged overalets and time win-
dows where no spike was observed. In plotting Panels B and C, the ampliigdeormalized

to its average standard deviation in a trial.
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was 53% bigger than spike counts for the 37 multiunit chasmaat 46% bigger than
spike counts for the 71 well sorted units. ot = 8 ms, the 1-4Hz LFP phase of firing
information about the movie was 62% bigger than spike cotortshe 37 multiunit
channels and 54% bigger than spike counts for the 71 weledarhits. ForAt =
16 ms, the 1-4Hz LFP phase of firing information about the movaes w5% bigger
than spike counts for the 37 multiunit channels and 62% iggen spike counts for
the 71 well sorted units. The small decrease of informatromfmulti-unit to single
unit is that the residual error in correcting for the infotioa sampling bias (which is
negative, see Fig. 3.5) has approximately the same absutetéor the multiunit spikes
and the well sorted spikels (Panzeiral\ 4200%)), but the well sorted spikes have overall
less information per channel because information is apprately proportional to the
mean firing rate for short stimulus WindOV\JIS (Panzeri & Sciwé_t%l)). Overall, the
conclusion is that phase-of-firing is informative also wieemsidering well isolated
spikes.

3.2.2.10 Robustness of the information in the phase of firingiith respect to ap-
proximate knowledge of LFP fluctuations

Can the phase-of-firing information still be accessed by deraffected by limita-
tions similar to that likely encountered by downstream aémetworks? A neural
decoder may not be able to finely filter the broad-band cirosidtllations. We veri-
fied (Fig.' 3.4) that a substantial amount of phase-of-firmfgrimation was preserved
even if the neural signal was filtered within very broad freqcy bands containing the
informative low-frequency components.

3.3 Results

The most established hypothesis on how sensory informeti@presented in the brain
is the “spike count coding” hypothesmi n (1928)), elhsuggests that neurons
represent information by the number of spikes dischargest seme relevant time
window. However, the timing of spikes may add important imration to that al-

ready carried by spike counts (de Ruyter van Stevengtckl. (1997); Gollisch &
Herz EZOOE)[ Hopfield (1995;; MacKay & McCuIIo‘ch (195&); Qpatn & Richmonh
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Victor & Purpura‘ (1996)). In particular, informafi

1987); Schnuppet all 2006%);
may be encoded in the spike times relative to the phase of somaurrent network
oscillation ‘(Bulloclk (1993); Buzsaki & Dragu% (30*1); Fsiet all 4200%); Hopfielh
(1995): Lisman (2005)): this is called “phase coding”. listBhapter, we investigated
which of these coding strategies is used by the primary Vismidex (V1) during the

presentation of rich natural-like visual stimuli.

3.3.1 Spike and LFP responses to natural movies

We recorded neural signals with an array of extracellulacebdes from primary vi-
sual cortex of 4 anaesthetized macaques in response to eukany presented 3.5-6
min long natural color movie. Each recording site corregjgzhto a well defined
V1 visual receptive field within the field of movie projectiofrrom each electrode,
we measured both spiking activity and Local Field Potest{aFPs). Spikes were
detected by threshold-crossing of the 500-3500Hz bandgaaseural signal, and rep-
resented the spiking activity of a small population of cedither than well separated
spikes from a single neuron. LFPs, which were recorded a%-2t&0 Hz band-passed
neural signal, reflect the fluctuations in the input and theagortical processing of
the local cortical network, including the overall effect mdpulation synaptic poten-
tials t]uerqenet all 1999):‘ Mitzdorf ‘( 1987)) and other types of slow activitycbuas
spike afterpotentials and voltage-dependent membrarnbatisnis fBuzsaﬂ(i @)Z);
‘Harada & Takahash‘i (19b§); Kamonreti al. dlggé); LogothetH (2003)). Each movie
was repeated 12-40 times in order to sample the probabistyilolition over the neural

responses to each part of the film. We obtained a dataset ofl #e¢trode channels
recorded during stimulation with a particular movie. Uslegherwise stated, we fo-
cused on the relationship between LFPs and spikes recomi@diie same electrode.
Figure 3.8 reports responses recorded from one examplediagsite (electrode 2
in monkey A98) over repeated presentations of the same niagenent. The pre-
sentation of the movie elicited patterns of spikes that weoglulated over time in a
reliable manner across trials (Fig. 3.8 D). As a consequearmkas summarized by the
trial-averaged instantaneous spike rate (Fig. 3.8 F), snmeée scenes elicited a high
and reliable firing rate, and some other scenes elicite@aaksa low (but still reliable)
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Figure 3.8: lllustration of the time course of the LFP and the spike phase, and of thestliffe
between the spike count and phase code. These data were recordeddctrode 2 in monkey
A98 in response to a movié\: LFP traces from five presentations of a 12s long movie extract.
Traces were displaced on the vertical axis to make them distinguishBblEme courses of
the 1-4 Hz band-passed LFP to the same five presentations of a 12s lof@eariact as in
Panel A. Traces were displaced on the vertical axis to make them distiagleshDifferent
colors correspond to the phase of the 1-4 Hz LFP being in one of fadrgats set as shown
in Panel H (on the base of the phase locking properties of spikés)Time course of the
phases 1-4Hz LFP signal phases over 30 repetitions of the movie extlaase were color-
coded into quadrants as indicated above and illustrated in Panel H. Thetriafs 5n Panels
C-E correspond to the 5 trials in Panels A-B.
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firing rate. Thus counting the number of spikes emitted wigome time interval re-
duces the observers uncertainty about which movie scendeing presented. This
illustrates that spike counts encode movie scenes.

As for the spiking activity, the waveform of LFPs in singléats (Fig. 3.8 A)
showed fluctuations that were reliable across trials andutaseld by the movie. Dur-
ing movie presentation, the power of the LFP spectrum wasdsgat low frequencies
(< 4 Hz) and then dropped with increasing frequency (Fig! 3.1 ti\s started by
considering the behavior of the phase of LFPs fluctuationkerhighest-power band,
namely the 1-4 Hz frequency range (delta band). The singe1-4 Hz band-passed
LFP traces during movie presentation (Fig. 3.8 B) show thdtHz LFPs too were
reliably modulated by the movie. To extract the instantaiseealue of the phase of
the LFP fluctuations in each trial and at each time during tbeiey we first computed
the Hilbert transform of the band-passed traces in each &ial we then computed
the phase as the argument of the Hilbert transform (the tiregybhase convention is
plotted in Fig. 3.8 G).

To visualize how LFP phases were modulated by the movie, wdeti the phase
range into four equi-spaced quadrants and labeled eaclawifferent color (Fig. 3.8 G).
It was apparent that the 1-4 Hz LFP also encoded the movieulsedhe phase values
were modulated by the movie time and this modulation wasexty reliable across

Figure 3.8 (continued): D: Raster plot of spike times (indicated by dots) resulting from re-
peated presentation of the selected 12 s movie extea®aster plot of the same spike times as
in panel E, but with the dots representing the spikes color-coded angdaithe 1-4 Hz LFP
phase quadrant at which they were emitted. These colored spike times t#éutea‘phase
code” whereas the colorless spike times in Panel D illustrate the spike codeFc Spike
rate, averaged over all 30 trials and computed in 4 ms long sliding time binsgdienl2-s
movie extract. The green star and the blue circle indicate movie points that mlidarsspike
rate responses but different and reliable phase values. These twe pwnts can be much
better discriminated from each other by considering the phase at whicbsspire emitted
rather than just counting spike&.: The sinusoidal convention used for phakk.The proba-
bility (per unit angle) of observing a spike at a given phase value. Theds plotted with the
color-code used to label phase quadrants.

71



PHASE-OF-FIRING CODING IN V1

trials at several times during the movie (Fig. 3.8 C).

Moreover, there was a correspondence between spike rate3(BiF) and across-
trials reliability of phase (Fig. 3/8 C): scenes elicitingighhspike rate also elicited a
highly repeatable phase. The distribution of 1-4 Hz LFP phas spike times from this
example channel during the presentation of the movie (E®)F3 was non-uniform
(Rayleigh test of non-uniform angular distributi )),p < 0.01): the
probability of spiking at the preferred phasgr(2 rad) was twice the probability of
spiking at the anti-preferred phase/@ rad). The phase values around the preferred
one for firing (coded as green and blue in Fig.| 3.8) appearde tilve ones encoding
the movie more reliably during periods of firing (Fig. 3.8 C).

Since both spikes and LFP phases carry information aboutntinge, and since
phases are particular reliable in the presence of spikés pibssible that, in addition
to encoding information by spike count, neurons may encatfa enformation about
the movie by the phase at which they fire. This hypothesis m#aat if we label the
spikes with a “color” (as in Fig. 3/8 E) reporting the phasadpant at which they
were emitted (“the phase-of-firing code”), we can predidtdrewhich visual feature
elicited the firing than if we just count the “colorless” spgkexpressing the spike count
code (Fig. 3.8 D). Figure 3.8 F illustrates how phase may plagle in representing
information about the visual scenes. Two scenes of the maigging comparable
firing rates (e.g. those occurring at times marked respelgtiby a green star and
blue circle in Fig! 3.8 F) could not be discriminated by thewolorless” spike count
(Fig.[3.8 D), but could be discriminated when taking into@att their phase label
(green vs. blue colored spikes in Fig. 3.8 E). The exact éxtewhich knowledge
of the phase of firing helps stimulus discrimination will betefrmined below using
information theory.

3.3.2 LFP phase reliability and spike-phase relationships

Having illustrated the phase-of-firing coding with an exdemecording channel and a
selected LFP frequency range, we next characterized the/imetof the entire datasets
over a wide range of LFP frequencies. To do so, we divided tfe frequency range
into small frequency intervals (1-4 Hz; 4-8 Hz; and up to 124ik 4-Hz-wide non-

overlapping intervals). We then computed band-passed lir-Bach such frequency
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interval, from which we extracted the instantaneous baagbed phase during the
course of the movie.

A first fundamental condition for phase coding is that LFPg&saare reliable and
repeatable across different trials at fixed sensory inpat (at fixed time during the
movie). We investigated phase reliability by computing tireular variance across
trials of the phase at each time during the movie. Circulaiavere is a measure of an-
gular dispersion (Eq. 3.2), and its values range from 0 goenfeproducibility across
trials) to 1 (total unreliability). To be useful for phaséfaing stimulus coding, the
reliable phase values must be observed during periods ogfiif the reliable phases
occur during silence, their information cannot be used tptte spikes. Thus, in
Fig./3.9 A we examined how the circular variance of the LFPsghdepends upon the
spike rate observed in the same window. Fig! 3.9 A shows in#étie high-frequency
LFP regions & 50 Hz), the circular variance is very high (population averamgorox-
imately 0.85) across all spike rate levels. Thus, the phaslea high-LFP frequency
range is not reliable enough to support stimulus discritama In contrast, and for
all spike rate values, phase was far more reliable in the |&W Erequency bands. In
the LFP frequency regions below 12 Hz, movie segments ialiciigh firing rates
also elicited substantially more reliable LFP phases: @magye across the dataset, the
circular variance across trials of the 0-4 Hz LFP phase wascjmately 0.5 in low
spike rate windows< 25 spk/s) and approximately 0.3 in higi (150 spk/s) spike rate
windows. A circular variance of 0.3 would be that achievedalphase distributed uni-
formly over a0.657-wide interval. This suggests that, in order to extract infation
from the phase of firing, we need to measure phases with asppaaf approximately
/2 (i.e. a quarter of a phase cycle). A very similar dependefghase reliability on
rate was obtained with 4-8 Hz and 8-12 Hz phases (data notrghdvie increase of
phase reliability with firing strongly suggests that theerof phase-related spike times
may be to discriminate between stimuli each eliciting samyl high spike rates.

A second crucial requirement for phase coding is that thiemiht movie time
windows elicit diverse reliable phase responses. For el@nmpFig. 3.8 we observed
that several movie scenes elicited a reliable phase in #engcoded range, and other
different movie scenes elicited a reliable phase in the-bheed range; it is the color
difference in the reliably colored phase ranges that makssssible to use phase to tag
successfully different movie parts. We found that the rssoibtained for the example
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channel plotted in Fig. 3/8 extended to the whole datasepatticular, for the vast
majority of all channels, the distribution of phases at spilknes was significantly
non-uniform (Fig! 3.2 A), and we could define a preferred phasspike times for
each channel. The preferred phase of the 1-4 Hz LFP varied ¢leannel to channel,
and was located in most cases in 81e/2 to 27 range (between the trough and the
middle of the rising phase of the LFP oscillation). For thé Hz LFP, the average
over the dataset of the preferred phase wéas (Fig. 3.2 C). We qualitatively observed
that for the vast majority of channels phase values closhd@teferred phase were
more reliably during firing, much as for the example chanmglorted in Fig. 3.8.
Thus, to quantify which phase range is more reliable duringdiat the population
level, we realigned the 1-4 Hz LFP phase values for each @laorthat the preferred
phase was set to a “zero” reference value, and we expressbghbase value a&®,
the difference between the phase value and the channefsrme phase. We then
examined how the circular variance of the phase dependedthpanean across trials
of the phase (computed as “angular mean”; see Eq. 3.1) am theatrial-averaged
spike rate observed in the same window. Fig. 3.9 B reportgpdmilation average
of the phase circular variance as a function of the value efttial-averaged phase
(expressed aa®) and the spike rate. We found that (Fig. 3.9 B) at high spikesra
(> 100 spk/s) all phase values within angular distadge of /2 from each channel’s
preferred phase were reliable (with circular variationhe tange 0.3-0.4). This makes
it possible to disambiguate different stimuli eliciting aqually strong firing rate by
tagging them using some of the different reliable phaseagticcurring within angular
distanceA® of /2 from the preferred phase. In this way, stimuli indistindnaible
from firing rates alone may become distinguishable aftendp&abeled by their phase
of firing, and this permits the phase of firing to convey infation about the movie
which is genuinely novel with respect to the one providediikesrates.

3.3.3 The sensory information conveyed by spikes times relative
to LFP phase

Finally, we used Shannon’s informati&)n (ShanAon (1948dwress directly the issue
of how much additional information, beyond that availablspike counts, is conveyed
by phase of firing. Shannon’s information (see [Eq. 3.3) betwa set of stimuli and
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Figure 3.9: Phase locking properties of V1 neurons under natural visual stimulafioifhe
blue curve plots the locking strength as a function of the frequencyagedrover the dataset
(solid blue line: mean; light-gray areat: 1 SEM confidence region). The locking strength
was computed for each channel as the difference between maximal and frpnaiability

of spike locking across all channels. The red curve plots the numbenasfnels showing
significant spike locking (Rayleigh test, < 0.01) at fixed frequency.B: The value of the
circular variance across trials at fixed time windows of the phase of LERd-passed in a
given frequency range is plotted as function of spike rate in the careipg window. Results
averaged over all channels and time window. The value of the circular variance across
trials of the phase of 1-4Hz LFPs at fixed time windows is plotted as functiagheobpike
rate and of the angular distancep from the neuron’s preferred phase in the corresponding
window. Results averaged over all channels and time wind@vsProbability of observing

a preferred phase of 1-4Hz LFPs at a given angular distangérom the neuron’s preferred
phase as function of the spike rate of the neuron. Results were adaeragiethe whole dataset.
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the neural responses is a principled measure of singledisariminability. It quanti-
fies (in units of bits) the reduction of uncertainty about sienulus which is gained
by a single-trial observation of a neural response: oneditesponds to a reduction
of uncertainty of a factor of two. In the following we compdtthe information that
the neural response conveys about which section of the nveagebeing presented.
This characterization of information about the movie doesmeed any assumption
about which features in the movie made the neuron respondgiter van Steveninck
et al. 4;97)): thus we are computing information about all pdssiisual attributes
occurring in the movie. Information values were expressetiis/s by dividing the
information value by the time window length (typically 4 m&ie; see Methods Sec-

tion(3.2) in which the neural response is computed.

The amount of information transmitted by a neural resporeggedds on the way
the response is quantified, which in turn reflects our assimmpin what is the “neu-
ral code”. We considered and compared the information @aiy the two candidate
neural codes: the spike count code (the neural response aot ®fpthe movie was
guantified as the total number of spikes emitted in the sedemtsponse time win-
dow), and the phase-of-firing code (the neural responseastdied as the LFP phase
at which each spike was emitted). The latter was equivatecbmputing informa-
tion from the “colored” spikes as in Fig. 3.8 E; the former ingputing information
counting “colorless” spikes as in Fig. 3.8 D. We registetteel phase of firing with a
7/2 precision (i.e. phase divided into quadrants) becauses{stmtly with the above
phase-reliability analysis) using a precision finer tha did not increase the infor-
mation further (Fig. 3.3).

We first investigated how well spike counts encode the mowée found that,
across the entire dataset, spike counts conveyei6®86 bits/s of information about
the movie (meant SEM). We then considered the information about the movié tha
is carried via the phase of firing. We found (Fig. 3.10 A) thegre was considerably
more information in the spike times relative to phase thatha spike counts, and
that the amount of phase-of-firing information strongly eleged on the considered
LFP frequency range. The 1-4Hz LFP phase of firing carried®9.6.94 bits/s of
information about the movie: thus the phase code in 1-4Hz b&fRd conveys 54%
extra information that it is not possible to obtain in any weym spike counts. As
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Figure 3.10: The information about the movie conveyed by spike counts and by phfisa@f

A: Black dots plot the information carried by the LFP phase at which spikes amitted as
function of the considered LFP frequency (meaiSEM over the dataset). The black dashed
line plots the mean over the dataset of the spike count information (SEM ateaset indicated

as grey area: The phase code (1-4 Hz LFP) information in movie points eliciting exactly the
same spike rate is plotted as function of the firing rate (me&EM across population reported
as full line and shaded area respectively). For the purpose of plottiningn in Panel B, the
information values computed between stimuli at exactly the same rate wereyedevaer

10 spk/s wide spike rate bins.

reported in Methods (Section 3.2.2.9), the extra amounhfofrimation in the phase-
of-firing did not change much when considering only spikesfwwell-isolated single
neurons. The phases of firing in the 4-8Hz and 8-12 Hz LFPs lesseinformative
than the 1-4 Hz LFP phase, but still carried much more infdionahan spike counts
(46% and 32% respectively). The amount of information in phase of firing then
rapidly decreased at higher LFP frequencies, and it becajual ¢o the spike count
information for LFP frequencies- 24 Hz. Further, additionally labeling the spikes
with LFP amplitude instead than just with LFP phase did natlleo any increase of
information (Fig/ 3.7). Taken together, these results ssgthat spike times are only
informative with respect to the phase of low-frequency LFPs

Can the phase-of-firing information still be accessed by deaffected by limi-
tations similar to that likely encountered by downstreamraknetworks? On the one
hand, a neural decoder may not be able to finely filter the bbaawd circuit fluctua-
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tions.

To address this concern, we computed the phase-of-firingrnrdtion obtained
when the phase is extracted from LFPs filtered between 1 Hzaalodv-pass fre-
quency cutoff that was progressively varied between 4 arli25 We found that
the amount of extra information in LFPs decreased from 549444 Hz LFPs to 46%,
39% and 38% for 1-25 Hz, 1-100 Hz and 1-250 Hz LFPs, respégtifag. 3.4).
Thus, a substantial amount of phase-of-firing informaticaswwreserved even if the
neural signal was filtered within very broad frequency baowistaining the informa-
tive low-frequency components. On the other hand, althargghical low-frequency
oscillations have high spatial coherence, a further-avempder may not receive a per-
fect copy of the phase signal. To verify if this leads to a losdecoded information,
we paired the spikes with 1-4 Hz LFPs recorded simultangdusin electrodes up to
4 mm away, rather than pairing them with the same-electredel4d LFP. We found
that there was less than 1% loss of information (not sigmfipa> 0.2; bootstrap test)
when pairing spikes with LFP phases at other electroded,iatex-electrode distance
considered€ 2 mm; < 3 mm; < 4 mm). Thus, the phase-of-firing information was
robust to limitations of the downstream decoder.

Is some of phase-of-firing information genuinely novel wiglspect to that carried
by spike counts? In the following we demonstrate that thithéscase, by showing
that the phase of firing enables to discern between stimuklwbannot be possibly
distinguished on the basis of spike counts alone. For eaxhdiing channel, we took
only movie parts eliciting exactly a certain spike rate. Bpg&e count code conveys
no information about these fixed-rate movie parts. If thesghaf firing is totally
redundant to the spike rate, it will also convey zero infatioraabout fixed-rate movie
parts. If instead the phase of firing conveys significantnmiation about the fixed-
rate movie parts, then the phase code must contain novehdegéndent information
to that provided by spike counts, because stimuli undisisitable from spike count
alone become now distinguishable from the phase of firinguRefor the 1-4 Hz LFP
(reported in Fig. 3.10 B as population average) show thapttese code information
about movie parts at fixed rate was small at low spike ratesstaeply increased at
higher spike rates: it reached a value of 30 bits/s at raté80 Hz. The phase-of-firing
information about movie parts at fixed rate was significapibgitive (p < 0.0001;
bootstrap test) for all rates 10 Hz. Similar results (although with an overall scaling
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down of the information value) were obtained for 4-8 Hz an@lé8Hz LFPs. This
proves our hypothesis: the phase of firing conveys inforomatibout the movie which
is not redundant to that of spike rates, as it disambiguai@sii which elicit equally
high spike rates and thus cannot possibly be distinguisted &pike counts alone.
(See Methods Section 3.2 for further studies on the indeprecelbetween spike count
and phase-of-firing information)

3.4 Discussion

The hypothesis that neurons may encode information by thseght which they fire
has received renewed attention in recent years. Evidersceden reported that spatial-
navigation- and memory-related structures encode soromirdtion by phase-of-firing
dH uxteret al\ dZOOS)J Jensen & Lismah (ZO‘Ob); Leeal. 4200\%)). However, the extent
to which firing rate and phase encode genuinely differemrimation, rather than just
being produced by the same mechanism and thus reflectirg)yfasglundant informa-
tion, has remained debatéd (HaMis (2‘0&)5): Haetiall 2002}3); Mehtaet al. (2002)).
Further, it has been unclear whether phase coding repgeadnnhdamental currency
for cortical information exchange right from the primarynsery representation, and
if it is a robust enough coding mechanism to represent coxgileuli.

Here we have addressed some of these open questions aboaituhe of phase
coding by demonstrating for the first time that, in primargual cortex of anaes-
thetized monkeys, a substantial amount of information &hatural stimuli is carried
by the phase of firing, and that some of this phase-of-firiigrmation is genuinely
different from the information carried by spike counts. &tf, phase-of-firing permits
the discrimination of stimulus features that elicit an dtyuhigh spike rate and thus
cannot be distinguished when considering firing rate aloff@s coding mechanism
provides neurons in sensory cortex with a mean to represerg than one effective
stimulus by “tagging” several effective stimuli with sirail firing rates with different
values of the phase of the network fluctuations.

We found that only low-frequency<( 12 Hz) LFP phases were reliable enough
during periods of firing to be useful for coding, wheread(0 Hz gamma-range phases

dFries et al. 42007)) were not. Gamma oscillations were present in oua datl are
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stimulus-driven (the highest increase of LFP power fronng@ieous activity to movie
stimulation was in the gamma range; Fig./3.1), but they dicdyenerate a reliable and
informative spike-phase relationship. An interestingsjios is how the information-
rich phase of low-frequency LFPs is generated. On the ond,haoould reflect the
intrinsic dynamics of the sensory or neuromodulatory pssagg pathways commonly
associated to the generation of these low-frequency asioitis. On the other hand it
could be driven by the dynamics of natural movies, which am# the highest power
in the low frequency range (see Section|3.2). To clarify thgio of the informa-
tive phase signal, an important direction for future reskas to change the stimulus
dynamics by using faster stimuli than natural movies andystiow this affects the
phase-informative LFP frequency range, as well the accoripg spiking precision
dButts et al. 4200%)).

Previous reports have documented that the timing of indaidspikes with re-
spect to the stimulus onset (such as “latency coo‘es” (Phateﬂ 200i))) IS very
informative. One objection to such individual-spike-tiigicodes is that their infor-
mation may not be relevant because the brain does not haysease representation
of stimulus onset which could allow the interpretation astlpike timing code. Our
results demonstrate that the timing of individual spikeaos only informative rela-
tive to stimulus onset, but is also informative relative masfluctuations in the input
and the intracortical processing of the local cortical ratw Since the latter signal

Is presumably available to a downstream area decoding imellss attributes, our
demonstration of phase-of-firing coding suggest that teaalicortex can access and
use the information available in the timing of individualilsgs. In this respect, one
particular advantage of using low frequency oscillatiomsghase coding is that such
low frequency oscillations are those with greater spatderence, and can thus be
made more widely available to decoding networks.

The type of biophysical mechanisms needed to decode theqatidsing infor-
mation depends on the origin of the informative phase sigAasimple scenario is
that low-frequency LFP fluctuations reflect coherent meménaotential oscillations
of populations of neurons (such as transition between updamh states). In this
case, different phase-of-firing values may be decoded omdlses of their different
post-synaptic responses. A more complex scenario is teattlable LFP phase is the
reflection of a very precise interaction of large cell assltyrm M)). In such
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3.4 Discussion

case, a precisely wired circuit may be needed to detect ddgarctivation, but the in-
formation advantage offered by relative time of firing careven more quantitatively
prominent.

81



PHASE-OF-FIRING CODING IN V1

82



Chapter 4

A kernel approach to comparing
distributions

“Den rechten Handschuhdnnte man an die linke Hand ziehen, wenn
man ihn im vierdimensionalen Raum umdrehen koennte”

[Ludwig Wittgenstein, 1921]

83



A KERNEL APPROACH TO COMPARING DISTRIBUTIONS

We describe a technique for comparing distributions withtbetneed for density
estimation as an intermediate step. Our approach relies apping the distributions
into a Reproducing Kernel Hilbert Space. We apply this templato construct a two-
sample test, which is used for determining whether two setsseiredtions arise from
the same distribution. We use this test in attribute magtior databases using the
Hungarian marriage method, where it performs strongly. V@ alemonstrate excel-
lent performance when comparing distributions over grapbisyhich no alternative
tests currently exist.

4.1 Introduction

We address the problem of comparing samples from two prtityabistributions, by
proposing a statistical test of the hypothesis that thestglalitions are different (this
is called the two-sample or homogeneity problem).

Here, we propose to test whether distributignand ¢ are different on the basis
of samples drawn from each of them, by finding a smooth funactrbich is large on
the points drawn fronp, and small (as negative as possible) on the points frokive
use as our test statistic the difference between the meantidarvalues on the two
samples; when this is large, the samples are likely fronecffit distributions. We call
this statistic the Maximum Mean Discrepancy (MMD).

Clearly the quality of MMD as a statistic depends heavily andlassF of smooth
functions that define it. On one hartéimust be “rich enough” so that the population
MMD vanishes if and only ilh = ¢. On the other hand, for the test to be consistent,
F needs to be “restrictive” enough for the empirical estimaitéIMD to converge
quickly to its expectation as the sample size increases. Nhak gse the unit balls
in universal reproducing kernel Hilbert spal:es Steinvb@()@) as our function class,
since these will be shown to satisfy both of the foregoingprtées. On a more prac-
tical note, MMD is cheap to compute: givem points sampled fronp andn from g,
the cost isO(m + n)? time.

We develop a non-parametric statistical test for the twoysa problem, based on
the asymptotic distribution of an unbiased empirical eatgrof the MMD.
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4.2 The Two-Sample-Problem

We demonstrate the good performance of our test on problemsidioinformatics
and attribute matching. In addition, we are able to sucodigsipply our test to graph
data, for which no alternative tests exist.

4.2 The Two-Sample-Problem

Letp andq be distributions defined on a domain Given observationX := {xz,..., 2}
andY := {y1,...,y,}, drawn independently and identically distributed (i).ifom p
andgq respectively, we wish to test whethet£ q.

To start with, we must determine a criterion that, in the gapan setting, takes on
a unique and distinctive value only when= ¢. It will be defined based OIE (Dudley,
, Lemma 9.3.2).

Lemma 4.1 Let (X, d) be a separable metric space, and fey; be two Borel proba-
bility measures defined di. Thenp = ¢ if and only ifE,(f(z)) = E,(f(x)) for all
f € C(X), whereC(X) is the space of continuous bounded functions(on

Although C(X) in principle allows us to identifyp = ¢ uniquely, it is not practical
to work with such a rich function class in the finite sampldisgt We thus define a
more general class of statistic, for as yet unspecified fancasse$, to measure the
discrepancy betweemandg, as proposed i‘n Fortet & MourieLr ( ld53).

Definition 4.2 Let F be a class of functiong : X — R and letp, ¢ be defined as
above. Then we define the maximum mean discrepancy (MMD) as

MMD [F,p, q] := sup (Eanpf (@)] = Eyug[f(m)]) - (4.1)

We must now identify a function class that is rich enough tigyuely establish whether
p = q, yet restrictive enough to provide useful finite samplereates (the latter prop-
erty will be established in subsequent sections). To this e selectf to be the unit
ball in a universal RKHSH‘SteinwaAt‘(ZOO‘Z); we will henceforth usgéonly to de-
note this function class. With the additional restrictibatt)l be compact, a universal
RKHS is dense i'(X) with respect to the., norm. Itis shown i$ Steinwaﬁt (2002)
that Gaussian and Laplace kernels are universal.
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Witness f for Gauss and Laplace densities

—
0.8F = = =Gauss ||
||||||| Lap'ace

Prob. density and f

Xor

Figure 4.1: lllustration of the function maximizing the mean discrepancy in the case where a
Gaussian is being compared with a Laplace distribution. Both distributionszeavenean and

unit variance. The functiorf that withesses the MMD has been scaled for plotting purposes,
and was computed empirically on the basiof 10* samples, using a Gaussian kernel with

o =0.5.

Theorem 4.3 Let ¥ be a unit ball in a universal RKHS(, defined on the compact
metric spacéX, with associated kernél(-, -). ThenMMD [F, p, q] = 0 if and only if

p=4q.

SeeL Grettoret al. ({200‘}) for more detail. We plot the witness functigrirom Defi-
nition|4.2 in Figure 4.1, whep is Gaussian andg is Laplace, for a Gaussian RKHS
kernel.

We next express the MMD in a more easily computable form.

Lemma 4.4 Givenz andx’ independent random variables with distributipnandy
andy’ independent random variables with distributigrthe populationMIMD? is

MMD? [T, p, q] = Eparmyp [k, 2)] (4.2)
- 2E1~p,y~q [k<177 y)] + Ey,y’Nq [/{:(y, ?/)] .

Let Z := (z1,...,2,) bem iid. random variables, where; := (z;,y;) (i.e. we
assumen = n). Anunbiased empirical estimate BMD? is
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4.2 The Two-Sample-Problem

which is a one-sample U-statistic withiz;, z;) := k(x;, x;) + k(yi, y;) — k(zi,y;) —
k’(ﬂfj,yi)-
Proof [Eq. (4.2) in Lemma 4.4] In an RKHS, function evaluations ¢enwritten

f(x) = (é(x), ), wherep(x) = k(z,.). Denote by, := E,,.) [¢(x)] the expecta-
tion of ¢(x) (assuming that it exists)and note thak,[f(x)] = (u,, f). Then

MMD?[F, p, q]

fllge <1

= ( sup E, [f(x)] — E, [f(y)]>

[ llgc<1

2
= ( sup <:up_ﬂqaf>g{>
I fll5<1

= llttp = all3e

= (kp» fp) gc + (s Ha) a¢ — 2 (Hps ) g¢

= E, (¢(z), o(2"))5¢ + Eq (8(y), ()5
— 2B, 4 (6(z), ¢(y)>9{7

= ( sup E, [(¢(7), f)gd — Eq [(0(y), f>&c]>

wherez’ is a random variable independent:oWith distributionp, andy’ is a random
variable independent af with distributionq. The proof is completed by applying
(9(x), (2'))g¢ = k(x, ). 0
The empirical statistic is an unbiased estimaté/i¥ID?, although it does not have
minimum variance (the minimum variance estimate is almmshiical: seé iSerfIing,
M, Section 5.1.4)). Intuitively we expediMD?[F, X, Y] to be small ifp = ¢, and
the quantity to be large if the distributions are far apamté\that it cost€) ((m + n)?)
time to compute the statistic.

Having defined our test statistic, we briefly describe thengaork of statistical
hypothesis testing as it applies in the present contextviaig &Casella & Berger,
, Chapter 8). Given i.i.d. sampléS ~ p of sizem andY ~ ¢ of sizen, the

A sufficient condition for this ig|p, |3, < oo, which is rearranged a8, [k(x, 2')] < oo, Wherez
andz’ are independent random variables drawn according to
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A KERNEL APPROACH TO COMPARING DISTRIBUTIONS

statistical testJ(X,Y) : X™ x X" — {0,1} is used to distinguish between the
null hypothesisH, : p = ¢ and the alternative hypothesis; : p # ¢. This is
achieved by comparing the test statistié/ID|[F, X, Y] with a particular threshold: if
the threshold is exceeded, then the test rejects the nufithgpis (bearing in mind
that a zero population MMD indicates = ¢). The acceptance region of the test is
thus defined as any real number below the threshold. Sincieshés based on finite
samples, it is possible that an incorrect answer will berretd: we define the Type |
error as the probability of rejecting = ¢ based on the observed sample, despite the
null hypothesis being true. Conversely, the Type Il errohesprobability of accepting

p = q despite the underlying distributions being different. Téxel o of a test is an
upper bound on the Type | error: this is a design parameterefdst, and is used to
set the threshold to which we compare the test statistic. Wsistent test achieves a
level o, and a Type Il error of zero, in the large sample limit. We \s#le that the test
proposed in this paper is consistent.

4.3 An unbiased test based on the asymptotic distribu-
tion of the U-Statistic

We now propose a statistical test of whetpe¥ ¢, which is based on the asymptotic
distribution of MMD?. This distribution undef, is given by (Serflinﬁ, 19é0, Section

5.5.1), and the distribution undéf, is computed based OLI (Serfling, 1980, Section
5.5.2) and‘ (Andersoat al\,

1994, Appendix); seLe Gretta al\ 42007) for details.

Theorem 4.5 We assum& (h?) < oo. Underd(;, MMD? converges in distribution
to a Gaussian according to

m? (MMD? — MMD? [#,p, ¢]) 2 N (0,02)

whereo? = 4 (E, [(E. h(z, 2))?] — [E...(h(z,2"))]?), uniformly at ratel /\/m (Ser-
fling, 1980, Theorem B, p. 193). Undf,, the U-statistic is degenerate, meaning

E. h(z,2') = 0. In this caseMMD? converges in distribution according to

mMMD? 2 3"\ [ - 2] | (4.4)

=1
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4.3 An unbiased test based on the asymptotic distribution ahe U-Statistic

Empirical MMD density under HO Empirical MMD density under H1
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Figure 4.2: Left: Empirical distribution of the MMD undef+,, with p andq both Gaussians
with unit standard deviation, using 50 samples from e&ight: Empirical distribution of the
MMD under H, with p a Laplace distribution with unit standard deviation, ana Laplace
distribution with standard deviatioBy/2, using 100 samples from each. In both cases, the
histograms were obtained by computing 2000 independent instances oMbe M

wherez, ~ N(0,2) i.i.d., \; are the solutions to the eigenvalue equation
[ ayistaydpta) = (o),

and k(z;, 7;) = k(z;,1;) — Ek(zy, ) — Ek(x, ;) + B, wk(z,2') is the centred
RKHS kernel.

We illustrate the MMD density under both the null and altéireahypotheses by ap-
proximating it empirically for bottp = ¢ andp # ¢. Results are plotted in Figure
4.2.

Our goal is to determine whether the empirical test statisiMD? is so large as
to be outside thd — « quantile of the null distribution in (4.4) (consistency bkt
resulting test is guaranteed by the form of the distributimer ;). One way to
estimate this quantile is using the bootstrap Arcones &Gi992) on the aggregated
data. Alternatively, we may approximate the null distribatby fitting Pearson curves
to its first four moments (Johnsat al., 1994, Section 18.8).
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A KERNEL APPROACH TO COMPARING DISTRIBUTIONS

4.4 EXxperiments

We conducted distribution comparisons using our MMD-bassts on datasets from
bioinformatics and database applications. We applied teased on both moment
matching to Pearson curvesl{ID? M) and the bootstrapg\(MD? B). For our kernel,

we used a Gaussian with set to the median distance between points in the aggre-
gate sample, besides on the graph data, where we used thekgnaqe! for proteins

from ‘Borqwardtet all 2005). We also compared against several alternatives from
the literature (see below): the multivariate t-test, theeéhman-Rafsky Kolmogorov-
Smirnov generalisationSmir), the Friedman-Rafsky Wald-Wolfowitz generalisation
(Wolf), the Biau-Gyrfi test Biau), and the Hall-Tajvidi testHall). Note that the
Biau-Gyorfi test does not apply to very high-dimensional probleniscésit requires
partitioning of the space into a grid), and that MMD is theyomlethod applicable to
structured data such as graphs.

Overview of previous approaches to statistical hypothesigsting We give a brief
overview of previous approaches to the two sample problammidtivariate data. A
generalisation of the Wald-Wolfowitz runs test to the nuatiate domain was pro-
posed and analysed in Friedman & RafSJky (19%9); Henze & I%erkm%) \\oli),
which involves counting the number of edges in the minimuensyng tree over the
aggregated data that connect pointxino points inY". The resulting test relies on the
asymptotic normality of the test statistic, and this quagnsi not distribution-free under
the null hypothesis for finite samples (it dependspandg). The computational cost
of this method using Kruskal's algorithm ((m + n)? log(m + n)), although more
modern methods improve on the;(m + n) term (seé Chazellé (2000); note also that
Friedman and Rafsky, the authors of Friedman & Rziflskv (195t18)e that calculating
the matrix of distances, which cosig (m+n)?), dominates their computing time; this

may not be the case for large sample sizes, however). Twalgpp@generalisations of
the Kolmogorov-Smirnov test to the multivariate case weuglied in Bickel @9);
Friedman & Rafsz‘ (19%9). The approach of Friedman and B&fSknin in this case
again requires a minimal spanning tree, and has a similat@dseir multivariate runs

test.
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4.4 Experiments

A more recent multivariate test was proposea in Rosenbm This entails
computing the minimum distance non-bipartite matching ¢lre aggregate data, and
using the number of pairs containing a sample from b¥tAndY as a test statistic.
The resulting statistic is distribution-free under thelrylpothesis at finite sample
sizes, in which respect it is superior to the Friedman-Rafskt; on the other hand, it
costsO((m + n)?) to compute. Another distribution-free test was proposetialf &
Tajvidi (2002) Hall): this requires us to aggregate the dat&Zas { X, Y}, find the
J points inZ closest to each point iX for all j € {1,...,m}, count how many of

these are fronY’, and compare this with the number of points expected undenit
hypothesis (the procedure is repeated for each poimt war.t. points inX). As we
shall see in our experimental comparisons, the test stasstostly to compute; Hall

& Tajvidi (‘2002) consider only tens of points in their expagnts.

Yet another approach is to use some distance (e.@r L,) between Parzen win-
dow estimates of the densities as a test stakistic Andea’sah41994); Biau & Gyorii
(2005), based on the asymptotic distribution of this distagivenp = ¢q. One prob-
lem with the L, approach of Biau & Gyorfi‘ (Zod)SEau), however, is that it requires

the space to be partitioned into a grid of bins, which becodisult or impossible
for high dimensional problems. Hence we do not use this tashigh-dimensional
problems in our experiments.

Toy Example: Two Gaussians In our first experiment, we investigated the scal-
ing performance of the various tests as a function of the dsimmalityd of the space

X c R?, when bottp andg were Gaussian. We considered valueg op to 2500. The
levels for all tests were set at= 0.05, m = 250 samples were used, and results were
averaged ovet00 repetitions. In the first case, the distributions had défegrmeans
and unit variance. The percentage of times the null hypathveas correctly rejected
over a set of Euclidean distances between the distributiean®s (20 values logarith-
mically spaced from 0.05 to 50), was computed as a functioth@fdimensionality
of the normal distributions. In case of the t-test, a ridge awedded to the covariance
estimate, to avoid singularity (the ratio of largest to destleigenvalue was ensured to
be at most 2). In the second case, samples were drawn froribdiginsN (0, I) and
N(0, o2T) with different variance. The percentage of null rejectiores averaged over
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A Normal dist. having different means B Normal dist. having different variances
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Figure 4.3: Type Il performance of the various tests when separating two Gaussidhgest
level o = 0.05. A Gaussians have same variance and different mé&@saussians have same
mean and different variances.

20 o values logarithmically spaced from®’°! to 10. The t-test was not compared in
this case, since its output would have been irrelevant. lIesie plotted in Figure 4.3.

In the case of Gaussians with differing means, we observetds performs best
in low dimensions, however its performance is severely weakl when the number
of samples exceeds the number of dimensions. The perforan¢MD? M is com-
parable to the t-test for low sample sizes, and outperfothwtlaer methods for larger
sample sizes.

In the case of Gaussians of differing variance,fadl test performs best, followed
closely byMMD?. FR Wolf and (to a much greater exter R Smirnovboth have
difficulties in high dimensions, failing completely oncestdimensionality becomes
too great.

Data integration As a first application oMMD, we performed distribution testing
for data integration: the objective is to aggregate twosktkainto a single sample, with
the understanding that both original samples are genefiaterthe same distribution.
Clearly, it is important to check this last condition befor®geeding, or an analysis
could detect patterns in the new dataset that are causedlyimiog the two different

source distributions, and not by real-world phenomena.
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4.4 Experiments

We chose several real-world settings to perform this taskcempared microarray
data from microarray data from normal and tumor tissues IlfHesiatus), microarray
data from different subtypes of cancer (Subtype), and nelata recordings with and
without spike events (Neural Data | and I1). In all cases tiheedata sets have different
statistical properties, but the detection of these diffees is made difficult by the high
data dimensionality.

We applied our tests to these datasets in the following éastGiven two datasets
A and B, we either chose one sample from A and the other fronAt®ibutes =
differend; or both samples from either A or BA{tributes = samg We then repeated
this process up to 1200 times. Results are reported in Table\e see thabIMD?
is consistently the best test over all these data, alwayxtiet) differences where they
occurred while still getting a lower Type | error probablylihan any other test besides
the t-test andMIMD. However the latter two tests were much too conservativd, an
failed to detect the vast majority of differences (besidegte data set with the largest
sample size, i.e. Neural Data ).

Dataset Attr. MMD?2 B | MMD2 M | t-test| Wolf | Smir | Hall
Neural Data | | Same 96.5 96.5° | 100.0| 97.0| 95.0| 96.0
Different 0.0 0.0 | 42.0| 0.0| 10.0|49.0
Neural Data Il| Same 94.6 95.2° | 100.0| 95.0| 94.5| 96.0
Different 3.3 3.4° | 100.0f 0.8| 31.8| 5.9
Health status | Same 95.5 94.4| 100.0| 94.7| 96.1| 95.6
Different 1.0 0.8 100.0| 2.8| 44.0| 35.7
Subtype Same 99.1 96.4| 100.0| 94.6| 97.3| 96.5
Different 0.0 0.0| 100.0f, 0.0 28.4| 0.2

Table 4.1: Distribution testing for data integration on multivariate data. Numbers indicate the
percentage of repetitions for which the null hypothesis (p=q) was #&degivena = 0.05.
Sample size (dimension; repetitions of experiment): Neural | 4000 (63;;196ural 11 1000
(100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (2,118)10@pproximation to

4th moment used.
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Dataset | Attr. MMD?2 B | MMD?2 M | t-test| Wolf | Smir | Hall | Biau
BIO Same 93.8 94.8| 95.2| 90.3| 95.8| 95.3| 99.3
Different 17.2 176| 36.2| 17.2| 18.6| 179| 421
FOREST| Same 96.4 96.0| 97.4| 94.6| 99.8| 95.5| 100.0
Different 0.0 0.0 0.2 38| 0.0]501 0.0
CNUM Same 94.5 93.8| 94.0| 98.4| 97.5|91.2| 985
Different 2.7 25119.17| 225| 11.6| 79.1| 50.5
FOR10D | Same 94.0 94.0| 100.0| 93.5| 96.5| 97.0| 100.0
Different 0.0 0.0 0.0 00| 1.0|72.0/ 100.0

Table 4.2: Attribute matching on univariate (BIO, FOREST, CNUM) and multivariate data
(FOR10D). Numbers indicate the percentage of accepted null hypoilpesi$ pooled over
attributes.c« = 0.05. Sample size (dimension; attributes; repetitions of experiment): BIO 377
(1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); AOR 1000 (10; 2; 100).

Attribute matching Our experiments address automatic attribute matchingerGiv
two databases, we want to detect corresponding attributésel schemas of these
databases, based on their data-content (as a simple exawpl#atabases might have
respective fields Wage and Salary, which are assumed to levelosvia a subsam-
pling of a particular population, and we wish to automaticaletermine that both
Wage and Salary denote to the same underlying attribute)us¥ea two-sample test
on pairs of attributes from two databases to find correspan@airst This proce-
dure is also calledable matchingor tables from different databases. We performed
attribute matching as follows: first, the dataset D was s$pid two halves A and B.
Each of then attributes in A (and B, resp.) was then represented by itamtes in A
(resp. B). We then tested all pairs of attributes from A andyBiast each other, to find
the optimal assignment of attributds, ..., A,, from A to attributesB, ..., B, from
B. We assumed that A and B contained the same number of agtsibut

As a naive approach, one could assume that any possible fpatitributes might
correspond, and thus that every attributelafeeds to be tested against all the attributes

'Note that corresponding attributes may have differentitlistions in real-world databases. Hence,
schema matching cannot solely rely on distribution testiwgvanced approaches to schema matching
usingMMD as one key statistical test are a topic of current research.
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of B to find the optimal match. We report results for this naiverapph, aggregated
over all pairs of possible attribute matches, in Table 4.2 Wed three datasets: the
census income dataset from the UCI KDD archive (CNUM), thegimohomology
dataset from the 2004 KDD Cup (BI@ Caruana & . Joachi\&dzomtj,the forest
dataset from the UCI ML archive Blake & Merz (1998). For the fidataset, we
performed univariate matching of attributes (FOREST) andtinariate matching of
tables (FOR10D) from two different databases, where edul t@presents one type
of forest. Both our asymptotidIMD?-based tests perform as well as or better than
the alternatives, notably for CNUM, where the advantageIdfD? is large. The next
best alternatives are not consistently the same acrosatatl @.g. in BIO they aré/olf

or Hall, whereas in FOREST they aBmir, Biau, or the t-test. Thus\IMD? appears
to perform more consistently across the multiple dataséts. Friedman-Rafsky tests
do not always return a Type | error close to the design paramér instanceWolf

has a Type | error of 9.7% on the BIO dataset (on these d&t&D? has the joint best
Type Il error without compromising the designed Type | parfance).

4.5 Summary and discussion

We have established a simple statistical test for compavigdistributionsp andg.
The test statistic is based on the maximum deviation of tipeebation of a function
evaluated on each of the random variables, taken over aisuafficrich function class.
We do not require density estimates as an intermediate Gi@pmethod either outper-
forms competing methods, or is close to the best performitggreative. Finally, our
test was successfully used to compare distributions orhgtdpr which it is currently
the only option.
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Chapter 5

Relation of electrophysiological data to
state-of-the art V1 model
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RELATION OF ELECTROPHYSIOLOGICAL DATATO V1 MODEL

We present a cortical circuit model for a patch of primaryuascortex (V1), that is
based on detailed anatomical data and adapted, whereveilgest the physiology
of macaque monkeys. The model is complemented by a standeed for the retina
and the LGN. Parameters of the model are fitted to an intekespiterval distribution
(including higher order statistics) of the experimentatalasingMMD as a diver-
gence of distributions. Stimulating both, the monkey ardcircuit model, with the
same semi-natural movie stimulus the statistics of firingveayg of the circuit model is
compared with multi-electrode data simultaneously recdrilem areas V1 and LGN.
We find that the model reasonable resembles electrophggialodata in its firing
statistics. However, a direct comparison of model spikengd0 recorded electrodes
shows only weak correlation, suggesting that current st&tiv@-art network models
do not capture all computational aspects of V1 under natoralie stimulation.

5.1 Introduction

Processing of visual information in the primary visual exrfV1) has been a subject of
extensive research. Nevertheless, many aspects of itsutatigmal role and the mech-
anisms underlying it remain poorly understobd (Olshauséietd %2005)) Numerical
simulations of detailed biophysical models provide powkidols for investigating the
computational function of cortical microcircuits. In geak approaches along this line
attempt to incorporate the known anatomy and physiologyhefgrimary visual cor-
tex to replicate experimental data on emergent functior@erties as for instance the
structure of preferred orientation malJDs (Ador|ahal{ 1999); Bartsch & van Hem-
men (2001); Blumenfelét al. (2006)), direction selectivity maps (Ernstal. (2001);
Wenischet al. (2005)) and simple and complex ce‘ls (Chaetal. (1999); Taocet all
M) mlaa@ﬁ W))

When trying to understand aspects of a complex system, suble @asimary visual
system, it is necessary and inevitable to simplify and spieei the model to aspects
under consideration. Here we take a different approachhah we want to analyze
in what sense a state-of-the-art model of the early visutivipay, is compatible with
electrophysiological recordings from the monkey.

Network models incorporating many anatomical details atical systems still
contain approximations and abstractions in respect toghksystem. One aspect not
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captured in common connectionists models is the interacifd_.FP and spikes (see
Chapter 2), which nevertheless seem to be important for isrencoding (see Chap-
ter/3). Thus it is necessary but usually difficult to benchktiie “realisticness” of
such network models. Here we develop a tool for optimizings@aspect of thetatis-
tics of spiking in a few chosen parameters in comparison to reta datained from
electrophysiological recordings. This method also ermbie systematic evaluation
of components of the model which are necessary to achievasa ohatch to realistic
dynamics. We exemplary fit a detailed network model in a fewarparameters and
characterize the spike statistics of the resulting optaimodel in detail. We then try
to pin down statistical aspects of the real data which aremmdeled by our generic
model.

For this purpose we develop a model of a patch of V1 with an afezb mn?
cortical surface comprising several hypercolumns. Theehzdbased on the cortical
microcircuit model described in Haeusler & Ma&ss (2007) itin@lements experimen-
tal data fron% Thomson & Bannister (2003) on lamina-specitrection probabilities
and connection strengths between excitatory and inhipiv@urons of three cortical
layers and data fro% Markraet al. (1998) andi Guptat al. ZOOd)) regarding stereo-
typical dynamic properties (such as paired pulse depressid paired pulse facilita-
tion) of synaptic connections between excitatory and indiip cortical neurons. We
here extend this model laterally and incorporate the anatrparticularities of V1 of
macaques. Due to its lateral extend it will be possible tduithe lateral (long-range)
connections, which are thought of to be essential for ingrarcomputational func-
tions of V1 such as spatial integration of extra-classieaéptive field context (Gilbert
et al. (1996)).

Furthermore, in contrast Eo Haeusler & MaHss (i007), we bepdcitly modeled
the output of the lateral geniculate nucleus (LGN) in reg@io photoreceptor activity
on the retina evoked by visual stimuli. For the retina andLt@&& we used the model
described iA‘I Dong & Ati&ﬁ (19@5) which is based on the assuwmnghat in the visual
system natural inputs are decorrelated spatially at thed Ethe retina and temporally
in the LGN so that signals that arrive in the visual cortex @meoded in an efficient
form. This model accounts for lagged and non-lagged cehlschvhave been observed
experimentally‘(Humphrey & Wellu (198‘ga,!£); Mastronaddi@S})). We also incor-
porated atonic LGN response and a tendency to produce awsgdspiking output for
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high firing rates (as opposed to a pure Poisson spikes tizasgd on a more recently
suggested phenomenological model of the (cat) LbN (Gam%deQS)).

Using the thalamic input model together with the V1 model, arve in principle
able to present the same semi-natural movie stimulus to tteemwhich were used
during experiment in our available dataset from V1 in maeaouonkeys. Thus, con-
clusively, we try to directly compare model output with theasured spikes in the
experiment.

5.2 Methods

5.2.1 Electrophysiological recordings

For details on experimental setup we refer to Chapter 2 (@g&i2.1) and Chapter 3
(Section 3.2.1), where it is described in detail. In this Ghapve used V1 and LGN
data from 6 sessions (4 monkeys) of Chapter 2 (“a98nm5”, “af®n “d04nm1”,
“d04nm2”, “c98nm1”, “I97nm1”). Briefly, in all sessions adantical semi-natural
movie with about 5 minutes duration was shown repetitivéata was recorded us-
ing multi-electrodes arrays penetrating V1 (and simultarséy LGN in 3 sessions) of
anesthetized macaque.

5.2.1.1 Spike extraction

As in Chapter 2, spike times are detected by applying a thtedothe high-pass
filtered 7 kHz signal described abov&'(order Butterworth, cutoff frequency 500 Hz).
However, in this chapter the threshold was set to a high valuetimes the standard
deviationo of the “noise component” of the high-pass filtered signalerBfore only
very prominent spikes, or spikes originating from neuroesy\close to the electrode
tip, are likely to be present in the spike trains. Becausetmexordings were done
with single tip electrodes we do not employ any kind of spi@giag.

5.2.2 Model

In this section we describe a biological realistic V1 modeVeloped for compari-
son of electrophysiological recordings from macaque. Hststs of an input model
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(equivalent to retina and thalamus) and a V1 model for a patatortex, receiving
and processing the input. In the following we will first deberthe V1 model and
subsequently the input model in detail.

5.2.2.1 V1 Model

We developed a biological realistic model of a small patcivVdfbased on various
experimental data. The core of this model is similar to a rhofl@ generic cortical
microcircuit suggested &)v Haeusler & Maaiss (iOO?). The rtmﬁlﬂaeusler & Maa&lss
(2007) consisted of three layers with neurons assigned/es 3, layer 4 and layer 5.
Each layer contained a population of excitatory neuronsagpopulation of inhibitory
neurons. Inter-layer connectivity (probabilities anasgth) were chosen according to
experimental data assembled in Thomson & BanniEEI(ZOOC’,).

In this Chapter this generic model was extended to match theoarcal partic-
ularities of the V1 cortex of macaques. However, since ailéetalescription of the
layer specific connectivity structure is not available foormkeys to our knowledge,
we decided to use the same data derived from cat cortex glitesnson & Bannis-
ter (2003)). Although there exist differences, the primapnnectivity structure in
macaque is similar to that of the cLat (Calla%by (1998)). Irtipalar, if one identifies
layer 2/3 and 4 in cat with 2-4B and 4C in macaque, respegtitte® major geniculate
input in both species first reaches layer 4C, is projectedyter|l2-4B, which in turn
projects it further to layer 5 (and layer 6 via layer 5), whéedback connections are
made to layers 2-4 (Sée Calla\*/ay (1998) for a review). Thusguie connectivity
data from cat seems to be a first but reasonable approximation

Three layer population of neurons (excitatory and inhilyiton a ratio of 4:1,
Beaulieuet al. (1992); Markramet al. (2004)) were modeled separately (and spaced
on a cuboid grid). As ih Haeusler & Maa%s (2007), we used cotaahee based single
compartment neuron models. However, due to a consideralteiry computational
speed we employed a simpler neuron model suggesﬂed b WN{&%&) which can
be fitted to a wide range of firing dynamics (lzhikevich (2008)Ve randomly draw
the parameters for each neuron in the network from withinkibends provided by
Izhikevichet al{ dZOOJl). In this parameter range the excitatory pool cossita mix-
ture of regular spiking, intrinsically bursting, and cleaihg cells, with a bias to regular
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spiking cells. The inhibitory pool of neurons comprised fgsking and low-threshold
spiking cells. Thus individual neurons and hence firing bédra within our model
will have richer and more realistic diversity than‘ in Haeusk Maasls‘(ZOO?), where
all neuron had fixed parameter setting. The scale of synapii¢ conductances will
be optimized to match firing statistics of electrophysidtadjdata (see Section 5.2.3).
In addition to synaptic input from fellow neurons in the netk; each neuron re-
ceives synaptic background noise reflecting the bombartofesynaptic inputs from
a large number of more distal neurons which causes a depat@mn of the mem-

brane potential and a lower input resistance commonly mefieto as “high conduc-
tance state’~ (Destexlet al. 2001!5)). Short term synaptic dynamics was implemented
according té) Markranet al\ 199%), with synaptic parameters chosen £s in Maaag

(2002) to fit data from microcircuits in rat somatosensorgteo(based on G mal[
2000) antﬁ Markranet al. 199%)). For details we refer to Haeusler & Maass (2007).
In contrast t& Haeusler & Maags (2(507), we set the relativewsrinof neurons
per layer to 33%. These numbers corresponds to experiméatalfrom macaques
dBeauIieuet al{ 41992); O’Kusky & Colonnier‘(lgézﬂ; Tyleet al{ 41998)), although
we slightly adjusted the relative amount of neurons cong&orehe experimental val-

ues (where layer 4 has about a third more neurons), becausaazlel neglects the
magnocellular and koniocellular pathways in favor of thevpaellular pathway (Call-
away ‘(199%)). The three layers of the model can be identifighl kayers 2-4B, 4@
and 5-6. To avoid confusion in analog;) to Haeusler & MeJasQ'(ZWe will neverthe-
less call them 2/3, 4 and 5 in the following text.

In macaques each of our three layers would contain apprdglyna0000 neurons
under a surface area of 1 n%rdBeaulieuet al\ 419932)). In our model we neglected
that neuron density varies with layer about 1.5 f(£|d (Beawét all 41992)) and in-
stead assumed that positions are uniformly distributesliggnout the cortex. Thus, for
simplicity, we positioned all neurons on a cuboid grid witkefil grid spacings. Using
the true neuron density, e.g. for layer 2/3, the grid spawingld amount t&0um in

all directions. Because simulating such a dense networkdmake too much time,
we diluted the neuron density by increasing the lateral gpdcing to30xm and the
vertical spacing to abo@)0um (see Results Section 5.3).

Note that sublaminar organization, such as the 2/3 blobsirsedblob regions
dCaIIawa¢ ‘(199%)) are neglected for simplicity and for theklaf precise data. How-
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ever, as described in the following sections, the modelainatl a realistic thalamic
input, smooth orientation map and patchy long-range cdiorecin the superficial
layer.

Lateral connectivity structure Whereas the generic microcircuit model of Haeusler
& Maass ‘(2007) was restricted to a few 16 with uniform connectivity per layer
and neuron type, we here extended the model laterally to ttier f several mil-
limeters. Thus connection probabilities in our model depen lateral distance. For
intra-cortical connections we generally used a bell-sHg@aussian) probability dis-
tribution for determining the lateral extend. The standdediation of the Gaussian
was set ta200 um for excitatory neuronslo (Blasdet al. 41985); Buzast al. d2006);
Lundet al{ 200%%)) and somewhat smaller, namély um, for inhibitory neurons to in-
corporate the occurrence of extremely narrow inhibitorpdigic and axonal spreads
observed 70 um, Lundet all 42003)). Arborization of excitatory neurons in layer 5
seems to be wider and more diffuse and has a spread of moré&@@gm laterally
from the somaJ (Blasdedt al\ 41985)). Thus for these connections we set the standard
deviation to 30@m. Note that the value for the standard deviation is aboutthal
expected maximal extend of 95% of the arborizations.

To ensure consistency with the inter-layer connectivitiadat Thomson & Ban-
nister (2003), which were obtained from cortical slicesmitend 100m thickness, we
scaled the Gaussian profile such that the peak probabilitggieonds to the experi-
mentally measured connection probabilities. Therefoeectnnectivity data is locally
preserved. All lateral connections are subject to toroaindary conditions yielding
positional independence in synaptic drive throughout siberal extend of the circuit.

Patchy lateral long-range connections In both cat and macaque, many pyramidal
cells in layer 2/3 of the striate cortex (and elsewhere irtecofLundet al. (2003)))
send characteristic long-range projections targetingydity 80% excitatory and 20%
inhibitory cells (McGuireet al. (1991)) which are up to 6 mm and more away (Buzas
etal.(2006); Gilbertet al.(1996); Lundet al.(2003)). Moreover, targeted neurons tend
to have similar feature preference as its origin, resuliimgatchy connections linking
similar preferred orientation£ (Buzas al\ dZOOé); Gilbertet al\ 419945)). Combining
anatomical reconstruction of neurons and optical imagingrientation maps, Buzas
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etal. ,200%) proposed a formula for the button dengityf a typical layer 2/3 pyramidal
cell:

2 2

p(r,A¢) = Z (6_%% +me 23 e“C°S2(A¢>u)) (5.1)

Herer is the distance and\¢ the difference of preferred orientation of the pre- and
postsynaptic neurons. Parametelis the scaling of importance between a local ori-
entation independent and a long-range orientation deperidem. The orientation
dependent term is a product between a Gaussian and a von Mstgbution, and
accounts for the higher likelihood of connecting neuronthvgreferred orientation
difference neay: degree. Standard deviations ando, regulate the spatial width of
the non-oriented and oriented term, respectively. Pammedignifies the “peakiness”
of the density on the orientation axig.is a normalization constant.

If one assumes that in first approximation dendrites (or\edently axons) have
no spatial extend (i.e. they collapse to a point at the posiif the soma), the button
density defined by Eq. 5.1 can be seen as an estimate for tinection probability
of a neuron to neurons at distancbaving preferred orientation differendgp. Since
we defined preferred orientation in a hard-wired manner vigehted” input connec-
tions (see Section 5.2.2.3) one can readily apply Eq. 5.1Herateral connections
in layer 2/3. Thus, we applied Eg. 5.1 to projections fromigtory cells targeting
excitatory and inhibitory ceII% (McGuiret al\ 41991)).

Parameters were set as follows. For the local non-oriergad tve tooks;, =
200pm, as for the connections between other layers (see abch@uzlaset all (2006)
values fory jitter around zero degree for individual cells. We therefsetu, = 0° im-
plicating that the connection probability is highest far-griented cells. We set other
parameters to values in between the two populations dﬂbb’ﬂ Buzast al. dzooé),

but in the vicinity of their population 1, where the expermely mapped cortical sur-
face region is bigger. Thus we set = 1000um, x = 1, andm = 10. As before,

the connection probability was scaled according td the Swm& Bannistér‘ (2003)
data (by settingZ to appropriate values). Thus, locally, i.e. for a neuronhaf $ame
lateral position (and orientation preference), such asuaamelocated in the same layer
beneath or above the pre-synaptic neuron, the connectabapilities are preserved.
However, the weight distribution of the long-range conmattis not constraint by
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Thomson & Bannist& (2003). Therefore we obtained the mé#mecsynaptic weight
distribution by fitting the firing statistics to experimehtiata (see Section 5.2.3).

Distance dependent synaptic delay Synaptic delays differ for inhibitory and exci-
tatory neurons and were set according to measuremet%ts by Gual. dZOO&)) (asin
Haeusler & Maasslo (2007)). These delays stem from molecuteegses of synaptic
transmission. In addition, a second delay originating ffonte spike propagation ve-
locity of the fibers was included. This delay is dependenth@n(Euclidean) distance
of pre- and post-synaptic neurorls. Girm’dal\ dZOOi) measured spike propagation
orthodromically as well as antidromically and found a medianduction velocity of
0.3 m/s for the upper half and 1 m/s for the lower half of V1 in masaq Thus for
each excitatory synapse in layer 2/3 we sampled velocitynfeoGaussian distribu-
tion with mean).3 m/s and standard deviatiéxb m/s (with enforced lower and upper
bounds 0.1 and 5 m/s, respectively). For the other layergdwdion velocities were
drawn from a Gaussian with meamm/s and standard deviatié®9 m/s (with bounds
as before). Due to myelination, conduction velocities dilaitory fibers are generally
higher than for excitatory cellls (Thomson & Bannis{er (jDOIhus for all inhibitory
cells we sampled velocities from a distribution with a mead atandard deviation
twice as high as for excitatory neurons in the deep layers.

5.2.2.2 Input model

In the available data set, recordings were done while mawagched an semi-natural
movie stimulus of several minutes duration. Although ourdelong effort was con-
centrated on the V1 model, to successfully compare thesewd#t the model, one
also needs a sulfficiently realistic transformation of matisulus to (V1 input) spike
trains. Therefore retina and lateral geniculate nucledsN). were modeled accord-
ing to Dong & AticQ %1995) as a spatio-temporal filter bankitonlinearities, which
seems to be a good compromise between simplicity and reéBsizere®t al.(1998)).

The filter bank converted time varying input signals on theee such as movies, into
firing rates of LGN neurons. From these firing rates V1 inpukejrains were gen-
erated. We neglected for simplicity that the ganglion cglfsically react to color
opponency rather than to pure luminance differenkes (Rﬁraﬂ 419841)). Thus all
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color information from the movie was converted to gray sqaier to application to
the input model.

Retina model The two-dimensional retinal inputs (movie frames) wereféd by a
“Mexican hat” (difference of Gaussians) spatial filﬂer (R Atick (1995); Enroth-
Cugell & Robson‘ (19665; Rodieck (1965)). Filter sizes (désieg the receptive fields
of ganglion cells) were adapted to the geometry of parvatzlicells of macaque,
where the standard deviations of the Gaussian for centesanound was estimated to
Ocenter = (0.0177°+40.00196€) andosurround = 6.670conter t €CCENLriCityE, respectively
(in visual degrees; estimated from Figure 4 a and b in Croneiafl&n ‘(199%)). After
convolution of the stimulus luminance portrait with theseriels (yieldingS et and
Ssurround ), the response of a retinal on-cell at visual field posittoran be described

by

RON(’F) = C(T) [Scenter(r) - wssurround(r)]_t,_ (52)

Following‘Croner & Kaplan‘ (19§5) we set the ratio of centerdogundw = 0.642.
The positive parts of the center and surround interactiodi¢ated by the brackets
[...]+) were assigned to the response of on-cells and analogdesgbisolute value of
the negative part to the response off-célls (Dong & At‘ickQELB. For simplicity and in
accordance with the established Difference-of-Gaussiadei we assumed that the
origins of the center and surround summation fields are idantalthough a recent
study suggests that there might be an offset between ﬂherm(zﬁo& Livinqstoné
(2006)

Applying the Difference-of-Gaussians model to the lumieaf a stimulus results
in a guantity called “contrast gain” (Croner & Kaplan (199B)jroth-Cugell & Rob-
son ‘(1966); Rodiecll{ (1965)). To calculate the firing rate afigjion cells one has to
multiply the “contrast gain” with théocal contrast”(r) (as done in Eq. 5/2), if one ne-
glects non-linear saturation in the high contrast regimacadlity is important because
the concept of a global contrast, easily defined for fullefigfating stimuli commonly
used in_experiments, is not applicable for real world imaaed movies (Tadmor &
Tolhurst kZOOb)). FoIIowinb Tadmor & TO|hUJ'~lbt (2000) weiestted the local contrast
using the same kernels as

_ |Scenter(r) - Ssurround(r)l
Scenter (T) + Ssurround (T)

C(r) (5.3)

106



5.2 Methods

where we additionally set the contrast to be zero in the chdar&iness. Note that ap-
plying Eq. 5.3 results in a respon&g(r), which is sparser than for a constant global
contrast, since the response is now quadratic in the centéisarround luminance
difference (see Eq. 5.2).

LGN model The retinal output is filtered by the LGN model using a tempkeanel.
Our temporal kernel combines a phasic (taken ﬁrom Dong &NKQQ%)) and a tonic
component (as ih Gazeres al. (1998)), i.e. knan = Ephasic + Ktonic- 1T IS for non-
negative times

Ephasic(t) =t (1 — mw.t) exp(—2mw,t) (5.4)

and
Ktonic(t) = A exp(—t/T)/T. (5.5)

Parameterd = 0.3 is the fraction of tonic activation (in respect to the peakgr

rate) for a given stimulus integrated over a time scale ef 15 ms. Parameten, =

5.5 sec™! defines the shape of the phasic kerhel (Dong & Aﬂick (i995)).
Analogously to the retina, the positive part and the absolatue of the negative

part of the temporal convolution were assigned to laggels$ eeld non-lagged cells,
respectively. Altogether, there are four different timerying rate outputs, i.e. that of
any combination of non-lagged or lagged cells in the LGN wither on- or off-cells
from the retina‘(Dong & Aticu(19§$5)). Following Gazeresal\ deQé), a so-called
“switching Gamma renewal process” used these time-vamabes to generate spike
trains. This process, which was suggested to fit experirheata from cat LGN X-
cells kGazereet all 1998)), adopts a higher spike time regularity for high inpies

(> 30 Hz; regularity parameter = 5) and switches to a Poisson process for low rates
(< 30 Hz). Spontaneous background activity of each LGN input oewvas set to a
low value of(0.15 Hz. The peak LGN spike ratg¢, .. was adjusted to achieve a mean
firing rate of aboutr Hz under movie stimulation, when the four input channels are
combined. Th& Hz mean rate was estimated from our electrophysiological filam
macaque monkey. Applying a typical 50 seconds movie seatieriound that a mean
rate of 7 Hz was achieved fof,... = 250 Hz. The peak response would be evoked
by a dot of highest contrast filling the center region of a dimmgcell with optimal
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duration. This value is in good agreement v{/ith Gazeted. (1998), who report peak
rates in the range &i0 to 400 Hz.

Input connectivity to V1  The visual field is retinotopically arranged on the cortical
surface. However, while there exists one retinal ganglieth ger LGN cell corre-
sponding to the same visual field position at all eccentegitn macaque, there is a
considerable magnification in density of cortical neuran¥1 per degree visual field
dSchein &de Monasteri&) (198'})' Tootel aI.41982)). Comparing several earlier stud-
ies.‘ Schein & de MonasteriL) (1987) estimated the corticgmifecation factor (CMF)

at eccentricitye to be (in mm cortex per degree visual field)

12.2
MF = . .
¢ e+0.94 (5-6)

Note that the definition of the cortical magnification fac{&q. 5.6) is very conve-
nient: for a fixed eccentricity and distance between adjawsenrons (grid spacing),
one immediately gets the lateral extend of the network neéaleover a given visual
field size.

The main input from LGN parvocellular pathway is projectedoi layer 4.
There is still an ongoing debate to which extent orientediirghape the orientation
selectivity exhibited by neurons in primary visual cortexto what extent local cor-
tical processing is involved (sée Teich & dﬁn (2b06) for@ew). It seems that in
macaques, orientation selectivity is thought to arise ftbminteraction of cells with
gradually shifted input characteristics across the sulslagof the layer 4C (Callaway
41998); Lundet al{ dzooé)), whereas the inputs to a single cell might not benteie
in macaques as suggested for the kat (Hubel & Wiesel (19Hyvever, since we
did not model sublaminas, we simplified the circuitry by néveless assuming that
input connections to each neurons generate orientationgsinThis not only includes
orientation selectivity in our model but allows to defineemtation maps in a straight-
forward “hard-wired” manner (see Section 5.2/2.3).

Therefore thalamic input connection probability to a celihe circuit was modeled
as an oriented Gabor function, i.e. a Gaussian multiplie@ lopsine function. The
height of the Gabor function corresponds to the connectrobability of LGN neu-
rons with a cortical cell positioned at the cortical equaralposition of the origin of the
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Gabor patch in the visual field. Negative and positive regicorrespond to the con-
nection probabilities of LGN on- and off-response cellspectively. Lagged and non-
lagged cells connected equally likely to cortical cellsliéwing Troyeret al. 199%),

we expressed the Gabor function in parameters defining thiauof subregions,
the aspect ratio of width and height of the Gaussian envelpf®e orientationy, the
offset of the cosine), and the frequency of the cosirfe From these parameters one
calculates the standard deviation of the Gaussian envakfsee Troyeet al. 199&))

1 ng 0
T 4.2448f (0 a) (-7)

while using coordinates rotated lpy The advantage of using these parameters is that
the frequency implicitly defines the size of the Gabor pashthe number of subre-
gions is kept constant). Therefore the much smaller reeepigelds of macaque V1

as compared to the cat, can be easily included in this framewe used data from
Bredfeldt & Ringach‘(ZOdZ) and chose the frequeridyom a Gaussian distribution
with mean and standard deviati6rirdeg ™" and2.1deg™!, respectively (and enforc-
ing a minimum and maximum df.7deg™ " and8deg ', respectively). Phase shift

and the number of subregions were drawn from uniform distributions in the ranges
(1.85,2.65), and(0, 27) (from cat as i$ Troyeet al. 199%)).

To incorporate the smooth maps for the preferred oriematicand orientation
preference depending on cortical positian(see Section 5.2.2.3) we set= ¢(u) and
the aspect ratio to(u) = (amax — Gmin) ¢(1) + amin, Where we used values reported by
Troyeret al\ 41998) for the bounds,;;, = 3.8 anda,,., = 4.54 for excitatory neurons,
and for the generally less well tuned inhibitory neurapg, = 1.4 anda ., = 2.

N

D)

Lastly, the overall connection probability, defined by thab@r functions, was
scaled to achieve an average number of input synapgé fr both excitatory and
inhibitory neurons, which is the estimated number of paellotar afferent connec-

tion per cortical neuron in layer 4C of macaqu‘es (Pettral. 41994)). There is evi-
dence that layer 6 receives occasional collaterals of thd Irfput to layer 4 (Callaway
1998)). Thus we set the connection probability to excitateurons of layer 5 of our
model (comprising layer 5 of 6 in the macaque nomenclatwé)0lo of that of the

input to layer 4. These values are in good agreement with #ét@ flom Binzegger
et al. 22004) estimated from cat. In macaques, layer 2/3 receingskoniocellular
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input kCaIIawav‘(1998)). As we have omitted the koniocellgathway, layer 2/3 of

our model does not receive any thalamic input.

Due to finite conduction velocities of the fibers, signalsrirthe retina reach V1

with a characteristic delay of abos® ms kMaunsert al. 41999)). As the retina and
LGN model did not include any delay so far, we sampled theydefdhe LGN input
synapses according from a Gaussian distribution with n3@¢ans and standard devi-
ation5 ms (and additionally enforced delays beldwms and abové0 ms to a value
uniformly in the latter range). These values were taken fféigure 3 of Maunsell
et al.(1999).

Top-down connections Besides thalamic input V1 receives multiple feedback con-

nections from extra striate corticeLs (Felleman & Es%en 1)PSEspecially from V2,
where the feedback connections are almost as numerous &settferward connec-
tions (se«ia Sincich & HOHM'I (2005) for a review). Feedbaakgmtions predominantly
project to targets in the upper layers but also to Iayelr 5 KRod & Virqa{ t1989);
‘Sincich & Horto$ ‘(200%)), although altogether there idditknown about the exact
(sublaminar) targets of these feedback projectibns (8n&i Horton }20045)). As our

model is restricted to V1 we model these projections as aitiaddl input to layers 2/3

and 5. This second input stream has (arbitrarily) the samebeu of cells as the first
(LGN) input stream and is aligned on a virtual grid of the sawent (in mm) as the
V1 model. Connections from the input cells are establishedew targets by a Gaus-

sian probability profile in their lateral distance wiZh0;m standard deviation (Lund

et al. ({;OS)). The Gaussian connectivity was scaled to yield & peanection prob-
ability of 10% for layer 2/3 and 5% for layer 5. Only excitaganeurons receive the
second input stream. In the simulations each input celleanRoisson spikes train of
step-wise constant rates estimated from our data (seeo8écf.3.1). Synaptic delays
are sampled from a Gaussian with mean 1.25 ms and standaadidel.53 ms (with
bounds 0.5 ms and 5 ms). These values correspond to delagsireéantidromically
for feedback connections from \AZ (Giraed all 42001)).
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5.2.2.3 Orientation map

It is well established that orientation preference andofiéatures (such as visual field
position, ocular dominance, or direction preference) fomertwined maps, where
neighboring neurons tend to respond to similar feat&rem Wiese‘l ‘(1977); Ober-
mayer & Blasdel‘ (1993)).

We employed Kohonen's Self-Organizing Map algoritl%m (Kmm‘(198b)) for the
creation of realistic orientation maps across corticafasg. An orientation attribute
for each neuron is necessary for defining thalamic inputaigdisas for preferred orien-
tation dependent patchy lateral long-range connectieesdbove). The algorithm has
been used to generate feature maps which very well resemittieat measured feature
maps in overall appearance as well as e.g. in the structureafrrence of pinwheels
Brockmannet al. (1997); Erwinet al. (1995); Obermayer & Blasdel (1993); Ober-
mayeret al. deQd), 199&)). Basically, the algorithm tries to map a lomensional
manifold (a horizontal sheet of neurons) to a high dimeraié@ature space while en-
suring that neighboring points on the manifold exhibit $anfeature preference. Let
z = (z,y,qcos(2¢), qsin(2¢))T define a feature vector, whete< z,y < k are the
positions in visual spacé), < ¢ < 1 the orientation preference (or tuning strength)
and0 < ¢ < 7 the preferred orientation (we do not model ocular domindresause
our V1 model is essentially one-eyed). If one uses the lawedisional variant of
the learning ruI(—J (Erwiret all 199%):’ Obermayer & BIasdeLI (19‘93)), one attributes to
each point on the manifold, i.e. each neurons having coiDasurface coordinates
u = (uy,u2)T, its current “optimal” feature vectow (u). Relations between neurons
andv are enforced by the neighborhood functiofu, v) = exp (— '“2;7;'2>. With that
the weight update for a neurancan be written as

Aw(v) = ah(uy,v) (z — w(uy)) . (5.8)

One notes that in each learning step the neuroshowing maximal response to the
current inputz is updated in the direction of the input, weighted by a laagmiate

«. Depending on theortical distance to the maximally activated neuron, the pre-
ferred features of the remainder of the neurons will be updiab a lesser extend in
the same direction (mediated by the neighborhood functibmhis rule we took the
maximally activated neuron to be the nearest in featureespadhe current input,
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u, = argmin |w(u) — z|. We sampled the input features from uniform distribution
(within the above bounds}: regulates the hierarchy between different features (Ober-
mayeret al. 419953)) and was set tb = 5. If one starts from a retinotopic initial
condition, a high value fok ensures that cortical position corresponds to visual space
in an approximate one-to-one map. The characteristic lescgiled was set to match
the experimental observed correlation length in corticerdation maps (or pinwheel
center distance) af,;,, = 660um &Obermayer & Blasde‘l (1993)). We used the approx-
imate formulas = vk d,;, /D /8, whereD denotes the lateral extent of our V1 model.
See Figure Fig. 5/1 C for a typical orientation map generhtethis algorithm.

5.2.3 Fitting parameters of the V1 model

Many parameters such as most synaptic weight scalingsthieemean peak conduc-
tance of synaptic weight distributions of the intra-lantipaojections, are constraint
by the literature (see Section 5.2.2). However, other patars are not constraint and
therefore have to be adjusted. For example, the overalfginaeight depends on the
number of synapses received by each neuron, and has to édleneffect that there
are less neurons per volume in the V1 model than in realitythénfollowing we at-
tempted to estimate free parameters by fitting the staistiextracellularly recorded
spike data.

Comparing model circuit dynamics to the electrophysiolagrecordings is diffi-
cult for various reasons. For one, although detailed, oudehoircuit is still lacking
many aspects of the cortex, which nevertheless contriloutieet recorded signal, e.qg.
the cortical spatial arrangement in gyri and sulci, bioptgisproperties of the tissue,
3-D structure of the axonal and dendritic tree, or a high terajpand spatial dynamic
of current sources and sinlLs (K(N:h (20&)4); Nunez & Shriraix*akQOOG)). Conversely,
spike trains do not constrain many aspects of the model rasdtance the exact layer
position of the electrodes or the neuron type recorded frimmilgitory or excitatory)
as well as its synaptic targets and weights etc are unknown.

Even if one accepts the simplistic few of an abstract cirmwidel, it is not clear
which spikes of the circuit should be compared with the rdedrsignal. Most impor-
tantly, the recordings are made with extracellularly agglsingle tip electrodes, and
thus necessarily record from multiple neurons simultasgo(see also Chapter 2 for
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Figure 5.1: Long-range patchy connectivity of an example neuron implemented in a model
circuit having165 x 165 x 3 neurons in layer 2/3 positioned on a cuboid grid with a spacing of
25 um. (Note that these dimensions are different from that used in the simulafitine Be-

sults Section 5.3) andB: Conditional probability that the neuron (marked with a white square
in the center of plot C) is connected to a neuron having lateral distaocerientation selectiv-

ity ¢, respectively. Connection probability to a post-synaptic neuron atatmal distance and

same orientation preference was scaled to experimentaldata@.24; Thomson & Bannistér

(2003)). A: Blue and red curves show the connection probabilities for neuronshwiage
aligned or orthogonal preferred orientation to the pre-synaptic neuespectively.C: Con-
nections established according to the probability distributions for a prpignaeuron in the
origin of the circuit (white square). Small white dots represent lateratipas of post-synaptic
neurons. Colors code for orientation tuning of each neuron (gerkebgt@ Kohonen's Self-
organizing map). Conditional connection probability is indicated by contoasli®ne notes
that the connection probability rises for regions with similar orientation as thesymaptic
neuron (abou90°) thereby generating a patchy appearance. Only the orientated (lngg)ra
part of Egl 5.1 (second term) is used for establishing connection in thism&alot. However,
because of the high weighting facter = 10 (see Eq. 5.1) only very few local connection will
be added when considering both terms in the simulations. The orientation mitipraailty
determines the orientation of thalamic input connections (see Methods Se&iar2h
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a detailed discussion). It has been theoretically estichdtat the number of possi-
ble neurons contributing to the measured spike train is D@0 and higher (Henze
et al. (2000)). However, in practice when using tetrodes, wheliabile unit sorting

is possible, one is typically able to clearly distinguisheavf typically up to five or

six, neuron clusters (see also Chapter 3). To restrict odysisao as few neurons as
possible, we set the threshold for spikes detections tolavafye, namely 7 SD of the
noise component (see Methods Section 5.2.1.1). Thus tke Bpins contained only
prominent spikes, which most likely originated from newsamthe immediate vicinity

of the electrode tip. Nevertheless, if we would comparelsimgurons of the model
directly to the extracellular recorded spike trains, firnages would be overestimated.

Therefore we add the number of neurons comprised in a sitegérede channel to the
list of parameters fitted (see below). By doing this we obtaurch better agreement
of the inter-spike interval distributions between moded aecordings.

5.2.3.1 Fitting the relative strength of the thalamic and t@-down inputs

In recorded spike trains, the mean firing rate of multiplal&i(5 min duration) across
monkeys and V1 electrode channeldis7 + 1.7 Hz (mean+ standard error of the
mean) during movie stimulation ar$d9 + 1.6 Hz during spontaneous activity (blank
screen). Thus one could state that due to the thalamic ilmguiean firing rate of
the circuit increases by aboRtHz or enhances it by aboQt %. From simultaneous
extracellular recordings in LGN (see Methods), we analafjofind a mean firing rate
of 7.1 + 2.9 Hz during visual stimulation and.4 + 2.1 Hz during absence of visual
stimulation. Hence in LGN the movie stimulus increases teamfiring rate by about
60 % as compared to spontaneous activity.

We used these values for determining the synaptic input hteigaling and the
overall weight scaling of inter-laminar connections, tlee overall scaling of the peak
conductances, in the following manner. In the absened afiter-cortical connections,
the weight scaling of the two input streams were set to vadiobgeving closest match
to a given target mean firing rate,,.. in each neuron population (minimal Euclidean
distance). Assuming that the main input drive to V1 (durirspel stimulation) is from
the thalamus we set the target mean rate for layer 4 to 4 Hzayed 2/3 and layer 5 to
1 Hz. Since each layer consisted of same amounts of neurdmgipots then drive the
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whole model to a mean firing rate of 2 Hz which corresponds ecdittivity increase
seen during visual stimulation in our experimental data. this fit the thalamic input
resembled the input during movie stimulation. More speailyc we applied a typical
10 sec segment of the movie stimulus to our LGN model, whicteggted spike trains
as described above (Section 5.2.2.2).

Since no data from V2 or higher areas was simultaneouslydedop the top-down
input stream was approximated by the firing statistics of ¥@imns as follows. Each
top-down input neuron was independently set to emit a Poispike train with a mean
rate drawn from a mean rate distribution estimated from taetephysiological data
of V1 under spontaneous activity condition. To allow forerahanges, the duration
of the constant rate periods for each individual input nausodrawn from a second
Poisson distribution with mean o5 Hz corresponding to the 2 s interval used for
the rate estimation on electrophysiological data. Not¢ ithéhis approximation the
top-down inputs were therefore not modulated by the stisiaglod merely act as a
background noise source to V1 neurons.

5.2.3.2 Fitting the average weight of all intra-cortical piojections and the rela-
tive weight of lateral long-range synapses

Having established the synapse strength of the inputs,wbalb weight scale of all
recurrent (inter and intra-laminar) synapses are to berchéted. Additionally, we
have to establish the mean of the synaptic weight distobufor the superficial long-
range connections, because the measuremel%ts of Thomsomn&sﬁ ‘(2003) are
restricted to thin cortical slices and therefore not agiie.

Optimization criterion via  MMD To find reasonable values for both parameters,
we fitted the firing statistics to the real data. In particuas tried to match inter-spike
interval distributions between electrophysiologicaladahd simulated spike trains. As
error function to be minimized we used the Maximum Mean Bapancy {IMD)
developed in Chapter 4. It is shown in Chapter 4 thatbidD of two distributionsp
andq is zero iff both distributions are identical. In practiceyses a quadratic estimate
of MMD, positive values (which are above the test threshold) atdia mismatch of
the two distributions under consideration, and intuityy&IMD will be the bigger the
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more different the distributions are. Note that ti&ID does not necessarily define a
metric on the space of distributions. In that sense it islainto the Kulback-Leibler
divergence. However, since no density estimation is neémtetbmputing theMIMD,

it is superior in various respects to Kulback-Leibler dgemnce, for instance in the ease
of use and computational speed. Moreover, using the twgkatasts of Chapter| 4
we readily obtain information whether the two distributsoaresignificantlydifferent
based on &inite sample or not.

To incorporate possible higher order spike correlationswommpared thé-ISI dis-
tributions of spike trains. Thé-ISI distributionsp(7, .. ., 7;) defines the probability
of occurrence of: sequential spike intervals of lengths . . ., 7. Thus our goal find-
ing the optimal parameter vectat can formally be written as

a* = argmin MMDI[F,p (7, ..., 7| a),q (71, ..., 7%)] (5.9)

wherep andq denote the:-ISI probability distribution of the model and from the tatg
data, respectively, an@l denoted the function space (see Chapter 4 for details). For
fitting we employed the unbiased estimateM¥ID (Eq./4.3), averaged over 10 trials
with samples size 2000, and using RBF kernels of fixed size=(0.1). Different
kernel sizes or Laplace kernels produced similar results.sétk = 2 and compared

the log-I1Sls distribution (i.er; := logt;, wheret; is the:-th interval in the sequence

of k intervals).

We used only one model random seed for the fitting procesgdoce computa-
tional costs. Thus the neuron-to-neuron connections vaenatical, only the synaptic
weights are changed. Since our networks contains a greairambsynapses (about
4-107; see below), it is likely that random effects are averagesbaly within a model.
Indeed, even for a smaller networ0(x 20 x 9 grid size) the fitted parameters were
very similar for different construction seeds (not shown).

Generating multi-unit spike trains from the model circuit  For generating multi-
unit spike trains from the model circuit we simply combingaike trains of neurons
situated on nearby grid positions within the circuit. Inalktat a random “electrode”
position with the circuit (uniformly drawn from all neurorogitions), spike trains from
n neurons were combined to yield an pseudo-electrode sigxalktly» unique model
neurons were drawn from a Gaussian sphere around the ‘@iie¢tposition. The
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diameter of the sphere is dynamically setsto= , meaning that for highen
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units might be combined from further apart and ?(T)r lewonly neighboring neurons
are considered candidate units. is the fraction of the lateral distance to the vertical
distance of neurons within the cuboid grid and was sét.te- 0.4. This approximate
value resulted because our model had higher neuron densdteral area than in depth
(see Section 5.2.2.1). The number of neuraris drawn from a Poisson distribution
of mean)\,,. The parametek, was a free parameter to be fitted (see Section 5.3.1).

5.3 Results

5.3.1 Fitting the model response to experimentally measured data

We developed a V1 model based on many anatomical detailsritanaque monkey.
As described in the Methods Section 5.2, it consists of i and excitatory pools
of point neurons arranged in 3 different layers with probatic rules for connec-
tivity taken from the literature. Here we compared the spskatistics from the V1
model to electrophysiological data recorded from from VH &GN of anesthetized
macaque monkeys. In experiments, 5 minutes lasting coniahealor movies were
repetitively presented and responses were recorded withaetlular multi-electrode
arrays. Movie frames were centered at the fovea and coveratka ofl 0° x 7° degree
visual field.

In simulations, it was taken care that the stimulus presktaténe V1 model resem-
bled that presented to the monkeys as much as possible. ldgwavdeling the whole
10° x 7° degree visual field was not feasible because of computadtspesd. There-
fore we trimmed the movie frames to a smaller size, covesing 3° visual degree.
The center of the extracted region was aligned at the cehteraceptive field of one
of the electrode (channel 7) of a particular session (“d0#hn8ince the approximate
diameter of the receptive field of that electrode was expentially determined to be
1.2° degree, the reduced stimulus should at least contain &ttdinput information
available for neurons recorded by that electrode. On theadhis receptive field was
centered at0.69°, —2.39°) eccentricities relative to the fovea. In the model we set
the eccentricity neverthelessio, since otherwise the lateral extend (and therefore the
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amount of neurons in the model) per visual degree would blilpitovely large (com-
pare to Eq. 5.6). Ab° eccentricity a V1 model covering4°® x 2.4° visual degree has

a lateral extend of x 5 mm? cortical surface and neurons are positioned on a virtual
grid of size62 x 62 x 9, if one assumes a grid spacing of Bt laterally. Vertically,

the grid spacing corresponds260 ;m (see MethodSection 5.2.2.1). The visual field
covered by the V1 model is somewhat smaller than the stimialues/oid boundary
effects in the input connectivity. For analogous reasordiBN neurons were set to
cover an intermediate area@R° x 2.8° (77 x 77 grid).

Having set up the input appropriately we simulated 10 ses@f@ typical movie
segment and fitted four parameters (see Methods Secti@) 58 erage input synapse
strength of both input streams, the average synaptic weigtite weight distribution
for the long-range lateral connections in layer 2/3, anddterall synaptic weight
which scales all intracortical synaptic weights relatigethe input connections. As
outlined in Section 5.2/3, we additionally fitted the averagmber of units com-
prised in the multi-units spikes trains from the experinaémtata. This target data
contained spike responses measured in 6 sessions (4 arrestheacaque monkeys)
during about 5 minutes of repeated movie stimulgﬂohs described in the Methods
Section 5.2.3, the input synapse strengths were adjustie: taverage firing rate in-
crease observed when presenting a movie stimulus relatsgontaneous background.
The remaining parameters were varied to yield a close matspike statistics of the
electrophysiological data during a semi-natural moviegtus. In particular, we fitted
the distribution of 2-ISIs, i.e. the distribution of seqtiahinter-spike interval pairs
(see Methods Section 5.2.3). Note that the ISI-distributoimplicitly fitted when
using 2-ISI distributions in the optimization.

Figure 5.2 displays the discrepancy of the 2-1SI distrimuitof models with varied
parameters to the distribution derived from the target d&igurel 5.2 A reports that
the 2-1SI distribution cannot be matched to a satisfact@yree when one does not
extract multi-unit activity from the model\(, = 0, see Methods Section 5.2.3). The
resulting “best” ISI-distribution is bimodal not unimodgfig. (5.2 B): The network
strongly oscillates, when using this “best” parameterstekaing the bounds of the

'Note that this target data set contained spike responsegions of the movie not shown in the
simulation, to avoid overfitting the neural dynamics to tletigular section of the movie shown to the
model.
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parameter variation did not change this result (not shoWoyever, if nearby neurons
of the model are pooled to form a single spike train as it isliiko be the case for the
experimental data, the fithess landscape resembles a vétleyigh borders, which

has a well defined minimum in the bounds of the parameterti@ns Figure 5.2 C

shows the result fon,, = 3, where theMMD is minimally above its significance
threshold §,, was varied from0 to 10). This means that on averageneurons are

pooled together to form multi-unit spike trains and suggésat joining spike trains of
the model to form pseudo multi-unit spike trains is esséfdiaour data.

At the optimal parameters settings the patchy long-ranggiwescale has to be
reduced by a factor of about 2.5 in respect to the averagehiveegorted by Thom-
son & Bannister (2003) for more local layer 2/3 recurrentroections (having scale
1 in Fig.[5.2 B). The fitted overall weight scale i40. Although these parame-
ter values show greatest similarity of the 2-ISI distribatiand the ISI-distribution
matches the target data reasonable well (Fig. 5.2 D), bathilolitions are not iden-
tical. For instance, one notices that longer spike intenfal 50 ms) are under-
represented (Fig. 5.2 D). Indeed, even for the best fitNRdD statistics is well
above threshold (about 50% higher), indicating that 2-liStributions derived from
the model and the experiments are still significantly défér Choosing different ker-
nel widths or using linear spike intervals did not changs fiact considerable. We
conjecture that for an improved match of the distributiotiseo parameters, such as
individual synaptic weights of neurons, have to be tuned al. wRecall that these
parameter are drawn from random distributions and are nugtcaint by the available
experimental data (see Discussion).

Figure 5.3 shows stimulus and response of the network witimiged parameters
(Fig./5.2 B) for a period of 1 second. Network dynamic was et laterally struc-
tured. Burst-like activity varied in strength and in the ambof participating neurons.
The high activity bursts were stimulus induced. Note thatdbnse spiking activity at
seconds.1 in the thalamic input (Fig. 5/3 A) was followed by a strongdtun all lay-
ers (Fig! 5.3 C-E). Especially in layer 5 (Fig. 5.3 E), the drfea burst was laterally
displaced, suggesting a traveling wave like activity.

The response pattern is different for individual layersyér4 receives strongest
thalamic input and is almost free of bursts. The activityayfdr 5 is somewhat reduced
in comparison to that in layer 2/3. Bursts are small and shadtspatially restricted. In
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Figure 5.2: Model parameter fit to the 2-ISI distribution of extracellular recordedespikom
V1. A andB: Optimization criterion Eq. 5.9 for the variation of synaptic weight scale parame
ters (patchy-long range connections and overall recurrent weiglhd)sMMD is displayed in
color code, in logarithmic units above of the significant threshold (thus ativegvalue would
indicate that the samples derived from model and real data can be assuorgginate from
the same underlying 2-ISI distribution with an error@f= 0.05). PlotsA andC show the
fitness landscape and the resulted ISI-distribution for the optimal paraweten using single
neuron spikes trains of the model. Pl&sandD shows the same plots, when one generates
pseudo-electrode spike trains and includes the mean number of newrposled as a param-
eter to be optimized (optimal is hedg, = 3, varied from 0 to 10). The best fits are indicated
by lines in the upper plots. Pl& andD show the ISI-distribution of the best fit. Note that the
ISI-distribution (which is only implicitly fitted) matches much better the real datanaisng
pseudo electrodes. However, the 2-1SI-distribution is still significantfigdiht from the real
data MMD statistics about 50% above significance threshold). Pseudo electrsitieipaere
randomly chosen from all layers.
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Figure 5.3: Network activity for optimized parameters (see Fig. 5.2 B and D). Ristows the
thalamic input (with spikes of on and off, lagged and non-lagged cells ganlsingle spike
trains). Neurons on the cuboid grid are ordered linearly for plotting psep (first vertical
axis, then both horizontal axes). That means that highest and lowest ¢odrespond to dia-
metrical opposed corners of the cuboid grid. Due to toroidal boundawgitions these points
will most likely be connected, however (Method Section 5.2.28:) Top-down input which
resembles firing rate distributions (but not in respect to channels ctioredaand higher order
spike statistics) of experimental data from M2-E: Spike trains of all neuron in layer 2/3, 4,
and 5, respectively. Inhibitory neurons are plotted in red, excitatanyames in black. Note that
due to the enormous amount of neurons the overall circuit activity apme@ggerated. The
different lateral connectivity structure causes characteristic actiaitiems in each layer.
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contrast, layer 2/3 exhibits higher activity and largerdtsiy which often extends over
the whole surface of the model. These structural differgmiaghics are caused by the
more numerous lateral connections introduced by the lange patchy projections
within layer 2/3. As the circuit width is 5 mm, long-range ctions extend almost
across the whole circuit, inducing spatially higher caatetl firing pattern. However,
because of the preferred connectivity of iso-oriented oesi{compare to Fig. 5.1),
activity is likely to be correlated in orientation domains.

5.3.2 Comparison of simulated and experimentally measured spik-
ing statistics

Having optimized the 2-1SI distribution to the experimdrdata in two general pa-
rameters (average weight scales), we compared the ragiitiimg statistics to that of
experimental data in detail. Although our fitting processrfd parameters where the
firing 2-1SI-distributions are similar, the best fit nevesthss exhibited a discrepancy
between distributions. Thus firing statistics still be @rént in the model. Comparing
model and experiment using other measures of spiking statiselps to describe the
deviations in more detail, and quantitatively shows whispegts are not captured by
the model.

For characterizing the firing statistics in the model we dated a model repeatedly
(60 times) during a typical 20 seconds extract of the moviirusing the optimized
parameter values from the last section. 1000 pseudo-etixtrwere positioned uni-
formly in the circuit and multi-units spikes trains gene@twith optimal\,, = 3).
These spike trains were compared to all available data framAdditionally, the tha-
lamic input stream during movie activity was compared tcagHilable data recorded
from dLGN. Thalamic input spike trains were not pooled wigtighboring neurons,
but the four LGN cell types (on, off, lagged, non-lagged) eveombined to form a
single spike train.

The results are summarized in Fig. 5.4 and [Fig. 5.5. PanelAg6.4 displays the
ISI-distribution on a logarithmic scale. Simulation angbeximent agree quite well, at
least for short ISIs; remember that this distribution wagliotly optimized by the
parameter fit. As already stated above, the V1 simulatiokelddonger spike intervals
relative to the experiment. In LGN, simulation and expemtsedisagree: probability
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Figure 5.4: Comparison of spike train statistics of electrophysiological recordings vd
(red) and LGN (blue) of anesthetized macaque to that of the V1 model)(gral its thala-
mic input (green). From the V1 model response pseudo-electrode tspike are generated
before comparison),, = 3). A: Inter-spike interval (ISI) distribution estimated on all avail-
able data.B: Contributions of a given ISl to the dependence of the following ISI ¢fiom
J(y) of Eq./5.10)). C: Average cross-correlation for simultaneously recorded electraates (
pseudo-electrode positions in the model). Cross-correlations aressegrén the probability
of occurrence of individual spike pairs with fixed lags divided by the mf@éng rates of both
electrodes. LGN data is omitted because the set of simultaneous recordiddss was too
small. D: Fano factor of spike counts, i.e. the ratio of variance to mean of the spik@ within

a fixed window, is plotted versus window length. Mean and variance ofpike sount are es-
timated across trials on non-overlapping windows. See Section 5.3.2 foaitedediscussion
of the results.

of long ISls is generally too low in the model. In both area§N.and V1, the shape
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Figure 5.5: Comparison of burst characteristics of experimental data and model. Satae d
as in Fig/ 5.4. Histograms are estimated on overlapping, 2 second lasting tiroesregd
pooled over all available dat&: Firing rate distributionB: Inter-spike interval coefficient of
variation (ISI-CV) distribution. ISI-CV is defined as the ratio of standdesdiation to mean of
the ISI-distribution (on each time region(.: Burst rate distribution. Burst events are defined
as having at least 2 spikes with average ISl of at most S0ndlean rates of bursts containing

at leastn spikes with maximal average ISI of 5 ms. See Section 5.3.2 for discussion of the
results.

of the distributions from model and experiments agree, vewdaving a single peak
and a monotonous decrease in case of LGN and V1, respectively

Panel B of Fig: 5.4 summarizes the dependence of one ISI ofolloing ISI.
For homogeneous Poisson spike trains, where spike positeaniformly distributed
in time, the length of a given ISI will no tell anything abobgtlength of the following
ISI. In neural spike trains, however, this will commonly Ibe tcase. The current and
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following ISIs can be seen as two random variallandY’, respectively. A measure
for their dependence is the mutual informatite, Y) = 3=, 37, p(w, y) log, 540
(see Chapter 3 for references). Then the function

p(zly)
o) (5.10)

J(y) = p(y) > p(xly) log,

measures the contribution of each {8b the overall dependence, since if{sX,Y) =
>, J(y). In other words, it/ (y) is high for a particular IS} this means that the next
ISl is well determined by the length gf one gains information about Note that in
our case the 2-ISI distributions are symmetric (if one neigldoundary effects), be-
cause they are estimated using all possible ISls of a spke We see from Fig. 5.4 B
that for experimental data the dependency is quite stranyllin particular, the con-
tribution of ISl to the information is rather constant witBliduration. The model spike
trains seem more random, as the two subsequent ISls depandriesach other, and
in case of the V1 model the dependence is only close to theriexget at the two
peaks. These peaks probably arise in the model because didtigely stereotyped
burst length and its slight oscillatory behavior (see bglowithin a burst it is likely
that a short interval is followed by a short one (or a very lamg if the bursts hap-
pens to end), and a long interval might be preferable folthlg a short one within
the next burst. In the LGN model the dependence of followfdis lis generally very
low, which is to be expected because of the Poissonian rategs generating the
spike trains (at least for lower rates). Here the bimodatiight arise on the left side
due to the regularity inducing gamma renewal process fdn firqhg rates (see Meth-
ods Section 5.2.2.2) and for long interval due to the moviet@at changes. In the
experimental data, on the other hand, the relatively comstad high dependence of
inter-spike intervals might be caused by slow changingestatiables: it is likely that
for a given interval duration a similar interval follows.

In Fig./5.4 C the average cross-correlation between diffeeéectrodes is plotted.
While electrodes in V1 are correlated for lags up to about 250thee model shows a
faster fall-off and a small oscillatory compound (compds®do the network activity
in Fig./5.3 C). The relatively small lateral extend of the miadéght promote the os-
cillatory behavior. Similarly, the trial-to-trail variality of model does not reach the
variability of the experimental data, although for largendow size the Fano factor at
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least increases (Fig. 5.4 D). The LGN model does not match@#¢ data: its trial-to-
trial variability is not too low for longer times. On the othigand, in the experimental
data the variability might be exaggerated because of exwatial artifacts. For in-
stance, the electrode might move slightly during a recagydiession of several hours
and thus pick up a different set of neurons in later trials.

In Fig.[5.5 the bursting behavior of experiment and modekespiains are com-
pared. All histograms of Fig. 5.5 are calculated on (ovesiag) 2 second regions
and pooled over all available electrodes. The firing ratéritigion (Fig.[5.5 A) is
markedly different for the thalamic input and the LGN. Altlgh the mean firing rate
of the LGN model is fitted to the experiments (7 Hz, see Se@&ia@.2), it is much
more likely that there occurs no spike in a random 2 seconidmeg the experimental
data than in model spike trains. This is partly an effect aflpm all LGN cell types
in the LGN model.

In case of V1, the slope of the tail of the firing distributi@matched well (Fig. 55 A),
but the probability of low spike rates is too low, similarty the LGN model. This low
probability of long pauses might partly induced by the tapvd input model. Because
the top-down input is not modulated by the stimulus (whickiobsly is the case in
the brain), it merely acts like a stimulus independent ne@&ce. We set the strength
of the top-down input to achieve 2 Hz average firing rate (se¢hild Section 5.2.3).
While this value is realistic as it is estimated from the d#ta,fact that the rate of each
input neuron werendependentlgrawn is not. However, lacking precise data about the
top-down input correlations we can only state this fact.

Burst rates are generally higher in V1 than in LGN data, whicheproduced in
the model (Fig. 5.5 C). However, burst rates are actually drigithe V1 model than
in the experiment (see Discussion). The dependence of thef#he size of bursts is
matched qualitatively well for the V1 model (Fig. 5.5 D), whas long bursts do not
occur in our LGN model, although there is some (low) proligbthat they occur in
reality (Fig. 5.5 D). Similarly, high frequency bursts amnederrepresented in the LGN
model. This can also be seen in Fig. 5.5 C and D where the ratlecsfer and longer
bursts are compared. The deviations of the LGN model to the slaggests that the
simplistic rate-based input model of the LGN is not enougbdpture non-Poissonian
effects present already in the LGN spike trains.
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Figure 5.5 B shows that the high variability of spike intdsvim V1 is not captured
in the spikes trains from the model. The ISI coefficient ofiaton (ISI-CV) is higher
in reality. For LGN data, however, ISI-CV is lower and peakamk indicating that
spike intervals are more regular and more like a Poissorpée grain than in V1. In
that respect the LGN data is similar to the LGN model.

In summary, we find that the spike characteristics of the genél and LGN
model has similarity to the experimental data but still eli#f from it in some aspects.
In particular, the variability is lower and the changes imfirdynamics over interme-
diate times is less extreme: the experimental data exHibits long silent periods and
prolonged bursting events. However, besides the diffagnihere is a general trend
that the model statistics resemble the experimental deseems that the more sophis-
ticated V1 model is closer to reality than the much simpleéetzased LGN model.
Generally, data derived from LGN and V1 is more similar tositwulated counterpart,
than experimental data and simulated data to themselves.

5.3.3 Does the model predict the response of experimental data to
a movie stimulus?

A model having qualitatively similar spike statistics topeximental data, does not
necessarily respond similarly to given stimuli. We wondei@what degree the model
predicts the spike trains measured at an electrode in vivig@ré 5.6 shows the re-
sponse to repeated trials of a section of a movie stimuluetf &n electrode channel
and neurons of the model. As described above the movie éxti@as chosen to in-
clude the receptive field of an electrode from one experialesgssion (channel 7 of
“d04nm1”). The center of the circuit is aligned to the cerdéthe receptive field of
that electrode. Thus if the model were a reasonable absinauitthe reality, one would
assume that firing patterns at a pseudo-electrode in thercehthe circuit would be
very similar to those observed at this particular electrclgnnel.

In Fig./5.6 multiple trials of movie presentation are shown lioth the electrode
and an pseudo-electrode (wikt) = 3) inserted in layer 2/3 of the model (Fig. 5.6 B
and Fig. 5.6 D, respectively). The layer position of the &tede is not determined
experimentally and electrode tip distance from the duraoisnecessarily a reliable
indicator (because of the geometry of the cortex). Howeawerchance that channel 7
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Figure 5.6: Spike trains elicited in response to multiple trials of movie presentations for two
experimental electrodes and two pseudo electrodes in the circuit. Movie stitigisame in
experiment and simulation. In simulations a black and white version of the coldiemas
presented A Movie stimulus in original colors. Movie frames are shown on a 1-dimensional
line to visualize the time course (order: pixel columns first, then rows). PlahdC show
recorded spike trains of two electrodes. The center of the receptidedieslectrode in B
(channel 7) is used as a reference point to align the center of the diocthie center of the
movie region. The electrode shown in C (channel 5) has overlappiraptige fields with
slightly shifted center and is positioned about 1.5 mm further away.0P&tdE show trials of

two pseudo-electrodes generated from the model cireyit=€ 3). They are positioned in the
center of the network in layer 2/3 and offset laterally by (simulated) 1.5 mm &r [ayrespec-
tively. Thus their positions correspond to the experimental electrodesniel Baand Panel C,
respectively. PIoE shows the mean firing rates of the electrodes in plots B—E using the same
color code (smoothed with 80 ms Gaussian kernel). Note that bursts occur reliably across
trials in both, simulation and experiment. Trial-to-trial variability is realistic in simulation
However, correlations of the mean firing rates is not perfect. Nevedbetd some times the
responses of the simulation resembles the experimental observations (2 gea).
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recorded in superficial layers is higher since its depth suali mm smaller than a
second electrode (channel 5), which is plotted in Fig. 5.6Hlisithe second electrode
is more likely to be positioned in a deeper layer. For congmriwe show a pseudo-
electrode positioned in layer 5 of the model in Fig. 5.6 E, chhalso is shifted by
1.5 mm lateral distance as it is the case for the second etkcin the experimental
session. Panel A of Fig. 5.6 shows the movie extract whichasgnted to both model
and monkey. In the experiment the movie was shown in colodégscted), whereas
in the model a black and white version was used because oelyype of ganglion
cells was modeled. The two dimensions of the movie is linetbupne dimension to
visualize its temporal evolution.

One can see that the trials of both experiments and simaok&gbow reliable ac-
tivity to certain parts of the movie. For instance, at secépdwhen an object flies
through the blue sky in the movie, the response of both maulsamulation is a re-
liable burst at very similar times. On the other hand somengment and very reliable
bursts in the experimental data are not anticipated by the#enéit second5.3 chan-
nel 7 fires strongly (Fig. 56 B), but in the model no burst asdn either spike train
(Fig./5.6 D and E).

The mean firing rate of the two experimental electrodes aag#eudo-electrodes
from the model are displayed in Fig. 5.6 F. The simulatedesamatches at some
times the increase seen in one of the electrodes, but in glehercorrelation is weak.
In Fig.[5.7 B the distribution of correlation coefficient teten 1000 randomly placed
pseudo-electrodes within the circuit and both electrod€sg 5.6 B and C are shown
(calculated over 20 seconds stimulus and 200 ms windows)safds there exist a
correlation for most locations in the circuit, but it is riNely low: highest correlation
coefficients lie around.3.

The trial-to-trial variability is similar in the simulatioand the model at least for
this movie section. This can be seen when comparing the npée counts with the
variance over trials (Fig. 5.7 A). The ratio of both valueslgse to one (for 50 ms
windows). Note that we show here only selected electrode2Gaseconds stimulus
duration, whereas all available data was analyzed in FigD5The overall appearance
of spike trials generated by the model is a bit noisier, wéksl silence in between
activity phases (as noted above). Moreover, bursts in tiperaxent appear to be
slightly longer in duration. In the experiments there isigltdl drift over trials (trials
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Figure 5.7: Trial-to-trial variability and correlations of responses to movie trials in eixpent
and simulations (compare to Fig. 5.8): Mean of spike count across trials on 50 ms windows
plotted against variance. Electrodes are identical to that displayed in Bi&-& (but for 20
seconds stimulus durationB: Histogram of correlation coefficients of the two experimental
electrodes with 1000 randomly placed pseudo-electrodes from the V1l sedarately plotted
for layer position of the pseudo-electrode. Correlation is weak bueptdaa all layers. The
mean firing rate was estimated on non-overlapping windows of 200 ms duration

are number in the order of their recording time), which ishably due to experimental
conditions.

In summary, we have applied exemplary a shown that adjutengetwork param-
eters to the 2-1SI distribution of the real data results imgjrstatistics which resemble
the experimentally measured data. However, not all detéilse real statistic are cap-
tured by the model. This knowledge can be used to systerfigtiogprove aspects
of the model to achieve a closer match to the data. In a di@uiparison of spike
trains to the same movie stimulus the correlations in themmate remain low. This
suggests that the response of the real system is still monglea than our state-of-the
art connectionists model.

5.4 Discussion

In this Chapter developed a detailed computer model of sesguare millimeters area
of macaque V1. We have compared it to spike train statistiedeztrophysiological
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recordings from area V1 and LGN in anesthetized macaque ayonk

The last years have seen several attempts to model largeddre brain with sim-
ilar components that we used here, such as inter-laminaremtivity, laterally struc-
tured connectivity, realistic input connections, synappression and facilitation, and
neurons having one or a few compartments (e.g. Izhikevichd&lgan (2008); Jo-
hansson & Lansne‘r (200'}); Kremkcm/aﬂ 4200%); Tacet al. ({2004)). The anatomical
detail, e.g. the inclusion of orientation dependent loagge patchy connections, and
lateral extend of our V1 model matches recent approachgsnat. These models, as
well as ours, incorporate many anatomical and physioldgietails, but they are, of
course, still a strong abstraction of reality. For instgrgenetic and metabolic main-
tenance, the electrochemically milieu, blood vesselsgtirsignaling systems etc. are
completely ignored — just to name a few aspects. Howeverdhgutational function
of neural systems is thought to arise mainly through comueation between neurons
using spikes, although other signals might be involved db(see Chapter 3). Thus it
is feasible to try to capture the neural spike train stastvith a model concentrating
on neurons and their interactions.

Having a surface area @bmn? the network size of our model is still very small
compared to an average LfoOmny for striate cortex of macaqu‘e (Essetral. 41984)).
In relation to the extend of the long-range connections ($Dnom in each lateral
direction), our model is of minimal size in that sense thégral connections are not
likely to connect to neuron near its origin via the toroidalubpdaries. In principle,
thanks to the PCSIM simulation environn@used throughout, the network size is
easily scalable in the expense of simulation time. Simudat circuit of 100mmy
(having a neuron grid of66 x 166 x 9 at lower eccentricities) for a few seconds,
for example, required about two days simulation time on a 16 C&es machine, as
compared to roughly 6 hours simulation time of the presentedel on a dual core
machine (for 20 seconds simulation time). Since we simdl#ie model repetitively
for long times (20 seconds and more), we have restrictedthdy to a relatively small
circuit.

With about 35000 neurons and over 4 million synapses our irwatestill many
parameters, which in principle had to be estimated from.dalth the limited amount
of data available to us, this is impossible. It would takeeagjamount of collaborative

Lavailable fromht t p: / / sour cef or ge. net / proj ect s/ pcsi ml
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effort to try to fit parameters on the basis of single neuradthough recently the
Blue Brain Project started to do just thgt (Markram (2006)hus it is very difficult

to constraint such model. In this Chapter we develop a metboddjusting network
parameters to achieve realistic firing dynamics in respdaasg semi-natural movie
stimulus.

This method could be used to systematically investigatepoments of the net-
works important for achieving certain aspects of realislymamics. We exempli-
fied the fitting process in three parameters and achievedsamahle fit to the ISI-
distribution. One could choose different parameters t@stigate the importance of
components of the network. As optimization algorithm wef@ened simple grid
search, because it is very efficient on a multi-processaesys If more parameters
were to be adjusted any gradient descent algorithm, suctheatiee simulated anneal-
ing (Ingber )), could readily be applied.

One also could change the optimization criterion for furthnwestigations. For
instance, we here exemplary optimized our network model fiemafree parameters
to the 2-1SI distribution. One could likewise fit more congalied distributions, such
as thek-ISI distributions for highef, or e.g. the distribution of waiting times to the
next spikes seen from randomly sampled timésr n neurons simultaneously. The
latter distribution could be used to fit correlations betwedectrodes (and neurons)
of multi-electrode recordings. Moreover, théMD could in principle be used to fit
distributions of whole spike trains directly using a kerfa comparing spikes trains
(e.g.‘ Shpigelmamet al\ 42003)). In our case, where the model has an enormous degree
of freedom, a direct match of spike trains seems unlikelyéer.

In comparing the resulting model with statistics of the expental data, we found
that even after having optimizing parameters, the modes$ cha¢ reproduce all subtle
aspects of spike trains experimentally observed. In padicthe bursting character-
istics of model and experiment are different in that bursisuo more likely and more
regularly in the model (Fig. 5.5). Although there might beean increase in burst-
ing due to anesthesia in the data (see Chapter 2 for a disojist#he mismatch of
experiment and simulation is probably due to approximatidone within the model.

Recall that the fit included the estimation of the number airoes pooled to multi-
unit spike trains. If the bursting behavior of the neuron eladould be devoid of short
bursts, this number will be artificially increased to matble 1SI-distribution of the
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experimental data. We found a mean numbei o= 3 which might be correct, but
intuitively seems to be a bit too high, given that we increkses threshold for spike
detection to a very higli SD of the noise component. Thus the lack of longer inter-
spike intervals observed in the simulations might be patiyeffect of pooling more
spike trains in need of short ISIs to match the target. Anotéason for the lack of
longer ISIs might the possibly unrealistic noise sourcentfitbhe top-down projection.
However, simulating the circuit without top-down input uéed in a less severe, but
still similar underrepresentation of longer inter-spikéervals (not shown).

One possibility for the deviation of model and experimenthiat the simplified
neuron model might misses aspects of the dynamics of reabngsu Although the
neuron model can in principle capture a wide variety of firah@racteristics (I1zhike-
vich (2006)), and is thus unlikely to fail completely, thexture of different firing
types (e.g. the ratio of regular spiking to intrinsicallyrsting cells) is generic and
might not correspond specifically to V1 of macaques. Theeeiio future studies one
could attempt to adjust the mixture of firing types by inchgladditional parameters
in the ISI-fitting process, which describe the distributaftfiring types present in the
circuit. However, for this task it would be advantageous ampare spike trains to
multi-dimensional polytrode recordings, which allow tatsmulti-unit activity to ob-
tain single units spike trains. With single unit spike tsathe fitting process would be
greatly improved because no pseudo-electrode signalsohael éstimated. Addition-
ally, the risk of introducing a sample bias towards very begirons via the high spike
detection threshold would be minimized (Olshausen & FigliD)).

Moreover, the neuron model lacks complicated dendrite maiggy seen in vivo,
which are thought to actively and non-linearly shape thpaase of single neurons (see
Yuste & Tank (1996) for a review). Instead the model uses tpogurons. In the

simulation we saw that the model did not seem capable of dejeing longer-lasting
changes in the firing dynamics, e.g. that a neuron is silarddoonds and then bursts
reliably (see Fid. 516 A for an example). This behavior resin the high ISI-CV in the
experiment (Fig. 5.5 B). Dynamics on intermediate timeesahight be induced in the
cortex by second messengers such as calcium ions. Calciuamdgsis known to be
complex, showing waves and spikes, and has pronouncedsffe¢he firing of neu-
rons (seé Berridgﬁé (1998) for a review). In our model no exptdalcium dynamics,
nor that of any other second messenger, are included. Fortine, since we based the
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synapse model on that used by Haeusler & Maass (2007), nossioaptic currents
are included in the model, such as GABAnd NMDA kDayan & Abboh‘(ZOOl)).
We expect that a model containing such slow synaptic dyramiilt achieve a closer
match to the experimentally observed spike train staisti&nalyzing the effects of
slow dynamics is a promising direction for future studies.

Besides many anatomical details included in the model, we a¢glected some
known aspects. For instance, we incorporate only 3 insté&dayers and neglected
several sublaminar structures existing in macaque‘ \A (@aLHlQ%)). Since con-
nection probabilities are not measured in such detail inagae as it is done for cat, we
instead used data obtained from cat slices of differentamr{(Thomson & Bannisﬂer
d?o:%)). Presently, there is only one other study desagitayer specific connection
probability in cat‘(Binzeqqeet al.(2004)). Although the latter data set is based on the
visual cortex, it is derived solely on anatomical consitierg whereas the former data
set incorporates functional synaptic weight estimateselk 8ince both data sets are
from cat and therefore can only serve as a rough approximationacaque V1, we
decided to apply the former because of their advantage gayinaptic strength esti-
mated and thus stick to the three layer layout use‘d by Hae&sMaaast ’(ZF)QU. We
are aware that particularities of macaque V1 such as thddestback loop from layer
4C to layer 6 and vice versa suggeste(ﬁ by Call&@Ll%S) iBolotded. Similarly,
the probability distribution for patchy long-range contieas in superficial layers, as
well as the hard-wired orientation tuning are inspired froat. Thus, using connec-
tion probabilities derived from macaque V1 would most hké&tssen the gap of the
correspondence of experiment and simulation.

We found that in a direct comparison to experimental datandumovie presen-
tation the predictive power of the V1 model was low. Such &aticomparison of a
network model to data during complex stimulation has nonketeempted so far. The
low correlation is to be expected since the synaptic weighgonly randomly chosen
and unconstrained by the experiment. In future studies oné&dor example learn
the weights to a readout neurons to achieve a high corralétidhe experimentally
measure neurons.

There are also several other caveats, which explain thevedlalow correlation.
Despite the approximations and abstraction within the VHehaescribed above, a
main reason might be simplifications in the input model. Wenfib that the statistics
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of our rate-based LGN does only very poorly resemble the ex@atally data from
LGN. Thus, the LGN model might have to be improved to achiesteser match of the
model spike trains to that of experimentally recorded spik&esides the LGN model
the stimulus was adjusted, too. Since we had to adjust theikts size (see Results
Section 5.3.1), only about a sixth of the original movie feaarea was presented to
the model. Even though the reference electrode had a reedpid in the center of
this region, neurons might interact with neurons beyond tleeeptive field. Neither
these interacting neurons nor their input were includechemodel, because of the
size restrictions. Moreover, the color movie had to be ti@msed to black and white
(by simply averaging all color channels). More appropriatauld be to incorporate
color pathways into the model by including multiple typesolor opponent ganglion
cells }Sincich & HortoH(ZOOS)). In principle, this could bene straightforwardly,
although many details about color processing in the visoidég are unknown (Sincich
& Horton &200%)). However, neglecting color informationght have a strong effect
on the response, because many colors share identical gikagsc

5.5 Conclusion

We have presented a detailed circuit of V1 and its thalanpatstream. Often these
models are difficult to adjust to generate reasonable finrgadhics, so that they could
be used as basis for further investigations. The methodlaj@®d and applied here
is very helpful in adjusting free parameters to the staf$stif experimental measured
spikes train. We are confident that the gap in understanddngahsystems in terms of
neural network model% (Olshausen & F*e[ld (2005)) will lesbyg developing models
in close relation to experimental data.
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6. CONCLUSION

This dissertation focused on a particular dataset of epbiysiological recordings
from macaque monkeys. Machine learning techniques wereloj@ed and applied in
order to characterize the interdependence between diffsignals and their role in
information processing. Two signals, commonly recordethweiectrophysiological
electrodes, were analyzed: spiking activity and local fptentials (LFP).

In Chapter 2 their interdependence were analyzed in detdile attempting to
systematically infer spikes from the local field potential$is approach did not only
visualize concrete spike trains estimated solely on theslod& FP, it was also possible
to pin down the frequency components and oscillation pheateifes which were most
important carriers of the information about spikes, anaht@stigate the redundancy or
independence of individual features. Several findings weiree unexpected. For in-
stance, the relatively high information in low frequencylis, especially at times after
spike position. Furthermore, the prediction accuracy asasthe important features
did not differ much in case of spontaneous activity or stimsutvoked activity. Both
conditions exhibited different spatial decay constanthaf prediction performance,
however, indicating that during stimulus, neurons areigfpaimore decorrelated.

Although it was previously known that e.g--power correlates best with spiking
activity, the relative contribution and redundancies dfedent features were quanti-
fied. Supervised learning method (support vector macheresgapable of using many
features simultaneously to non-linearly predict the tamécome. This method has
not been applied to investigate the relationship betwedpn &ikd spiking activity be-
fore.

The results of this dissertation strongly suggest thatlléeld potentials are an
important carrier of information and analyzing LFP in adufitto spike trains might
be elucidate cortical functions.

This is underlined by the findings of Chapter 3 that LFP mighi@n active role
in information processing. Using information theoretig@mnents the gain in infor-
mation about naturalistic movie scenes is quantified to k¥ 50%. Remarkably,
this improvement is achieved not for simplistic, abstrairhsli but for stimuli which
resemble moving natural surroundings. Most notable, tf@mmation theoretic ap-
proach does not need to know what kind of features of the absaenes is encoded
but instead analyzes any kind of possible features. Althquitase-of-firing codes has
been suggested earlier for the hippocampal formation @terences see Chapter 3),
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this is the first time a phase-of-firing code has been showmrish fr the primary vi-
sual cortex. In visual cortex the code is subtle and not imately accessible by eye.
Spikes generally occur more likely at certain phases of i bonly a small but crucial
jitter, depending reliably on the stimulus content, togetith the reliability of LFP
phases in response to the stimulus, carries the additiofathnation. In particular, this
additional information can be used to disambiguate scefmgshwilicit similar spike
rates.

In state-of-the-art network models the extracellular euiliand thus a signal like
LFP, is commonly neglected and all communications and coatipmal properties are
thought to emerge through spiking activity. In Chapter 5 saametwork model of
a patch of the primary visual cortex was developed. The mousrporates many
anatomical and physiological details of the macaque manKéywe laminar organi-
zation of neurons, lateral connection profiles as well asration tuned input con-
nections are modeled according to anatomical studies. Té@ehshows rich and
structured dynamics in response to movie stimuli, inclgdialiable activity bursts
and realistic trial-to-trial variability. However, it isvedent that temporal structure of
responses is still richer in experimental data.

For optimizing parameters of the network model a new metlhoddmparing two
multidimensional distributions has been developed in Gitaptand applied in Chap-
ter[5. Most remarkably this new method, using the Maximum iMBeéscrepancy,
can be efficiently computed when relying on kernel spaceglaer@fore inherits their
enormous modularity and capabilities. For instance, ibistions on graphs can read-
ily be compared using graph kernels. Moreover, the methofbpes at least similar
to the best existing method. In multidimensional probletrmmonly outperforms
existing methods, both in accuracy and computational speed

In Chapter 5 is shown that, although tuned in a few parameteggiring dynamics
of such a model does not capture every detail of the dynamiesis vivo. Although
many approximations were made when developing the artift@éwvork model, to-
gether with the finding that LFP code for additional inforroatbeyond that coded by
the spike count alone, it suggests that the restriction odetireg only spiking com-
munications might not be sufficient.

Given the discrepancy between experiment and model, theoxippation com-
monly done in even the most detailed network models, one taigiclude that much
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6. CONCLUSION

remains to be done to finally understand the computatiomaitfon of neural systems.
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