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Abstract

Most of the functionality of the brain is thought to emerge from communications

between neurons using spikes. Thus, for investigating neural function it is essential

to monitor spiking activity of neurons. Experimentally measured signals, however, do

often not directly reflect spiking activity of neurons, but instead comprise a mixture

of biophysical events from various origins. In this dissertation I investigate the inter-

dependence of two signals: extracellularly measured spiking activity and local field

potentials.

First, by means of machine learning techniques I ask to what degree spike trains can

be inferred from simultaneously measured local field potentials from primary visual

cortex and lateral geniculate nucleus of non-anesthetizedand anesthetized macaque

monkeys.

Second, using an information theoretic approach I further show that in primary vi-

sual cortex of macaque monkeys, spikes are related to LFP oscillations in a stimulus

dependent manner. In particular, information about a scenein a movie can be pre-

dicted with higher precision from spike trains, when the phase of local field potential

oscillations is taken into account.

The structure of experimental spike trains in response to natural scenes is rich, with

periods of reliable high activity bursts intermingled withlong silent periods. I develop

a neural network model based on many anatomical particularities of the primary visual

cortex of macaques in order to compare the statistics of the spike trains generated by an

artificial neural network under similar stimulus conditions. To achieve a close match to

the data free parameters of the model are optimized using a new method for comparing

multi-dimensional distributions, called Maximum Mean Discrepancy (MMD).
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Zusammenfassung

Es wird im Allgemeinen angenommen, daß die Funktionsweise des Gehirns haupt-

sächlich auf der Kommunikation mittels Aktionspotentialenzwischen Neuronen beruht.

Daher ist es f̈ur die Untersuchung neuronaler Funktion essentiell, das Feuern von Neu-

ronen zu beobachten. Experimentell gemessene Signale sindjedoch ḧaufig nicht un-

mittelbar auf die Aktiviẗat von Neuronen zurückführbar, sondern setzen sich aus ver-

schiedensten biophysikalischen Vorgängen und Quellen zusammen. In dieser Disser-

tation untersuche ich die Abhängigkeit zwischen zwei solcher Signale: extrazellulär

gemessene Aktivität neuronaler Impulse und lokale Feldpotentiale (LFP).

Zunächst untersuche ich mittels Techniken des Maschinellen Lernens inwieweit

neuronale Impulse anhand der lokalen Feldpotentiale vorhergesagt werden k̈onnen.

Die neuronalen Daten sind im primären visuellen Areal sowie im seitlichen Kniehöcker

von an̈asthesierten und unanästhesierten Rhesusaffen aufgenommen wurden.

Danach zeige ich mittels eines Ansatzes aus der Informationstheorie, daß im pri-

mären visuellen Kortex verschiedene Stimuli eine verläßlicheÄnderung der Phasen-

beziehung neuronaler Impulse zu tiefen Frequenzen der LFPshervorrufen. Das f̈uhrt

dazu, daß Szenen eines Films weit besser aus der Feuerrate hervorgesagt werden k̈on-

nen, wenn zus̈atzlich die Phasenbeziehungen zu LFPs beachtet werden.

Die Struktur experimentell gemessener Zeitreihen neuronaler Impulse, welche durch

die Stimulation mit Filmen natürlicher Szenerien erzeugt werden, ist komplex und

variabel: Ḧaufig folgen Phasen verläßlich hoher Aktiviẗat lange Zeiten der relativen

Stille. Ich entwickle ein k̈unstliches neuronales Netzwerk, das viele anatomische De-

tails des prim̈aren visuellen Areals von Rhesusaffen berücksichtigt, um die Statistik

der Impulszeitreihen des künstlichen Netzwerks mit denen der Realität unterähn-

lichen Stimulusbedingungen zu vergleichen. Um eine möglichst naheÜbereinkunft

zu erreichen, werden freie Parameter des Netzwerks mittelseiner neuen Methode

zum Vergleich multidimensionaler Wahrscheinlichkeitsverteilungen, kurz Maximale

Mittelwert Diskrepanz (MMD), optimiert.
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Chapter 1

Introduction

“Daß in der morphologischen Kette der Thiere das Nervensystem and

sp̈ater das Gehirn sichentwickelt: giebt einen Anhaltspunkt – esentwick-

elt sich das F̈uhlen, wie sich sp̈ater das Bilderschaffen und Denken en-

twickelt. Ob wir es schon noch nicht begreifen: aber wir sehen, daß es

so ist. Wir finden es unwahscheinlich, Lust und Schmerz schon in alles

Organische zu versetzen: und es ist immer noch auch beim Menschen der

Reiz eine Stufe,beidesnicht da ist.”

[Friedrich Nietzsche, 1885]
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1. INTRODUCTION

Due to the small size of neural cells, their electrochemicalcommunications, and

the complexity of a neural system, it is impossible for us humans to directly perceive,

observe or manipulate neural activity. Thus sophisticatedtechniques have been de-

veloped to indirectly access and visualize brain activity in its functional state. These

techniques necessarily rely on measuring a particular aspect of neural systems and

therefore not only show an incomplete picture of the underlying processes but may

indeed be subject to artifacts not relevant for informationprocessing.

One prominent example is BOLD-fMRI, a popular non-invasivetechnique that re-

lies on changes in the blood oxygen level (Ogawaet al. (1992)). Changes in the blood

oxygen is only a very indirect measurement of neural activity and it is not immedi-

ately clear how and to what extend it actually reflects brain processes. However, it has

been shown by combined electrophysiological and fMRI measurements that the time

course of the fMRI signals can be mapped to firing activity in alocal area (Logothetis

et al. (2001)). The correspondence is reflected best in its high correlation to the power

in cortical local field potentials (LFP). Similarly, extracellular voltage measurements,

such as LFP, not only record voltage fluctuations attributedto a single neuron but

instead comprises the activity of many cells around the electrode tip together with var-

ious oscillatory activities originating from various sources. LFP is thus only a “crude”

measure of neural activity (Henrie & Shapley (2005)). Out ofthese reasons, there is

necessarily a strong interest in establishing the biophysical origins, the information

content, and interdependence of different signals.

Commonly, all indirect signals are tried to relate to spikingactivity of single neu-

rons, which are often considered the actual carrier of information in the brain. How-

ever, in recent years the view is emerging that other signals, such as LFP, may partly

originate from elements of the neural system, which are in itself interesting to observe

in the sense that they contribute to the computational function of the neural system.

For instances one could take advantage that LFP seems to reflect mostly synaptic activ-

ity (Logothetis (2003)), which means that also synaptic drives originating from further

away or from completely different areas are locally observable.

In this dissertation I investigate some of these questions for two neural signals:

extracellularly measured spiking activity and local field potentials from macaque mon-

keys. In Chapter 2 I analyze the interdependence of LFP and simultaneously recorded

spikes by means of support vector machines and linear regression models. I show that

2



spiking activity is, on a larger time-scale, reliably related to the local field potentials.

I use non-linear and multidimensional machine learning techniques to directly infer

spiking activity from features of the LFP. By analyzing the features which are most

important for this prediction task, I show further that different features of the LFP, i.e.

high-γ power and the phase of low frequency oscillations, carry valuable information

for spike prediction. Furthermore, both contributions to prediction performance are

rather independent, suggesting that both features correspond to partly unrelated as-

pects of the neural circuit. For instance results suggest that low frequency oscillations

are good predictors for clusters of spikes.

Having established and characterized the relationship of LFP to spiking activity in

a wide range of data in detail, I ask in Chapter 3 whether this relation is relevant for

information processing. Indeed, one finds that the gain in information about naturalis-

tic scenes in a movie stimulus, by hypothesizing a phase-of-firing code rather than by

a spike count code, is considerable in the same data of V1 of macaques. This phase-

of-firing code relies on the relative position of spikes within a oscillation cycle of very

low frequency components of the LFP (< 10 Hz). The extra information available in

the phase of firing is crucial to disambiguate between stimuli eliciting high spike rates

of similar magnitude. Thus, I challenge the view of LFP as an unimportant epiphe-

nomenon, because the spiking activity in respect to the oscillation cycle of the LFP do

indeed code for over50% more information than can be extracted from the spike count

alone.

Machine learning approaches applied to data analysis, as done in the first part of

this dissertation, are very important, since they are able to find regularities in great

amounts of data with minimal hypothesis bias from the investigator. A complimentary

approach to investigate brain function is to understand underlying laws and principles

by using mechanistic mathematical models. If a mathematical model captures the

computational functions of the real system, it is capable togeneralize its behavior and

one might be close in truly understand the complex system.

Today, modeling all details of a neural system is still impossible. However, one

goal when employing artificial neural networks is that at least the statistics of its ac-

tivity is realistic. Asserting realistic spiking dynamicsin a model network circuit is

crucial, if one would like to use the network as a scaffold forinvestigating realistic

information processing. Therefore in Chapter 5, I develop a model of the early visual

3



1. INTRODUCTION

pathway (LGN and V1), bearing many anatomical details, and compare this state-of-

the art network model with the same experimental dataset used in the previous chap-

ters, which are recorded analogously from V1 and LGN. In bothsystems, in the model

and the experimental data, I characterize statistics of theneural activity and compare

trial-to-trial variability.

The V1 model extends over (at least)5×5 mm cortical surface. It is adapted specif-

ically to the anatomy of macaque monkeys. The vertical connection structure between

layers builds on earlier work by Haeusler & Maass (2007), andincorporates realistic

functional and structural connection profiles between cortical laminae. Moreover, pre-

ferred orientation of neural sites is used for defining the thalamic input projections as

well as the superficial long-range connectivity.

Besides developing the network model and characterizing its spiking activity, I

optimize parameters of the network model in order to match the firing statistics of the

real system, by applying a new method for comparing efficiently multidimensional

probability distributions. This new technique, using the Maximum Mean Discrepancy

(MMD), is introduced in Chapter 4. Basically, the method finds a function (from

a given function space), that, when applied to two random variables, shows greatest

difference in the means. Using an (universal) recurrent kernel Hilbert space, I show

how to useMMD to perform a statistical test for the two-sample problem, and test its

performance against existing methods.

From the modeler’s perspective it is interesting to see how far apart current network

models are from the reality, as it is represented by experimental data. Since the network

model of Chapter 5 and the monkeys in the experimental data areshown the very same

movie stimuli, a direct comparison of data and model is possible. However, I find

that experimental data is still far from being exactly reproduced by a state-of-the-art

network model of the primary visual area, suggesting that many details of this complex

system still remain unknown.

4



1.1 Publications and contributions

1.1 Publications and contributions

The data analyzed in all Chapters were recorded in the N. Logothetis’ lab. They were

generously made available to me for the research of this dissertation by N. Logothetis

(Max-Planck Institute for Biological Cybernetics). Data were mostly recorded by Y.

Murayama, but also other employees the lab were involved. For completeness of the

presentation, I describe the recording setup in this thesis. Because the subset of data

used and the preprocessing methods differ slightly from chapter to chapter, I include

a brief experimental methods section describing data acquisition and preprocessing in

each chapter. This achieves also a low degree of interdependence between chapters

and thus allows to read each chapter rather independently.

The chapters are based on the following publication and contributions:

• Chapter 2 is based on the following publication:

RASCH, GRETTON, MURAYAMA , MAASS, & L OGOTHETIS (2008). In-

ferring spike trains from local field potentials.Journal of Neurophysiology,

99(3), 1461–76

Y. Murayama and N. Logothetis were responsible for collecting the experimental

data. A. Gretton, W. Maass, and N. Logothetis supervised thework.

• Chapter 3 is based on the following publication:

MONTEMURRO, RASCH, MURAYAMA , LOGOTHETIS, & PANZERI (2008).

Phase-of-Firing Coding of Natural Visual Stimuli in PrimaryVisual Cor-

tex. Current Biology, 18(5), 375–80.

The techniques in information bias correction described inthe method section

of Chapter 3 were developed by the co-authors M. Montemurro and S. Panzeri.

They are stated here for completeness. The bulk of the paper was composed

in team work by M. Montemurro, M. Rasch and S. Panzeri, under the leader-

ship of the first and the last author, which contributed most.Y. Murayama and

N. Logothetis were responsible for collecting the experimental data.

• Chapter 4 is based on the following publications:
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1. INTRODUCTION

BORGWARDT, GRETTON, RASCH, KRIEGEL, SCHÖLKOPF, & SMOLA

(2006). Integrating structured biological data by kernel maximum mean

discrepancy.Bioinformatics, 22(14), e49–e57.

GRETTON, BORGWARDT, RASCH, SCHÖLKOPF, & SMOLA (2007). A

Kernel Method for the Two-sample-problem.Advances in Neural Informa-

tion Processing Systems, eds. Scḧolkopf, Platt, Hofmann,19, Cambridge,

MA, The MIT Press.

GRETTON, BORGWARDT, RASCH, SCHÖLKOPF, & SMOLA (2007). A

Kernel Approach to Comparing Distributions.Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence (AAAI-07), 1637-1641,

AAAI Press, Menlo Park, CA, USA.

GRETTON, BORGWARDT, RASCH, SCHÖLKOPF, & SMOLA (2008). A

Kernel Method for the Two-sample-problem.submitted to Journal of Ma-

chine Learning Resarch.

The theoretical development and proofs of the Maximal Mean Discrepancy were

done by the co-authors A. Gretton, A. Smola, K. Borgwardt, and B. Scḧolkopf.

They are incorporated in this thesis for completeness. I participated in its refine-

ment, implemented all statistical tests and ran most of the performance experi-

ments.

• Chapter 3 is based on the following manuscript:

RASCH, SCHUCH, HÄUSLER, LOGOTHETIS& M AASS (2008). Compar-

ison of firing characteristics of a state-of-the-art network model of macaque

V1 to experimentally recorded data under semi-natural movie stimulation.

Manuscript.

K. Schuch collaborated with the python implementation of the V1 model and

S. Häusler contributed the basic generic microcircuit model framework. N. Lo-

gothetis was responsible for the experimental data and W. Maass supervised the

work.

In the following chapters I will write in the first-person plural pronoun, to empha-

size the collaborative character in the presentation.
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Chapter 2

Inferring spike trains from local field

potentials
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I NFERRING SPIKE TRAINS FROM LFPS

We investigated whether it is possible to infer spike trains solely on the basis of the

underling local field potentials (LFPs). Employing supportvector machines and linear

regression models, we found that in the primary visual cortex(V1) of monkeys, spikes

can indeed be inferred from LFPs, at least with moderate success. Although there is

a considerable degree of variation across electrodes, the low-frequency structure in

spike trains (in the 100 ms range) can be inferred with reasonable accuracy, whereas

exact spike positions are not reliably predicted. Two kinds of features of the LFP

are exploited for prediction: the frequency power of bands inthe highγ-range (40-

90 Hz), and information contained in low-frequency oscillations (< 10 Hz), where

both phase and power modulations are informative. Information analysis revealed

that both features code (mainly) independent aspects of thespike-to-LFP relationship,

with the low-frequency LFP phase coding for temporally clustered spiking activity.

Although both features and prediction quality are similar during semi-natural movie

stimuli and spontaneous activity, prediction performanceduring spontaneous activity

degrades much more slowly with increasing electrode distance. The general trend of

data obtained with anesthetized animals is qualitatively mirrored in that of a more

limited data set recorded in V1 of awake monkeys. In contrast to the cortical field

potentials, thalamic LFPs (e.g. LFPs derived from recordings in dLGN) hold no useful

information for predicting spiking activity.

2.1 Introduction

In a typical electrophysiology experiment, the signal measured by an electrode placed

at a neural site represents the mean extracellular field potential (mEFP) from the weighted

sum of all current sinks and sources along multiple cells. Ifa microelectrode with a

small tip is placed close to the soma or axon of a neuron, then the measured mEFP

directly reports the spike traffic of that neuron and frequently that of its immediate

neighbors as well. If the impedance of the microelectrode issufficiently low and its

exposed tip is a bit farther from a single large pyramidal cell, so that action potentials

do not predominate the neural signal, then the electrode canmonitor the totality of the

potentials in that region. The EFPs recorded under these conditions are related both

to integrative processes (dendritic events) and to spikes generated by several hundred

neurons.
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The two different signal types can be segregated by frequency band separation. A

high-pass filter cutoff of approximately 300-500 Hz is used in most recordings to ob-

tain multiple-unit spiking activity (MUA), and a low-pass filter cutoff of ca. 300 Hz to

obtain the so-called local field potentials (LFPs). A large number of experiments have

presented data indicating that such a band separation does indeed underlie different

neural events (for references see for instance Logothetis (2003)).

In summary, depending on the recording site and the electrode properties, the MUA

most likely represents a weighted sum of the extracellular action potentials of all neu-

rons within a sphere of approximately 140-300µm radius, with the electrode at its

center (Henzeet al. (2000)). Spikes produced by the synchronous firings of many

cells can, in principle, be enhanced by summation and thus detected over a larger dis-

tance (Arezzoet al.(1979); Huang & Buchwald (1977)). In general, experiments have

shown that large-amplitude signal variations in the MUA range reflect large-amplitude

extracellular potentials and that small-amplitude fast activity is correlated with small

ones (Buchwald & Grover (1970); Gasser & Grundfest (1939); Grover & Buchwald

(1970); Hunt (1951); Nelson (1966)).

The low-frequency range (i.e. the LFPs) of the mEFP signal, on the other hand,

represents mostly slow events reflecting cooperative activity in neural populations. Ini-

tially these signals were thought to represent exclusivelysynaptic events (Ajmone-

Marsan (1965); Buchwaldet al. (1965); Fromm & Bond (1964, 1967)). Evidence

for their origin was often gathered from current-source density (CSD) analysis and

combined field potential and intracellular recordings (Mitzdorf (1985); Nadasdyet al.

(1998)). Mitzdorf has suggested that LFPs actually reflect aweighted average of syn-

chronized dendro-somatic components of the synaptic signals of a neural population

within 0.5-3 millimeters of the electrode tip (Juergenset al. (1999); Mitzdorf (1987)).

Later studies, however, provided evidence of the existenceof other types of slow ac-

tivity unrelated to synaptic events, including voltage-dependent membrane oscillations

(e.g. Kamondiet al. (1998)) and spike afterpotentials. Taken together, LFPs repre-

sent slow waveforms, including synaptic potentials, afterpotentials of somato-dendritic

spikes, and voltage-gated membrane oscillations, that reflect the input of a given corti-

cal areas as well as its local intracortical processing, including the activity of excitatory

and inhibitory interneurons.
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Given the different natures of LFPs and MUA, we felt that it would be interesting

to address the question of whether one can infer spiking of neurons from the locally

measured field potentials. Herein we address this question in a straightforward manner.

We use methods derived from the field of machine learning in anattempt to infer

exact spike timings from the underlying LFPs. We compare theaccuracy of spikes

trains predicted by supervised learning algorithms on a wide range of recordings from

the primary visual cortex (V1) as well from the lateral geniculate nucleus (LGN) of

anesthetized and awake macaques and investigate what kind of features of the LFP are

important for inferring spikes from LFP.

2.2 Methods

2.2.1 Data acquisition

Electrophysiological data recorded from 9 anesthetized and 2 awake monkeys (Macaca

mulatta) are included in the present study. All animal experiments were approved

by the local authorities (Regierungspraesidium) and are infull compliance with the

guidelines of the European Community (EUVD 86/609/EEC) for the care and use of

laboratory animals. Surgical procedures are described elsewhere (Logothetiset al.

(2002)).

To perform the neurophysiological recordings in anesthetized monkeys, the an-

imals were anaesthetized (remifentanil (typical1µg · kg−1 · min−1)), intubated and

ventilated. Muscle relaxation was achieved with mivacurium (5mg · kg−1 · h−1). Body

temperature was kept constant, and lactated Ringer’s solution was given at a rate of

10ml · kg−1 · h−1. During the entire experiment, the vital signs of the monkeyand the

depth of anesthesia were continuously monitored. Drops of 1% ophthalmic solution

of anticholinergic cyclopentolate hydrochloride were instilled into each eye to achieve

cycloplegia and mydriasis. Refractive errors were measured and contact lenses (hard

PMMA lenses by Whlk GmbH, Germany) with the appropriate dioptric power were

used to bring the animal’s eye into focus on the stimulus plane. Simultaneous record-

ing of neural activities were made from the primary visual cortex using 8-16 electrodes

configured in 4x4 or 2x8 matrices in a grid of 1-2mm. Electrodetips were typically

(but not always) positioned in the upper or middle cortical layers. The impedance
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of the electrode varied from 300 to 800 kOhm. In the case of simultaneous LGN

recording, an additional set of drives usually comprising 2-4 electrodes was addition-

ally positioned. The electronic interface, including drives, holder and preamplifier, was

custom-designed to minimize cross-talk of signals betweenelectrodes (typically about

1ppm). The signals were amplified and filtered into a band of 1-8 kHz (Alpha Omega

Engineering, Nazareth, Israel) and then digitized at 21kHzwith 16bit resolution (Na-

tional Instruments Co., TX USA), ensuring enough resolutionfor both local field and

spiking activities. Binocular visual stimulation was provided through a two-fiber optic

system (Avotec Inc., FL USA) after fine alignment to each of the animal’s foveas by a

modified retinoscope coupled with a stimulus projector holder.

In the case of the anesthetized animals we differentiate between two different con-

ditions: spontaneous activity (”spo”) and movie-driven data (”stm”). In the former the

input screen is blank for about 5 minutes. In the latter a 4-6 minute segment of a com-

mercially available movie is shown. Movie frames were synchronized with the refresh

rate of the monitor (60 Hz, two syncs per movie frame) and covered 7-12 degrees of

the visual field. Most of the electrodes were confirmed to havea receptive field within

the movie presentation area (see Fig. 2.2.1 B for an example). Multiple trials of movie

presentations and spontaneous activity are run within one recording session (intermin-

gled with recordings of other stimuli not considered here).From these data we include

1304 recorded time series in the present study, which we calltrials throughout this

paper. The data set comprises recordings from 9 animals collected in 12 recording

sessions. From each session we take 5 repeats of movie presentation and 5 repeats of

spontaneous activity trials (with the exception of j97nm1,where only one movie trial

is available). To avoid any subjective selection bias all measured electrode channels

per session are included. This results in 670 trials for spontaneous activity and 634 for

movie stimulus recorded using 134 electrode placements. Movies are identical within

a session but may differ between sessions.

In 3 sessions (two anesthetized monkeys) up to 4 electrodes were simultaneously

placed in the LGN. Thus stimuli reflected in these data (100 trials) are exactly identical

to those in corresponding recordings of the V1 data. Data from awake monkeys are

more limited and were only included in the present study to corroborate results for

the data described above. They are recorded using 1-4 tetrodes from chronic implants

penetrating V1 (see Tolias et al. 2007 for detailed description of surgical methods and
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Figure 2.1: A: Representative electrode recording from Session a98nm5 of an anesthetized

monkey. Upper plot shows the instantaneous firing rate of an experiment during movie pre-

sentation for a V1 electrode in a small time region. Movie presentation starts after a blank

period. Recording time of 170 sec duration starting 5 seconds after movie onset is used for

prediction performance evaluation and is called a trial (see Methods). Thelower plot shows

the LFP trace corresponding to the V1 electrode above.B shows the arrangement of receptive

fields relative to the movie presentation area for Session a98nm5, where simultaneous V1 and

LGN recordings are available. Other sessions have similar electrode arrangements.
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2.2 Methods

recording setup) in a total of 56 trials. Unlike the data fromanesthetized animals the

stimulus conditions here are mixed, with spontaneous activity (no task) and a fixation

task showing gratings of different orientations. All data are processed in the same way

as outlined in the next section.

2.2.1.1 Processing

The data preprocessing steps are as follows. Electrode signals were decimated to

7 kHz. Spiking activity is inferred from high frequencies ofthe resulting signal (see

below). The recording hardware introduces a high-pass filter with a cutoff< 1 Hz;

1 Hz is thus the lowest frequency considered here.

The 7 kHz signal is low-pass filtered with a cutoff frequency of 250 Hz and resam-

pled first to 500 Hz for computational convenience. The resulting signal is low-pass

filtered at 90 Hz to derive local field potentials (LFPs). For low-pass filtering we use

a custom finite impulse response filter (FIR), namely a Kaiserwindow FIR filter with

60 db attenuation in the stopband, a 0.01 db passband ripple,and a transition band of

1 Hz. To eliminate possible phase shifts, signals were filtered forwards and backwards

(using MatLab filtfilt function). The signal is then resampled to a final sampling rate

of 200 Hz.

Good properties of FIR filters are won at the expense of large filter sizes (a few

seconds). However, since we discard leading and trailing portions of> 15 seconds of

each trial, filter on- and offset artifacts are of no concern here.

2.2.1.2 Spike extraction

Spike times are detected by applying a threshold to the high-pass filtered 7 kHz signal

described above (4th order Butterworth, cutoff frequency 500 Hz). Since this MUA

signal is usually asymmetric, the detection threshold is automatically applied to that

side where spike waveforms exhibit greater deflection. To avoid dependency of the

size of spikes the threshold is applied at 3.5 times the standard deviationσ of the

”noise component” of the MUA signal.σ is estimated by calculating the standard

deviation of the signal neglecting the 4.55% (> 2σ) absolute highest values divided

by the percentage of variance which is kept in general, when setting the probability of

values absolute> 2σ to zero.
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Visual inspection confirms that spikes are detected well. Ifthe assumption of a

Gaussian ”noise component” is correct, then the rate of wrongly detected spikes is

about 1.6 Hz (forσ = 3.5). Note that the resulting spike trains will most likely include

spikes from multiple neurons (see Disccusion 2.4). Becausemost recordings were

done with single tip electrodes we do not employ any kind of spike sorting.

2.2.2 Learning to infer spike trains

The learning algorithm has to learn to map from LFP waveforms(or other LFP fea-

tures) to spikes. Ideally, the learning algorithm should output all predicted real-valued

spike timings at once if the LFP time course is given as input.This task requires too

much data, however. Instead, we simplify the task by assuming that spikes are inde-

pendent and that the spike-to-LFP relationship remains constant over time. With these

assumptions one can use a binary classifier, which yields theprediction of a spike (or

no spike) at timet. Concatenating the prediction for eacht results in a predicted spike

train for a given LFP. Note that the independence assumptiondoes not imply that pre-

dicted spike trains are necessarily uncorrelated, as temporal correlation can be induced

by the underlying LFPs.

In supervised fashion the binary classifier is trained on a set of training examples

and tested on a distinct test set. We train a binary classifieron LFP features summarized

in the sample vectorsxi , i = 1, . . . , L, to predict the labelyi ∈ {1,−1}. i is theith

point of the discrete LFP time series with sampling frequency 1/∆ at recording time

ti = i∆+t0. Thusyi = 1 states that there occurs (at least) one spike within time binti,

andyi = −1 indicates no spike. In this framework prediction is temporally restricted

to the sampling resolution of the LFPs, making it necessary to bin the spike timings.

The sampling interval∆ is 5 ms, in accordance with the sampling frequency of the

LFP signal (200 Hz).

2.2.2.1 Learning algorithms

A support vector machine (SVM) was used (Vapnik (1999)) as our learning algorithm.

For a more detailed introduction to SVMs, see for example (Bishop (2006); Burges

(1998); Scḧolkopf & Smola (2002)). Support vector machines perform binary classifi-

cation in a supervised fashion.
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Briefly, the model can be stated as follows (see Bishop (2006)for details)

h(x) = w
T Φ(x) + b (2.1)

where one looks for the decision boundary or weight vectorw. b is a bias term andΦ

a projection into a space of features. Support vector machines choose the hyperplane

which has the widest margin between both classes rather thanan arbitrary separating

hyperplane. This is achieved by enforcing appropriate constraints in the optimization.

For non-separable problems, such as our real-world data, one introduces the concept

of soft margins, i.e. in the optimization one now allows for incorrectly classified ex-

amples, where an additional parameterC regulates the penalty.

SVMs have the power to do nonlinear separation (seen from perspective of the

input space) by choosing an appropriate kernel which implicitly defines the feature

mapΦ. Herein non-linear radial basis function kernels (RBF kernels) are used.

As a simple alternative to SVMs we used standard linear regression (with a constant

bias term) on the label vector and the samples (see e.g. Bishop (2006)). Briefly, using

a linear modelhreg(xi) = w
T
xi + b we calculated the optimal weight vectorw

∗ by

minimizing the mean squared error〈(hreg(xi) − yi)
2〉 on the training samples. Class

labels on the test set were obtained by thresholding with thesign function, i.e.yj =

sign(h∗reg(xj)).

2.2.2.2 Extraction of LFP features

An LFP feature could be any aspect of the LFP which one might deem helpful for in-

ferring whether there is a spike atti or not. In our analysis, we used the LFP at different

lags with respect toti, its power at different frequencies, and the phase of oscillations

at particular frequencies (also at different lags). Multiple features are simply concate-

nated in the sample vectorxi. Note that each dimension of the resulting samples{xi}
is normalized to zero mean and unit standard deviation. Features are extracted prior to

dividing the samples into test and training sets.

If g(ti) represents the (normalized) voltage at sampling bin , a timefeature may

be defined asTk(ti) := g(ti+k), whereτ = k∆ represents the time lag (we neglect

boundaries to simplify description). FeaturesTk(ti) represent simply the LFP time

course relative to sample timeti.
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Another type of feature, which we denotePf,k(ti), is the estimated power at (cen-

ter) frequencyf of the LFP time course at timeti+k. To obtain an estimate for

the power at a given frequency and time, we calculated the spectrogram, employing

the multitaper approach introduced by Thomson (Jarvis & Mitra (2001); Percival &

Walden (2002); Thomson (1982)). As spikes are single eventson the time scale of∆,

we chose a high temporal resolution at the expense of frequency resolution. We set

the moving window to 150 ms and the time-bandwidth product to1.6, which implic-

itly sets the half bandwidth toW = 10.67 Hz. Spectral estimation was averaged over

two Slepian tapers. As this window setting does not allow accurate power estimation

below 20 Hz we used larger windows for bands below 20 Hz (500 ms) and below 6 Hz

(2 s). This reduced the half bandwidth to 3.2 Hz and 0.8 Hz for frequencies below

20 Hz and 6 Hz, respectively. We also tried Morlet wavelets with variable bandwidth

per frequency, but this did not alter prediction performance.

To access phase information at particular frequencies of the LFP, we first band-

pass filtered the recorded signal with the FIR Kaiser filter (described above) with a

bandwidth of 2 Hz (Fig. 2.6) or 4 Hz (Fig. 2.7), and then used the Hilbert transform to

extract an instantaneous phaseϕf (ti) at frequencyf . From these signals we defined

phase featuresφf,k(ti) := cos(ϕf (ti+k)) having a lag ofτ = k∆. These features have

identical phase information as the bandpassed signals but are devoid of any amplitude

modulation. Additionally, we used̂φf,k(ti) := sin(ϕf (ti+k)) in the feature analysis of

Fig. 2.6 to help the classifier linearly extract phase locking at phases where the cosine

would be near the zero crossing.

2.2.2.3 Performance measures

The kappa measure was used as a measure of performance (Cohen (1960)). Letpl,r

be the fraction of samples having target labell ∈ {−1, 1} and predicted labelr ∈
{−1, 1} and letql andq̃r be the fraction of samples in the test set which have the label

l in the target or the labelr in the prediction, respectively. Then the chance level for

classification is given byρc = q−1q̃−1 + q1q̃1. If we defineρ0 = p−1,−1 + p1,1 to be the

overall fraction of correctly classified samples (both positive and negative), thenκ is

given by

κ :=
ρ0 − ρc

1 − ρc

(2.2)
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This measure is a normalized above-chance classification rate. It can be easily seen

thatκ equals zero if prediction is at chance level, i.e.ρ0 = ρc, and equals one if the

predicted classification is perfect, i.e.ρ0 = 1.

Another performance measure is the Spearman rank correlationrσ between smoothed

predicted spike trains and target spike trains. This might give a more intuitive picture of

the prediction quality. If not stated otherwise, spike trains are smoothed by a Gaussian

kernel of width 25 ms.

Yet another measure for prediction quality is the mutual information between class

labels. The mutual information (MI) between target spikesS and the prediction out-

come of a classifierC(F ) using LFP featuresF and labelsL := {−1, 1} is:

I(S;C(F )) =
∑

l∈L

∑

r∈L

pl,r log2

pl,r

qlqr
(2.3)

where we take the probabilities defined above. This estimation of MI is different to

non-parametric approaches in that it can only access dependency which is in reach of

the classifier; thus, one has to make sure that the classifier captures the main aspects of

its dependency. Note that we use the naive estimator for mutual information (without

bias correction (Panzeriet al. (2007))). Since all MI value calculations involve an

identical number of bins – namely two, one for each class – we can nevertheless safely

compare results even for classifications with different numbers of features. However,

the absolute MI values might be biased.

To access redundancy, synergy, and independence of information (Polaet al.(2003);

Schneidmanet al. (2003)) conveyed by two featuresF1 andF2 about the spiking ac-

tivity S, we estimate mutual information using two classifiers trained on featuresF1

andF2 individually, yieldingI(S;F1) := I(S;C(F1)) andI(S;F2) := I(S;C(F2)).

Then a third classifier is trained on both features jointly, yielding I(S;F1, F2) :=

I(S;C(F1, F2)). If both features carried independent information from thepoint of

view of the classifier, both features together would convey identical information as in-

dividual features, i.e.I(S;F1, F2) = I(S;F1)+I(S;F2). If both features were related

by a one-to-one mapping (completely redundant informationabout the spikes), then all

terms would be equal,I(S;F1) = I(S;F2) = I(S;F1, F2). If the two features did not

carry information individually, i.e.I(S;F1) = I(S;F2) = 0, but carried information

together,I(S;F1, F2) > 0, they would be termed (completely) synergistic. Thus we
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define a normalized degree of synergy of information about the spikes (as measured by

the classification algorithm) as (Schneidmanet al. (2003))

syn(F1, F2|S) :=
I(S;F1, F2) − I(S;F1) − I(S;F2)

I(S;F1, F2)
(2.4)

This measure ranges from−1 in the case of completely redundant information to1 for

completely synergic information. The measuresyn(F1, F2|S) is zero if both features

F1 andF2 convey independent information about the spikesS.

To analyze prediction accuracy on different time scales, weused spectral coher-

ence (Jarvis & Mitra (2001)). Spectra were again estimated via a multitaper approach

designed for point events (Jarvis & Mitra (2001)). Here the time-bandwidth product

was set toTW = 3 using the average ofK = 5 tapers, yielding a half bandwidth of

W = 0.001 Hz for T = 17 s.

2.2.2.4 Performance evaluation

We evaluated the prediction performance for each trial separately, using 10-fold cross-

validation. We analyze a 170 second region, avoiding the on-and offset of the movie

stimulus. Spontaneous activity trials are also restrictedto 170 s duration. In the case

of tetrode recordings, performance is estimated as the average performance of the four

wires of the tetrode.

Hyperparameters for the SVM algorithm were estimated as follows. The RBF ker-

nel widthρ was selected by a heuristic procedure. We tookρ to be 1.77 (or 3.54) times

the median distance of all Euclidean distances in the training set. For each trial we

chose thatC (andρ) showing the best performance (averaged over 10 cross-validation

runs on a logarithmic grid of 25 values from 0.25 to 400). We visually confirmed

that this range is appropriate for our data (not shown). We used the libSVM library

(http://www.csie.ntu.edu.tw/cjlin/libsvm/) for all SVMcalculations.

Since the sample sizes were heavily biased towards the negative (non-spiking) class

we randomly picked approximately the same number of samplesof both classes from

the training region. This effectively changes the loss function from equal loss to higher

importance for spikes (about a 5-fold increase, depending on the mean firing rate). We

used 1000 and 1200 samples for spiking and non-spiking classes (or the maximum

available in the training region with a constant class ratio) and empirically found this to
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be a good compromise between prediction quality and computational speed, as more

than 1000 samples only marginally improved the results (notshown). Training the

classifier on all possible samples was prohibitive due to theenormous sample size. We

tried to employ class biasing in theC parameters (Musicantet al.(2003)), but this only

increased computation time with little gain in prediction quality.

The test set was always a temporally contiguous region to avoid feature correlation

of trained and tested samples which might lie nearby in time if a randomized set of

samples were used.

2.2.2.5 Feature selection algorithm

We now describe how to determine the usefulness of differentfeatures for spike pre-

diction. Whereas features important for the SVM classifier are hard to interpret, in the

case of linear regression (with squared loss) one can derivean analytical expression

for the prediction error of a set of features involving only the spike triggered averages

and correlation among features. Based on this prediction error, we derived an algo-

rithm which forwardly selects a small subset of features outof a much larger pool of

features. As explained below, the selected subset will showminimal prediction error

compared to other subsets with the same number of features. In that sense the subset

of features selected by our algorithm represents the most useful features from a given

pool. As this feature selection can be efficiently done for huge feature pools, we re-

stricted feature analyses to linear classification, ratherthan using the SVM classifier.

This is not too restrictive in our case, as linear classification achieves almost 90% of

the performance of an SVM classifier (see Results section).

In linear regression we look for the optimal weight vectorw which has minimal

error in a mean squared sense,

ǫ(w) =
〈

(yi − w
T
xi)

2
〉

(2.5)

where the brackets indicate averaging over all samplesi. Minimizing the error is

straightforward and results in the optimal1
w

∗ of

w
∗ =

〈

xix
T
i

〉−1 〈yixi〉 (2.6)

1Note that the optimalw in the above statements has only minimal error for the regression, and that

there may be a better weight vector for classification. We neglect this here for the sake of simplicity.
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provided that the estimated correlation matrixA :=
〈

xix
T
i

〉

has full rank. We note that

we have a binary classification, henceyi ∈ {−1, 1}. Thus

〈yixi〉 = − c−1

c1 + c−1

m−1 +
c1

c1 + c−1

m1 (2.7)

wherem−1 andm1 are the class means for the non-spiking and spiking class, respec-

tively, andc−1 andc1 are the number of samples in each class. With the condition that

each feature is normalized to variance one and zero mean, Eq.2.6 reduces to

w
∗ = cA−1

m1 (2.8)

with c := 2c1
c1+c−1

. The minimal error is then given by

ǫ(w∗) = 1 − c2mT
1A

−1
m1. (2.9)

In other words, the error of the linear regression is only dependent on thespike

triggered averagem1 and the correlation among features. We note that if we restrict

ourselves to the use ofn features (the dimensions ofxi) out of a pool ofN > n

features, the above equations remain valid if the correlation matrix and the mean are

also restricted to these features only (that is,A has sizen × n with rankn andm1 is

n-dimensional).

In order to select a set ofn features we employ the following iterative algorithm.

We start with the feature which has highest spike triggered average, i.e.f1 = argmaxj|(m1)j|
(the variance of each feature being normalized to one). Assume now thatn−1 features

are already selected. Then we search through allN − n + 1 remaining features and

choose one that minimizes the error (Eq. 2.9), where the restriction of the correlation

matrix is now enforced on then features rather than onn − 1 (and analogously with

m1). We stop this iteration when the desired number of featuresm≪ N is selected.

This algorithm is highly efficient in finding a good set of features, since we need

only to calculate the correlation matrix between the selected features and all other

features (which costs much less effort than calculating it for all pairs).

2.3 Results

This section is organized as follows. After showing the general spike-to-LFP relation-

ships present in our data, we report the population performance for the task of pre-

dicting spike trains from LFP, focusing first on data from V1 of anesthetized monkeys
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(9 monkeys) collected during the presentation of 5min of commercial movie stimuli

and equally long periods of spontaneous activity. We then compare these results with

a more limited set of sessions recorded from V1 of awake monkeys (2 monkeys) and

with results on data from LGN of anesthetized monkeys (2 monkeys). Finally, we in-

vestigate which LFP features are important for the prediction task and which aspect of

the spikes they code for.

2.3.1 Average spike-to-phase and LFP-power relation

Figure 2.2.1 shows spiking activity and (normalized) LFPs of a representative elec-

trode. Relationships between spiking activity and underlying LFPs are visualized in

Fig. 2.2.

In Fig. 2.2 A the spike-triggered average (STA) of the LFPs ofan example elec-

trode during movie stimulus is plotted. Clearly, there is a linear relation between spikes

and LFPs. One notes a sharp negativity at spike position at zero time lag and a promi-

nent upswing for positive time lags, i.e. after spiking has occurred. Likewise, in the

spike triggered average of the spectrogram (Fig. 2.2 B) power is enhanced in the high-

frequency range (40-90 Hz) during spiking activity. Enhancement of power at high

LFP frequencies as a response to spikes is common among electrodes, stimulus condi-

tions, and monkeys, as we will see in the next sections.

Figure 2.2 C shows the probability of spiking activity at theoscillation phase of

a particular LFP frequency for the same example electrode, but averaged over 30 re-

peats of the movie presentation (about 120 min recording time). One notes that the

phases of all LFP frequencies are at least weakly related to spiking activity (Raleigh

test of non-uniform angular distribution). Most strikingly, spikes are relatively tightly

locked to phases of low frequencies up to 10 Hz. The generality of this behavior is

illustrated in Fig. 2.2 D, where the phase preferred by spikes is plotted as an average

across all data from V1 (anesthetized animals). The averagepreferred phase shifts with

frequency from the onset of a positive half wave to the valleyof the LFP oscillation

(compare to Fig. 2.2 E). This behavior is very consistent, regardless of whether activ-

ity is spontaneous or movie-driven. For some electrodes thepreferred phase-frequency

dependence is slightly different (as in the example of Fig. 2.2 C for high frequencies).

For a few electrodes the phase-to-spike relation seems to bemirrored atπ (not shown).
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Figure 2.2: Spike-LFP relationships for one electrode in V1 of an anesthetized monkeyduring

movie stimulation (A-C), and across all recordings from V1 in anesthetized monkeys (D-E).

A: Spike-triggered average LFP. For significance levels inter-spikes intervals are shuffled and

the standard deviation of the resulting STA calculated.B: Spike-triggered average of the LFP

spectrogram (see Methods), with power series normalized to zero mean and standard deviation

one. Power at high frequencies is clearly modulated by spiking activity, whereas power at

lower frequencies shows only diffuse dependency on spikes.C: Probability distribution of LFP

phases at a particular spiking position. LFP phases are computed via Hilbert transform (1 Hz

bands). Here all spikes over 30 repeats of movie-driven activity are included (same electrode

as before). Note that the color map shows only a narrow range of probabilities and that values

above or below the limits are truncated. Black dots indicate the preferred (i.e.mean) phase.

No phase locking of spikes would result in a uniform distribution at 2% per bin. While locking

to low frequencies is strong, locking to high frequencies is only weak (butpresent). PlotD

shows the average preferred phases for all electrodes across all anesthetized data individually

for movie-driven activity (”movie”) and spontaneous activity (”spont”). Bars indicate standard

errors. The phase range containing half of the spikes around the preferred phase is indicated

by the shaded area.E illustrates the interpretation of phase, showing that spikes are locked at

very low frequencies to the onset of a positive half wave and at high frequencies to the valley.
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The gray shaded area in Fig. 2.2 D shows the (average) phase range within which

50% of the spikes fall. It would be zero for perfect phase locking andπ for no phase-

spike relation. One notes that this range is somewhat smaller for low frequencies

(0.85π), but approaches 0.98π for frequencies higher than 20 Hz, indicating that the

phase locking is far from perfect at all frequencies, and is especially weak for high

frequencies.

In summary, we have seen that there is indeed a consistent relationship between

LFPs and spiking activity on average. In the next sections weask to what degree it is

possible to exploit these relations (and maybe other information available in the LFP)

in a systematic way to infer spikes from the LFP.

2.3.2 Population prediction performance

In Fig. 2.3 a typical example of a predicted spike train is depicted together with the

utilized LFP features. Panels A and B show 8 seconds of LFP spectrogram and the

time course in the test region, respectively. Small vertical lines in panel B indicate

spike times before binning to 5 ms resolution. Several interesting points can be noted.

As expected from the LFP-to-spike relations discussed in the last section, spikes pref-

erentially occur in the upswing and valleys of very low and medium LFP oscillations,

as seen for instance at times 171 s and 173.4 s in panel B. Additionally, the power of

multiple frequencies is enhanced when a burst of spiking activity occurs, as suggested

by Fig. 2.2 B, but the frequency response to bursts is diffuseand variable (compare

the burst at 173.4 s to that at 174.5 s). The clustering of spiking activity on a time

scale of a few hundred milliseconds in this example is actually quite typical in our V1

data (see below). For the single spikes in between the clusters no feature of the LFP is

immediately predictive.

Figure 2.3 C shows target and predicted spiking activities.Prediction of spikes is

made for individual sample times at a resolution of 5 ms usinga set of LFP time course

and frequency features (see below). Concatenating the prediction over time yields a

predicted spike train which is compared to the target spike train. One notes that the

prediction captures at least approximately the overall structure of the spike train. The

occurrence of bursts of spiking activity, which are associated with easily seen traces

in the LFP time course and spectrogram, is predicted well. Nevertheless, the exact
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Figure 2.3: Example of spike prediction from LFP (anesthetized monkey, Session a98nm5,

spontaneous activity). PanelA shows the (normalized) spectrogram of the 8 seconds of LFP

activity, the time course shown in panelB. Simultaneously recorded spikes are indicated by

marks before binning to the LFP resolution (5 ms). PanelC shows the binned target spikes and

their spike density function (blue) together with the predicted spikes and theirspike density

function (red). The prediction is relatively good (κ = 0.40, r25ms = 0.60) on this trial, but

other trials show even better performance (compare tor25ms values of other trials in Fig. 2.4 B

”spo”). One notes that regions of high activity are well predicted, whereas the location of

single spikes is less accurate. Classification is done with the SVM-RBF classifier trained on

the region 35-160 sec using the same features as for the population analyses (Fig. 2.4).
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onsets and offsets of the bursts are somewhat inaccurate in the prediction. Even some

smaller bursts and single spikes are closely predicted (172.5 s), although no clear mark

in the LFP time course or spectrogram can be seen with the naked eye. However, their

length (176.6 s) and exact position (176.3 s) sometimes seeminaccurate. There are

also occasions where spikes are simply missed (172.9 s) or fabricated (173.9 s).

Prediction performance is evaluated in different ways. Onemeasure is theκ per-

formance, a measure which is defined on the samples in the testset and is positive for

above-chance classification; it equals one for perfect classification (see Methods 2.2

for definitions). In contrast, the correlation measurerσ (see Methods 2.2) is defined

as a local average in the time domain and is therefore less sensitive to small temporal

inaccuracies. The performance measureκ of the predicted spike train in Fig. 2.3 C has

a value ofκ = 0.40, which is relatively good (but not the best possible, see below).

Rank correlation isr25ms = 0.60.

In the example of Fig. 2.3, the predicted spike train resembles the original to a

certain degree. We ask whether this prediction quality carries over to LFPs recorded

from different monkeys, electrodes and stimulus conditions. For that we estimated

prediction performance using a large data set (see Methods 2.2). Inferences are made

on the basis of a set of LFP features, with which we observed a dependence between

spikes and LFPs in the previous section. In the population analysis we include as

features the time course around each sample position (in a window of 100 ms before

and 300 ms after spike position) and an estimate of the frequency content of LFPs

at zero time lag (Pf,0(ti) see Methods 2.2), resulting in a total of 116 features. This

feature set generally produced good performance (with a reasonable computational

speed) over a wide range of data. For the prediction itself a non-linear support vector

machine is employed with radial basis functions such as kernel (SVM-RBF) and linear

classification (see Methods 2.2 for details).

In Fig. 2.4 the prediction performance over all trials is evaluated (on 10 cross-

validation runs) and averaged. The anesthetized V1 data setis labeled ”spo” for spon-

taneous activity and ”stm” for movie stimulus driven activity. We shall focus on this

data for the moment. The remaining conditions shown in this plot will be discussed

below.

Plot A shows the average performanceκ for the SVM RBF classifier and for linear

classification. From the results we draw the following insights. First, since perfor-

25



I NFERRING SPIKE TRAINS FROM LFPS

0 2 4 6 8 10
0

20

40

60

80

R
el

at
iv

e 
pe

rf
or

m
an

ce
 κ

/κ
0m

m
 [%

]

Electrode distance [mm]

 

 
stm ± SE
spo ± SE

−3.3%mm−1+44%

−0.2%mm−1+43%

0

0.05

0.1

0.15

0.2

0.25
A

vg
. κ

 p
er

fo
rm

an
ce

 LFP:     V1
 Spikes:     V1

LGN
V1

V1
LGN

LGN
LGN

 Electrode configuration

 

 
Same electrode (stm)
Cross electrodes (stm)
Same electrode (spo)
Cross electrodes (spo)
Significant performance
Not  significant

A B

C D

stm spo awake stm (L) spo (L)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Condition

A
vg

. κ
 p

er
fo

rm
an

ce

 

 
SVM RBF
Linear regression

stm spo awake stm (L) spo (L)
0

0.2

0.4

0.6

0.8

1

Condition

R
an

k 
co

rr
el

at
io

n 
[σ

=
25

m
s]

 

 
a98nm5
a98nm6
c98nm1
c98nm2
d04nm1
d04nm2
d98at
g02nm1
g97nm1
georgios3
j97nm1
l97nm1
r97nm1
s02nm1

Figure 2.4: Population performance for spike prediction from LFP.A: Average prediction

performanceκ for SVM and the linear regression classifier across conditions (anesthetized

monkey V1, movie stimulus (”stm”), anesthetized monkey V1, spontaneous activity (”spo”),

awake monkey V1 with mixed stimuli (”awake”), and spontaneous activity or movie-stimulus

driven activity in anesthetized monkeys from LGN, ”spo (L)” and ”stm (L)”, respectively).

Prediction is above chance level for all conditions (see Results section for significance tests).

B: Prediction accuracy of the non-linear classifier evaluated by rank correlation between target

and predicted spikes train smoothed by a Gaussian kernel of widthσ = 25 ms. Red horizontal

lines indicate the average performance within each condition, and its standard error. Small

black lines show the quality on individual trials. In some cases prediction yields very accurate

results, with correlations as high as 0.8-0.9. Black curves on the sides of each condition are

smoothed histograms over trials. Symbols indicate the average performance of individual ses-

sions (i.e. one day of recording). Average session performance clusters near the overall mean,

but variance for individual electrodes is high.C: Cross-electrode prediction. LFPs are taken

from one electrode and spikes from another. Relative prediction decreases much faster with

increasing electrode distance in the ”stm” condition than for the ”spo” condition. A linear fit

of the data points is also shown. Vertical lines indicate standard errors.D: Average prediction

performance for simultaneous LGN and V1 recordings (3 sessions, 2 monkeys). Performance

is compared for available cross-electrode prediction from different areas and with average per-

formance when using the same electrode for spikes and for LFPs.
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mance measureκ is greater than zero for above-chance prediction it can be said that

both classifiers can exploit information in the LFP time course to predict spiking ac-

tivity (all conditions highly significant; T-testp < 10−6, Wilcoxon signed rank test

for zero medianp < 10−6). Second, prediction quality for the stimulus condition and

for spontaneous activity differs only slightly: indeed, one cannot reject the hypothe-

sis that the underlying distributions have identical means(two-sided unpaired T-test

p = 0.21, linear p = 0.18). However, if one compares pairwise recordings during

spontaneous activity and stimulus presentation done with identical electrodes, mean

and median prediction performance on spontaneous activityis significantly better than

on stimulus-driven activity (one-sided paired T-testp < 10−4, linearp < 10−4; for the

distribution free Wilcoxon matched-pairs signed-ranks testp < 10−4, linearp < 10−3).

Average prediction performance for spontaneous activity isκ = 0.211 ± 0.006 (linear

κ = 0.185 ± 0.005) andκ = 0.201 ± 0.005 (linearκ = 0.175 ± 0.005) for stimulus

driven activity.

Third, non-linear margin classification is consistently better than linear classifica-

tion (one-sided paired T-test ”stm”p < 10−6, ”spo” p < 10−6; Wilcoxon matched-

pairs signed-ranks testp < 10−6). It amounts to about a 12% increase in performance

on average. This suggests that the mapping from LFP featuresis non-linear. However,

since a simple linear regression classifier already achieves almost 90% of the accuracy

of the non-linear classifier, one could state that the LFP feature space exploited here

seems expressive enough for this task.

We found that for individual trials performance varies widely. For selected trials

prediction performance can reachκ = 0.65. Plot B of Fig. 2.4 shows the rank cor-

relation measurer25ms of the SVM RBF prediction. Each thin short line represents

performance for an individual trial. While the correlation for some trials is as high as

0.8-0.9 on this moderately small time scale (25 ms), it is almost zero in others. There

are some trials where prediction fails completely in each ofthe conditions. The failing

trials are not all from the same sessions, since the session means (markers) tend to

cluster around the overall mean.

There is not much variability in performance over time: the average standard devi-

ation for theκ performance of 5 repeats of 170 ms recordings for the same electrodes is

0.023±0.002 for stimulus–driven activity, 0.026±0.002 for spontaneous activity and

0.045±0.002 for both together. This is in contrast to the variance across electrodes
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recorded simultaneously. Here the average standard deviation (in κ) is 0.113±0.004

for stimulus-driven and 0.130±0.005 for spontaneous activity. The roughly 25-fold

increase in variance across electrodes compared to within-electrode variance suggests

that prediction performance is a matter of which electrode is being observed, rather

than stimulus condition or time. Electrode tips might be positioned in a region where

the arrangement of current sources and sinks might differ (e.g. in deep or superficial

layers), or where active neurons might be less well correlated with the bulk activity of

the cortex. Since we cannot distinguish the layers from which electrodes record, we

cannot pursue this further.

Up to now we have presented only results for recordings from V1 of anesthetized

monkeys. We also have a limited amount of data available fromV1 where monkeys

were awake and behaving. The stimuli for the awake data set are mixed and include

spontaneous activity and fixation tasks. Another pool of data consists of recordings

from LGN of anesthetized monkeys (see Methods 2.2).

We see from Fig. 2.4 A that prediction differs quite drastically for the different

data types. Spike prediction for the anesthetized monkey data from V1 is more than

5 times better than in the LGN, where performance is hardly above chance: on average

κ = 0.035 ± 0.005 (linear κ = 0.033 ± 0.005) for movie-driven activity andκ =

0.027 ± 0.003 (linearκ = 0.022 ± 0.003) for spontaneous activity.

As in V1, there is little difference between spontaneous andmovie-driven activity

in LGN, although there is a reversed tendency for spike prediction to be easier on

movie-driven activity than on spontaneous activity. This tendency is barely significant

(one-sided paired T-testp = 0.02, linearp = 0.01; Wilcoxon matched-pairs signed-

ranks testp = 0.05, linearp = 0.08).

We find that average prediction performance on awake data isκ = 0.063 ± 0.005

(linearκ = 0.046 ± 0.005). This is much worse than on anesthetized data (unpaired

T-testp < 10−5), but still significantly better than on LGN data (all unpaired one-sided

T-testsp < 0.05). Figure 2.4 B reveals that individual trials have a correlation of target

and prediction similar to that in anesthetized monkeys. There are trials with correlation

up tor25ms = 0.6, whereas in the case of the LGN, no trial exceeds 0.3 correlation.
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2.3.3 Cross electrode predictions

The area of cortex which contributes to the generation of LFPs is different from that

producing our spiking signal (see Introduction 2.1). Thus,it might be interesting to

see how the relationship between the two signals changes with distance. As recordings

were done with multiple electrodes simultaneously (in the data set from anesthetized

animal), we tried to infer spikes from LFPs collected with two different electrodes. In

Fig. 2.4 C the average performance is plotted against the (3-dimensional) distance of

the electrode tips. To facilitate comparison, performanceis evaluated relative to the

average performance achieved using the spiking signal fromthe electrode from which

the LFPs were taken.

One notes that prediction performance drops to about 40% when electrodes are

1 mm apart (the minimal distance in our recording setup). Interestingly, for stimulus-

driven activity performance degrades significantly with distance (rank correlation be-

tween distance and relative kappa performance using all measurements:−0.20, p <

10−4), whereas for spontaneous activity no significant correlation with distance can be

found for distances up to 1 cm (rank correlation 0.015,p = 0.2). Note that the number

of samples becomes relatively small for distances greater than 6 mm since rectangular

electrode grids with 1mm spacing are used for most sessions.However, we can safely

compare spontaneous and stimulus-driven activity becausethe electrode placements

do not change with the condition.

As LGN data was collected while other electrodes simultaneously recorded from

V1, we can investigate whether the LFPs of V1 can be predictedon the basis of spikes

from LGN and vice versa. This is shown in Fig. 2.4 D averaged over data from the 3

sessions recording simultaneous measurements from V1 und LGN (see Methods 2.2).

Performance is averaged either across electrode predictions (regardless of distances)

or over all predictions using the same electrode for both signals. Although results are

difficult to interpret because of the limited size of the dataset, one notes that using

LFPs from LGN and spikes from V1 results in performance abovechance, whereas

LFPs from V1 seem to hold no information about spikes in LGN (unpaired Wilcoxon

signed rank test for median performance different from zero, significance level 0.05).
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2.3.4 Temporal accuracy of predicted spike trains

We found an averageκ value of about 0.2, which is well above chance but nevertheless

far from perfect prediction atκ = 1. On the other hand, in example Fig. 2.3 C some

features of the target spike trains seem to be captured well by the prediction, especially

regions of high and low activity, which alternate on a time scale of about 0.5 s in this

example. Thus one might ask at what time scale the predicted spiking activity most

closely resembles the target spiking activity, or at what timing accuracy the prediction

fails.

To answer this we evaluated the coherence between target andpredicted spike train

(Fig. 2.5). Coherence is a correlation measure in the frequency domain. Coherence at a

particular frequency makes a statement about the exactnessof the prediction on a time

scale of one over that frequency. We also estimated the temporal accuracy directly in

the time domain (by varying the correlation kernel width) where one arrives at similar

conclusions (not shown).

In Fig. 2.5 one observes that coherence is low for high frequencies and rises for

low frequencies. Thus the general resemblance of a predicted spike train might be

adequate, but the exact spike position is often predicted with some jitter. This is also

evident in the example of Fig. 2.3.

Coherence drops at about 25 Hz for the anesthetized V1 data. This time scale is

comparable to a spike train whose spikes are jittered by Gaussian random noise with

a standard deviation of 25 ms. Coherence levels of such surrogate data are indicated

by the dashed lines in Fig. 2.5. Since the jitter destroys allinformation in the high

frequencies, the plateau at low coherence for the surrogatedata can be taken as a

significance level for the coherence estimation. In surrogate data low frequency aspects

stay completely intact (thus coherence of 1), but for predicted spike trains this is only

partly the case. However, average coherence rises considerably for larger time scales

compared to smaller ones, suggesting that at least in a subset of trials, slow structure

is well predicted.

Data from the awake monkey is less coherent at low frequencies but much more

so than for data from LGN, where almost no significant coherence is observed, even

for low frequencies. Note that we have far fewer trials for awake and LGN data, so

averaging is less effective in smoothing.
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Figure 2.5: Coherence levels of predicted and target spike trains. Coherence is plotted against

frequency and is averaged over all trials for each condition. For comparison we included surro-

gate data, in which spike trains were generated with the same ISI distribution as inthe monkey

data. Gray dashed lines show coherence between surrogate spike trainand its jittered version

with Gaussian noise of different standard deviationsσ (from 5 ms to 500 ms, as listed in the

plot). Coherence drops for higher frequencies, suggesting that on average prediction is only

reasonably good for slow structure in the spike trains. Note that the chance coherence level is

at about 0.15 here, as shown by the surrogate data. Chance levels do not tend to zero because

coherence is estimated on 10 CV-regions (each 17 s duration) and only subsequently averaged

over all trials. Colored regions indicate standard errors.
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In summary, predicted spike trains are seldom accurate to a spike timing precision

of below 25 ms, as suggested by comparison to a jittered version of the original spike

train. On the other hand, predicted spike trains capture structure on a larger time scale

reasonably well, say for clusters of high spiking activity in the 100 ms range.

2.3.5 LFP features important for inferring spikes

For determining the usefulness of particular LFP features for inferring spiking activity,

we iteratively select a small number of features out of a large pool of features. The

selected subset shows minimal prediction error for a given number of features, and

therefore selected features can be seen as the most important for prediction. As spike

prediction in LGN is almost impossible, only V1 data are analyzed in the following.

We consider a feature pool consisting of phase and power features (Pf,k, φf,k, and

φ̂f,k). Phase is estimated on 45 frequency bands each 2 Hz wide, while the power

featuresPf,k have different frequency resolutions (see Methods 2.2). Setting k ap-

propriately, we include time lags of up to 3 s in both directions (before and afterti).

Out of this pool of features, containing togetherN = 138115 features, only up to

m = 10 features are selected for each trial individually using thealgorithm outlined in

the Methods 2.2 section. Figure 2.6 D shows that, on average,selecting only 10 fea-

tures out of the huge pool is enough for a linear classifier to approach the performance

of the linear classifier used previously (Fig. 2.4), which employed 116 general features

(dashed line). For the first five selected features the gain inperformance is highest.

Figures 2.6 A-C show histograms ofm = 5 selected, most important features ag-

gregated for all trials. Phase- and power-related featuresare colored blue and red,

respectively. Analogous to previous results, useful features differ only slightly be-

tween stimulus-driven activity (Fig. 2.6 A ”stm”) and spontaneous activity (Fig. 2.6 B

”spo”): stimulus induction does not seem to induce a generalchange in the prefer-

ence of features for spike-LFP interaction. One notes that in both spontaneous and

stimulus-driven activity power fluctuations in the highγ-band (40-90 Hz) are pre-

ferred features. Selected frequencies are biased towards high values, with 80-90 Hz

being the most likely selection. Indeed, high-frequency power features are selected

as the first and most useful feature in about 90% of the trials (and in 82% in awake
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Figure 2.6: Most useful LFP features for spike prediction. Distribution ofm = 5 selected

features per trial, pooled over all trials. Color plots show the density of the selected features

in the feature space (frequency and time lag). Each feature is represented by a Gaussian with

95% of its density falling into the width of correlatedness (i.e. the time window and band-

width of spectral estimation for power features; we have chosen a quarter oscillation period

for phase features). Marginal plots show the marginal distribution of the histogram for abso-

lute lags up to 3 seconds, where colors code for feature type (powerPf,k (red), phase features

φf,k andφ̂f,k (blue)). PanelA-C show conditions ”stm”, ”spo” and ”awake” (as described in

Fig. 2.4). See Results section for discussion. PanelD: Performance of linear regression re-

stricted tom selected features relative to the performance of the full linear classifier.To avoid

overfitting, performance is tested on a time region of each trial which was notused to estimate

the importance of features.∆κ denotes the difference in prediction performanceκ between

the restricted linear classifier using up tom selected features and the full linear classifierκFull

with 116 features (as in Fig. 2.4).〈∆κ〉 divided by the mean performance of the full classi-

fier is plotted against the number of selected featuresm. One observes that performance with

selected features approaches the full classifier.
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animals) (not shown). The time lags of the selectedγ power features are almost sym-

metrically distributed around zero (with a small bias toward positive lags) in a zone

spanning approximately 50 ms to either side. There are smaller symmetrical peaks

at 150 ms, which may be attributed to the power estimation, where we use a moving

window of 150 ms duration. Likewise peaks at 80 Hz and 60 Hz areintroduced by

spectral estimation as the bandwidth is roughly 20 Hz (see Methods 2.2).

We identified low-frequency information as a second class ofuseful LFP features,

in particular phase information of low-frequency bands below 10 Hz. Time lags of

selected phase features are mostly positive, meaning that the time of the feature is

most informativeafter the spike. Useful lags vary from -50 ms to 200 ms, depending

on the frequency, and they can be as long as 500 ms for the lowest frequency band (up

to 2 Hz). Time lags vary according to an oscillation period ofthe low bands. Power

modulations in the low-frequency bands are selected about as often. The time lags of

these features are distributed widely, which is caused by the long window setting of

2 seconds needed to estimate power at low frequencies (see Methods 2.2).

Bands from 10 to 40 Hz, especially 15 Hz to 30 Hz, seem to be muchless im-

portant for inferring spikes. Despite a small number of scattered features in the ”spo”

condition, phase information forγ-bands (e.g.> 40 Hz) does not play a role, either.

For the awake animals results are hard to interpret, given the limited amount of

data (see Fig. 2.6 C). However, it seems that the overall structure is similar to the V1

data of anesthetized monkeys in having high-frequency power features as well as very

low-frequency phase features for positive lags. However, there seems to be an increase

of selected power features for intermediate frequencies.

Both feature types, meaning high-frequency power featuresaround zero lag and

low-frequency information, either low-frequency power orlow-frequency phase fea-

tures with positive lags, are often jointly selected among the 5 optimized features. This

shows that individual trials have similar features. We found that in 75% (”stm”), 59%

(”spo”), and 72% (”awake”) of the trials both types of features are jointly selected,

more specifically a high-frequency power feature (above 40 Hz) with absolute lags of

less than 250 ms and a low-frequency phase feature (below 10 Hz) with positive lags or

a low-frequency power feature below 10 Hz. In absolute termshigh-frequency powers

are preferred over low-frequency features (”stm” 61% vs. 24%, ”spo” 62% vs. 19%,

awake 47% vs. 24%). In ”stm” and ”spo” conditions low-frequency phase features
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with positive lags are selected slightly more often in combination with high gamma

powers than low-frequency power features (”stm” 49% vs. 44%, ”spo” 38% vs. 33%),

whereas low-frequency powers are preferred in the awake condition (28% vs. 60%).

Neither of the low-frequency features is present in about 25% of the trials when the

first 5 selected features are considered. However, this value drops to about 5% when

the first 10 selected features are examined.

In summary, our analysis shows that two feature types are most useful for predict-

ing spikes: power in the higher bands (> 40 Hz) and (to a lesser degree) low-frequency

information (< 10 Hz), which can be power modulation or phase information withlags

around and after the spike.

2.3.5.1 Population statistics of low frequency phase features

Low-frequency phase features indicate spike positions relative to the low-frequency

oscillations of the LFP. This feature thus carries the information of the phase lock-

ing to lower bands (Figures 2.2 C and D). However, from the point of view of phase

locking it is surprising that the informative lags are asymmetrically distributed around

the spiking position. This indicates that it is not merely the locking to a phase that is

important, but that instead the LFPs at low frequencies display a consistent slow oscil-

lation following spiking activity, and spikes are locked to the onset of that oscillation.

In contrast LFPs before spikes are less well determined on average. This asymmetry

of the phase locking to lower bands can be seen in the spike-triggered average LFP

(STA), as pointed out earlier (Fig. 2.2 A).

The form of the STA is stereotypical for the majority of electrodes in V1. As

we showed in the Methods section, a high value in the STA is a good feature for

classification (given some covariance constraints). Thus the typical form of the STA

explains why the phase features for positive lags are consistently selected among the

best features. To show the generality of the form of the STA inour data, we select two

particular phase features,φA andφB. FeatureφA is determined by the position of the

first maximum (peak) for positive lags of the 1-4 Hz bandpass filtered LFP (cross in

Fig. 2.7 A). To reject any amplitude modulation in that band we take the cosine of the

time course of the phase instead of that of the LFP (see Methods). The second phase
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featuresφB is the valley nearest to zero lag in the 4-8 Hz band of the LFP (star in

Fig. 2.7 A).

In Fig. 2.7 B the distribution of these two features is shown in a scatter plot across

all trials. Note that the featureφA (black crosses) lies very consistently at mean lag

around 112±1 ms, although the height differs somewhat (see marginal distributions

in attached plots). The featureφB (green stars) is likewise consistent across trials.

However, the height distribution of this second feature (right margin plot) is more

skewed to lesser values than for featureφA, suggesting that it might be less useful

for prediction. There is also a minority of trials in which neither feature was well

expressed, indicated by the scattered outliers.

2.3.5.2 Information conveyed by low-frequency bands and high-frequency power

features

To compare information conveyed by different features about spikes we use the mutual

information between target spikes train and predicted spikes train (see Methods 2.2).

Mutual information between the class labels is a lower boundfor the mutual informa-

tion contained between the signals under consideration (Natschl̈ager & Maass (2005)).

It is only a lower bound, since a classification method might fail to use all the informa-

tion contained in the signal. However, it is unlikely that a non-linear SVM classifier

would miss much of the dependency in our data, since the relationship between fea-

tures and spikes seems to be mostly simple proportionality.Recall that for our data a

linear classifier already achieves about 90% of the performance of a non-linear classi-

fier.

First we tested prediction performance for single-frequency power and low-phase

features individually using the SVM classifier. In Fig. 2.7 Cwe show the average infor-

mation about the spikes at different frequencies for anesthetized monkeys V1 (blue bar

plot). The information change with frequency closely resembles the number of selected

power features per frequency from our selection algorithm in the previous section. We

note that on average frequencies around 80 Hz convey the mostinformation about the

spikes. If one uses all the features tested here simultaneously, average performance

reaches0.037 ± 0.002 bits, which is 35% higher than when the best individual feature

is used.
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Figure 2.7: Information about spiking activity conveyed by phase features and frequency

power features.A: Spike-triggered averages (STA). LFP STA (blue line) as well as the STA

for the 1-4 Hz (black line) and 4-8 Hz (green line) band-pass filtered LFP. In the latter cases

all power modulation is discarded (see Methods), yielding purely phase-related signals. The

definitions of phase featuresφA (black cross) andφB (green star) are indicated.B: Distribution

of lags of featuresφA andφB for all trials of the anesthetized V1 data.C: Information about

spikes conveyed by single features.D: Redundancy of information about spikes conveyed by

any combination of LFP features. Color coding indicates the amount of information synergy

(see Methods 2.2, Eq. 2.4). See Results 2.3 for discussion.
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Information contained in the power decreases monotonically with frequency. This

decrease can also be seen on the level of individual trials (not shown). If one uses either

one of the low-frequency phase featuresφA andφB on its own, information drops to

about half forφA and much lower forφB in comparison to the best power feature

(black and green lines in Fig. 2.7 C, respectively). Despite the usefulness of low-

frequency power modulation in combination with high-frequency powers (as shown

in the feature selection), low-frequency power exhibits poorer performance as a single

feature than the phase features (in particular in comparison toφA, see Fig. 2.7 C). Note

that the timing resolution of the phase features is much higher as phase is defined at

any moment in time, whereas power has to be estimated within awindow of sufficient

length. The induced temporal correlation of nearby time points for the low frequency

power seems to be too high to predict spike times on its own.

If two LFP featuresF1 andF2 conveyed independent information about spiking

activity S, the normalized measure for synergy of informationsyn(F1, F2|S) (Eq. 2.4)

would be zero. In general, this measure ranges from minus onefor completely redun-

dant information to one for completely synergistic information (see Methods 2.2 for

details).

Figure 2.7 D shows the average normalized synergy of information about the spikes

for all combinations of features. Here synergy of information is calculated on the basis

of single trials, where trials having joint information notsignificantly above zero in-

formation are excluded (Wilcoxon signed-rank test, p-value above 0.1). Generally, in-

formation conveyed by high-frequency bands is mainly independent from information

contained in low-frequency bands. The information in individual high-power features

is more redundant (e.g. for 87 Hz and 50 Hz,syn(P50Hz, P87Hz|S) = −0.40 ± 0.02)

than between high-power features and phase features, whereinformation is nearly in-

dependent (synergy values with high-frequency power features around−0.2; for in-

stancesyn(φA, P81Hz|S) = −0.21 ± 0.01 and syn(φB, P81Hz|S) = 0.14 ± 0.02).

Phase featureφB, becomes more redundant with power for decreasing frequency (e.g.

syn(φB, P2Hz|S) = 0.45 ± 0.03), whereasφA redundancy is relatively low even with

low-frequency powers (e.g.syn(φA, P2Hz|S) = 0.23 ± 0.03). However, redundancy

between any two low-power features is much higher. Both phase features convey al-

most independent information about spikes (syn(φA, φB|S) = −0.05 ± 0.02).
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Note that the high redundancy of information in two high-frequency powers which

are less than 20 Hz apart is a result of spectral estimation, which is done on the band-

width of 21 Hz (see Methods 2.2).

In summary, both feature types, high-frequency power and low-frequency informa-

tion, seem to code for mostly independent information, while two high-power features

convey more redundant information.

2.3.5.3 Prediction performance is related to clusters of spikes

We noticed that generally prediction performance is superior on data where spikes

tend to cluster to bursts of activity with relatively long silent periods in between. This

can be seen if one correlates the inter-spike interval coefficient of variation (ISI-CV)

with prediction performance. If spikes are temporally clustered, many short inter-

vals are interspersed with few very large intervals, causing a large value for ISI-CV,

the ratio of standard deviation to mean of the inter-spike interval distribution. Thus

ISI-CV can be seen as an approximate measure for the degree of temporal clustering

of spike trains. One notices a strong correlation between the ISI-CV and prediction

performance (rank correlation 0.86), whereas prediction performance is only poorly

correlated with the firing rate (0.47). This behavior can be seen also for individual fea-

tures. High-frequency power features have the highest correlation with ISI-CV (0.92),

whereas correlation with single phase features is lower (e.g. 0.64 forφA). Correlation

with rate for both features is much lower (high gamma frequency 0.34, phase feature

φA 0.44). We found that if one defines larger clusters of spike orburst events directly

and discards single spikes in between (see Fig. 2.8), low phase features are locked to

the timings of such bursts and the performance of phase feature φA is highly corre-

lated with the burst rate (rank correlation 0.82). In our burst definition (see caption of

Fig. 2.8) the average burst length is122 ± 1 ms, which suggests that low frequency

phase information preferentially codes for (rather sustained) bursts of activity.

2.4 Discussion

Local field potentials are the best indicators of integrative activity in an area. They

reflect the area’s input activity in terms of population excitatory and inhibitory post-
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Figure 2.8: Locking of high spiking activity events to phases of slow LFP oscillations. Here a

high spiking activity event (burst) is defined as having at least 10 spikes. Spikes constituting a

burst have to occur within a maximal mean inter-spike interval of 5 ms, and spikes not contained

in a burst are deleted. Bursts have to occur at least 25 ms apart from each other, otherwise they

are regarded as one continuous event. The middle position is taken as the timingof an event.

The probability of event times occurring in a particular phase of the 1-4 Hz oscillation of

the LFP is plotted for individual electrodes (averaged over ca. 10 trials recorded at the same

electrode site). Electrodes are sorted according to the performanceκ of the low-frequency

phase featureφA. For about 60% of all electrodes burst times are locked consistently to the

upswing of a wave in the low LFP band. For most of the rest of the electrodes too few or no

bursts are found when the above definition of a burst event is applied. Phase is illustrated in the

right margin plot. Burst rates correspond well to the performance ofφA (rank correlation 0.82,

lower plot).
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synaptic potentials, but also the area’s regional processing, because they are directly

affected by dendritic spikes, voltage-gated oscillationsand various after-potentials –

all markers of diverse neural computations (see Buzsáki (2006) for an overview). Not

surprisingly, an increasing number of studies report theirspecificity and usefulness in

the search for neural correlates of behavior (Kreimanet al. (2006); Leeet al. (2005);

Liu & Newsome (2006); Osipovaet al.(2006); Rubinoet al.(2006); Scherbergeret al.

(2005)). Although these studies show that LFPs convey information that is to some de-

gree independent of spiking activity, it has been suggestedand demonstrated by many

researchers that spikes synchronize to - or that synchronization gives rise to - specific

oscillation frequency of the LFPs, in particularγ-bands (> 40 Hz) in visual cortex and

θ-band (4-8 Hz) in the hippocampus (see Buzsáki (2006) and references therein).

Herein we investigated the relation of spiking activity to LFP on a more fundamen-

tal level by asking which aspects of the LFP can generally be exploited to predict spike

times. Unlike other approaches in which simple linear interaction between both sig-

nals is tested (e.g. with means of coherence or correlation), the classification approach

used in our study can exploit multiple different features ofthe LFP simultaneously in a

non-linear way to infer spiking activity from LFPs. We foundthat when the best single

feature is used, performance drops to about 70%, showing that multiple features are

essential. The non-linear component in the code is rather small, but there is still an

average increase of 12% when SVM classifiers are employed.

In contrast to V1, the prediction of spikes from LFPs is (almost) impossible in the

LGN. The reason for this could be that spiking activity mightbe less correlated and

thus have less effect on the LFP, or alternatively that the geometrical arrangements

of current sources and sinks in the thalamus generates field potentials of lower spa-

tial specificity than those observed in cortex. Furthermorethe fact that 80% of the

LGN input is cortical and modulatory is an additional potential reason for the LFP-

spiking decoupling in this nucleus. Neuromodulation mightexplain our observation

in simultaneous thalamus-cortex recordings that V1 LFP cannot predict LGN spiking.

LGN-LFP, on the other hand, is a reasonable predictor of V1 spiking, likely because

the former is a better indicator of local LGN activity that iscorrelated with the V1

LFPs, which in turn can predict the spiking of this cortical area.

From the point of view that LFP is mostly generated by the totality of synaptic input

and local processing in a region one might ask whether it is possible to predict spikes
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solely on the basis of information preceding the actual timeof the spike. To evaluate

this possibility we recomputed prediction performance forthe same feature types but

with shifted lags, so that only causal information of the LFPis included. When we

did this, prediction performance dropped to 68% of the average non-causal classifier

used for the population analyses, which is still well above chance level. However,

conclusions about the relation between synaptic input and spiking output are difficult

to draw from this number. For instance it is likely that due totemporal correlation in

the spike train (and various LFP bands) neighboring times inthe time series are good

predictors for each other.

2.4.1 LFP features related to spiking activity

Besides having generated and visualized concrete spike trains inferred solely from

information contained in the LFPs, our analysis revealed those features which are the

most important carriers of information about spiking activity in the LFP and estimated

their relative importance and redundancy properties.

The first and most useful feature for inferring spike trains from LFPs is the power

modulation of high-frequency components in the upperγ-band from 40 Hz to (at least)

90 Hz. This is in good agreement with other studies, which have established a link be-

tween gamma frequency bands and spiking activity (Csicsvariet al. (2003)). The bio-

physical origin of gamma frequencies in the LFP remains a topic for current research.

The rather fixed relationship between spikes and LFPs over a wide range of data and

conditions could reflect physical constraints (layered organization of the cortex, distri-

bution of sinks and sources) or inherent properties of the neural network topology and

function. For instance, gamma activity might be the effect of fast inhibitory circuits on

the LFPs (see Bartoset al. (2007) for a recent review).

In contrast to power modulations, phase in theγ-range is much less important for

prediction than one might have expected from the well-documented fact that spikes are

synchronized in this range (Grayet al. (1989); Kreiter & Singer (1992)). Our stimuli

consist of cinema movies of several minutes duration and containing a mixture of ob-

jects, faces, actions, colors, and edges. Thus, specific object encoding might be only

weak and cluttered with other aspects of the code, as the stimulus comprises multiple

objects at any given time. Because we assume a stationary spike-LFP relation for the
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duration of a trail (170 s), more subtle aspects of the relation such as transient rapid

neuron-to-neuron synchronizations would be averaged out and therefore not detected

as a useful feature. Another possibility for the relative unimportance of gamma phase

features might be that different subgroups of neurons present in the MUA signal lock

to different phases in the gamma cycle, as suggested for inhibitory and excitatory neu-

rons (Hasenstaubet al. (2005)) In general, if two subgroups of units present in the

MUA signal locked to different feature of the LFP, our classification method should

not degrade in performance, as it can exploit many features simultaneously. However,

the relative usefulness of both features would indeed decrease in the average features

analyses.

Locking to phases of higher frequencies is difficult to detect because even a small

amount of jitter in spike time precision abolishes locking.Such jitter might be intro-

duced during binning of the spike timings to LFP sampling resolution (5 ms). This is in

contrast to the effect of a small amount of jitter at lower frequencies. Accordingly, the

phases of low frequency components are indeed useful for predicting spiking activity.

Moreover, our analysis suggests that the oscillation phases of low frequencies code for

larger bursts of temporally correlated spiking activity. In fact, the high probability of

spikes occurring in clusters in our V1 data helps to infer spikes from LFPs. Predic-

tion quality is highly correlated with ISI-CV, because one can predict spiking activity

on a time scale of> 25 ms, rather than reaching single spike precision. In the LGN

data, where the spikes are less clustered (low ISI-CV, average of 1.1±0.05 compared

to 2.4±0.05 in anesthetized V1 and 1.8±0.05 in awake V1), it is almost impossible to

predict spikes from LFPs. Since we observe stronger clustering for anesthetized data,

we conclude that this might be partly an effect of anesthesia(Steriadeet al. (1993)).

The low-frequency power modulations which are selected as useful features in a

part of trials probably have origins similar to those of the slow phase features, and

may code for the relative amount and size of clusters of activity. Thus low-frequency

power modulations might provide a slow changing state variable which is useful in

combination with the fast-changing high-frequency powers, as indicated by the low

redundancy values.

About half a century ago, several studies were conducted which attempted to relate

electrical encephalographic signals (EEG) to spiking activity. Then it was found that

spikes occur preferably at the negativity of 0.2-2 Hz waves (Fromm & Bond (1964)).
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Since EEG has a similar basis of origin as LFPs (Nunez & Shrinivasan (2006)), this

confirms our findings, where spikes occur at the minimum to rising phase of the slow

oscillation. It is not just the negativity that is important, however, but also the peak

that is seen following the spikes. This is similar to slow-wave sleep of cats as seen

in the spike-triggered average (Destexheet al. (1999)) and is taken to the extreme in

spike-wave complexes, which can be observed in cases of epilepsy (e.g. Destexhe

et al. (2001a)). In the latter case, it was suggested that the slow positive wave form

after a burst of activity is accompanied by neuronal silenceand can be explained by

slow inhibitory effects mediated by GABAB (Destexheet al. (2001a)). Although, we

observe neither clear up and down states nor any pathological periodic activity in the

LFPs of our data, the similarity of the STA suggests that suchprocesses may play a

role during more physiological states, albeit in a much weaker form.

2.4.2 Effects of spike detection method

The spiking signal used in this paper is generated by a simplethreshold-based pro-

cedure for detecting spiking events from the recordings. This detecting procedure is

prone to false-positive detection, as well as to a smaller fraction of missed spikes orig-

inating at larger distances or from neighboring interneurons. With our method we

expect a false-positive rate of 2 Hz, if one assumes that non-spike values (i.e. noise)

in MUA amplitudes are subject to Gaussian distribution (seeMethods 2.2). Thus the

spiking signal contains not only the activity of multiple neurons and possibly of dif-

ferent cell types, but also noise spikes. Since noise spikesshould be independently

distributed with respect to time, false positive labels should actually reduce perfor-

mance compared to the ”true” spiking signal. We tested higher spike detection thresh-

olds, where the contribution of noise becomes negligible (e.g. for 5 times SD only

0.05 Hz), and found instead reduced prediction performance, although performance

still remained well above chance (not shown). Since it was estimated that in principle

spikes arising from up to 1000 neurons could detected by a single electrode (Henze

et al. (2000)), a spiking signal generated with a higher thresholdwill include fewer

smaller spikes from neurons that are further away, and incorporate only those neurons

which happen to be in the immediate neighborhood of the electrode tip. Thus the spik-

ing signal becomes more local and its relationship to the relatively global LFP signal
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is naturally weaker. Therefore noise spikes are not likely to artificially enhance our

performance results, but influencing the number of neurons whose spikes are detected

via threshold will have an effect.

Similarly, spike sorting yielding multiple single unit activities rather than multi-

unit activity would naturally decrease prediction performance, since spiking signals

become more local and, additionally, the prediction task would change from binary

classification to a more difficult multi-label classification task.

2.4.3 Encoding of the stimulus

We found that the relationship between LFPs and spikes is almost unchanged during

stimulus-driven activity compared to spontaneous activity. This finding corresponds

well to the results of others (Fiseret al. (2004); Kenetet al. (2003); Vincentet al.

(2007)), who found that the structure of spontaneous activity is rich and sometimes

even resembles stimulus-driven activity. While there is no general change in the struc-

ture of features, there are of course transient aspects of the stimuli encoded by spikes

(and LFPs) that have an effect on the spike rate, for example,which increases dur-

ing stimulus presentation (not shown). Because of the encoding of the changing movie

stimulus over time, the temporally contiguous training andtest sets might differ in their

LFP-spikes relation, i.e. in their sample distributions. Thus movie encoding might ex-

plain why prediction performance on spontaneous activity is slightly better than on

stimulus-driven activity.

Effects of stimulus encoding might also explain the observation that the LFP is

”more global” during spontaneous activity in that prediction of spikes degrades much

more slowly with increasing cortical distance than during stimulus presentation. Thus

the stimulus actually decorrelates neural activity spatially in comparison to sponta-

neous activity.

Note that we do not analyze features which actually encode information about the

stimuli. Information contained about stimuli will be analyzed in a forthcoming pa-

per (Belitskiet al.(2007)). Belitski et al. analyze the information content offrequency

power about the stimulus (movie) in the very same data set that we investigate here.

Although we show here that the structure of spikes to LFP doesnot change consider-

ably during spontaneous activity, Belitski et al. nevertheless show that very low and
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very high oscillation powers of the LFP are highly informative about the stimuli. They

find that high LFP power series (50-120 Hz) contain information about the stimulus

which is partially redundant with that in power series derived from the spike trains. In

this respect, their results complement ours.

2.4.4 Conclusion

We conclude that to a certain degree spikes can be inferred from LFPs; a fact that

reflects the interaction of these signals. However, we find that millisecond precision,

which has been shown to be used for temporal coding (Mainen & Sejnowski (1995)),

cannot be inferred from LFP. The temporal aspects of neural spiking used for infor-

mation coding, rate coding, or coding on spike timing, remain a topic of current re-

search (Riekeet al. (1999)). We might conservatively say that whether or not they are

important for coding, time-varying rates on the scale of about a hundred milliseconds

can be moderately well inferred from the LFPs, but that exacttimings cannot. Thus,

given our results, it should in principle be possible to develop an appropriate method-

ology that permits the extraction of certain spiking features from signals measured by

methods relying on LFP-like signals, such as fMRI (Logothetis et al.(2001)) or optical

recordings (Grinvald (1985); Grinvald & Hildesheim (2004)). Nevertheless, the strong

dependence of spike predictability on electrode position suggests that the reliability of

such predictions may depend on the brain site. Finally, the fact that in the thalamus is

practically impossible to predict spikes from the LFP suggests that computations based

on input, local processing and output - as instantiated in the different frequency bands

of the mEFP - can only be helpful for structures with the appropriate element geometry

(e.g. fascicles of pyramidal cells vs. potentially close-field arrangement of thalamic

neurons) and the proportion of driver to modulator afferents.
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Chapter 3

Phase-of-firing coding of natural

visual stimuli in primary visual cortex

“Die Wahrnehmung der Sinne geschieht uns unbewußt: alles, wasuns

bewußt wird, sind schon bearbeitete Wahrnehmungen.”

[Friedrich Nietzsche, 1885]
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PHASE-OF-FIRING CODING IN V1

3.1 Abstract

We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of

their spike times relative to the phase of ongoing network fluctuations, rather than only

in terms of their spike count. We recorded Local Field Potentials (LFPs) and multi-

unit spikes from the primary visual cortex of anaesthetizedmacaques while binocularly

presenting a color movie. We found that both the spike countsand the low-frequency

LFP phase were reliably modulated by the movie and thus conveyed information about

it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability

of LFP phase across trials. To establish whether the LFP phaseat which spikes were

emitted conveyed visual information that could not be extracted by spike rates alone,

we compared the Shannon information about the movie carried by spike counts to

that carried by the phase of firing. We found that, at low LFP frequencies, the phase of

firing conveyed 54% additional information beyond that conveyed by spike counts. The

extra information available in the phase of firing was crucialto disambiguate between

stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow

primary cortical neurons to represent several effective stimuli in an easily decodable

format.

3.2 Methods

3.2.1 Experimental Methods

Four adult rhesus monkeys (Macaca mulatta) participated inthese experiments. All

procedures were approved by the local authorities (Regierungsprsidium) and were in

full compliance with the guidelines of the European Community (EUVD 86/609/EEC)

for the care and use of laboratory animals. Prior to the experiments, form-fitted head

posts and recording chambers were implanted during an aseptic and sterile surgical

procedure (see e.g Logothetiset al. (2002) ). To perform the neurophysiological

recordings, the animals were anaesthetized (remifentanil(typical 1microgram/kg/min)),

intubated and ventilated. Muscle relaxation was achieved with mivacurium (5mg/kg/h).

Body temperature was kept constant, and lactated Ringer’s solution was given at a rate
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of 10ml/kg/h. During the entire experiment, the vital signsof the monkey and the depth

of anesthesia were continuously monitored. For the protocol used in these experiments,

we had previously examined the concentration of all stress hormones (catecholamines)

(Logothetiset al. (1999)) and found them to be within the normal limits. Drops of

1% ophthalmic solution of anticholinergic cyclopentolatehydrochloride were instilled

into each eye to achieve cycloplegia and mydriasis. Refractive errors were measured

and contact lenses (hard PMMA lenses by Whlk GmbH, Germany) with the appro-

priate dioptric power were used to bring the animal’s eye into focus on the stimulus

plane. The electrophysiological recordings were performed with electrodes that were

arranged in a 4 x 4 square matrix (interelectrode spacing varied from 1 mm to 2.5

mm) and introduced each experimental session into the cortex through the overlying

dura mater by a microdrive array system (Thomas Recording, Inc., Giessen, Germany).

Electrode tips were typically (but not always) positioned in the upper or middle cor-

tical layers. The impedance of the electrode if the last spike occurred more than one

millisecond earlier. All results in the main text were obtained from the spikes detected

with this simple threshold method, which is good to detect spike times but not to iso-

late single units. Thus the spikes used for the analysis represented the spiking activity

of a small population of cells rather than well separated spikes from a single neuron.

Unless otherwise stated, all results reported were obtained using these unsorted spikes.

3.2.1.1 Spike sorting for control analysis

To check that the amount of information in the phase-of-firing did not change when

considering only spikes from well-isolated single neurons(see Information Analysis

Section below), we sorted the spikes from a selected number of channels which ap-

peared to be suitable for the task. For spike sorting we used the method described by

Quirogaet al. (2004). The spike waveforms were extracted around the detection times

as described above (in a region of 0.75ms before to 1.75ms after the detected spike).

These spike forms were interpolated and 10 wavelets features (with 4 scales) were ex-

tracted (Quirogaet al. (2004)). From these feature pool the 10 most salient features

(KS-test) were used as input for the clustering algorithm. We then sorted the spikes

using the paramagnetic algorithm of Quirogaet al. (2004). For each electrode a few
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reasonable clusters were selected by visual inspection of the spike waveforms ensur-

ing a reasonable distinguishable average waveform among clusters. After this initial

selection, spikes which initially were not classified in a particular cluster (or belonging

to not selected clusters) were forced to belong to the nearest selected cluster (Maha-

lanobis distance (Quirogaet al. (2004))). A cluster which maintained very similar

waveforms after this step was deemed to be a well-isolated cluster and was considered

for further analysis. Otherwise the cluster was not considered further for spike sorting.

In this way, we obtained 71 well isolated clusters from 37 channels.

3.2.1.2 The power spectrum of LFPs

To document the spectral content of the LFPs, and assess how the LFP power changed

over different segments of the movies, we divided each movieinto non-overlapping

time windows of lengthT = 2.048 s comprisingL = 1024 datapoints sampled at

500 Hz. The power of the neural oscillation in each time window was quantified by

computing the power spectrum at each frequency, independently for each trial. The

power spectrum in each window was obtained using the multitaper technique (Percival

& Walden (2002)), because it provides a very efficient way to simultaneously control

the bias and variance of spectral estimation by using multiple Slepian data tapers. The

Slepian functions are defined in terms of their lengthL in time and their bandwidthW

in frequency. We variedLW between 1 and 8 obtaining essentially identical spectra. In

the following, we will present results obtained usingLW = 2. To reduce the spectral

bias, the average over tapers was computed using the adaptive procedure described in

Percival & Walden (2002).

Figure 3.1 A shows the average spectrogram across all movie trials and windows.

The highest LFP power was at low frequencies (= 8 Hz), and the power decreased

steeply at increasing frequencies. We compared the averaged LFP spectrogram evoked

during the movie to the LFP spectrogram of the same electrodeduring spontaneous

activity (measured in the absence of visual stimulation). The evoked and spontaneous

LFP spectrograms were similar at frequencies lower than 25 Hz, but there was an

increase of power during movie stimulation at very low frequency (= 4 Hz). Consistent

with previous studies (Frienet al. (2000); Henrie & Shapley (2005)), we found a very

substantial power increase over spontaneous activity of the movie-evoked responses
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in the gamma frequency region 40-120 Hz. This power increasewas proportionally

higher at 70-100 Hz.

To compare the LFP spectrum with the spectrum of the stimulusdynamics, we

also computed the power spectrum of the contrast variationsin each 2.048 s window

of the movie. Contrast in each frame was computed by taking thestandard devia-

tion of luminance of all pixels in a frame and divided it by themean of luminance

in that frame. The resulting spectrogram was then averaged over time windows. The

resulting average spectrum of contrast variations in the movie dropped with increasing

frequency and at low frequencies it could roughly be approximated as1/f 2 (wheref

is the frequency).

It is interesting to consider at which LFP frequencies the power is more modulated

by the movie, and at which frequencies the power is more reliable on a trial-by-trial

basis. To address this question, we computed, independently for each frequency and

electrode channel, the coefficient of variation (CV) across the movie time (i.e. across

stimulus) of the mean power. This (denoted as “Signal CV”) quantifies the degree

to which the signal changes with the stimulus, and thus can potentially encode the

stimulus. We then computed, again for each frequency and channel, the “Noise CV”:

this is the CV across trials of the fluctuations about the mean for each stimulus. In

other words, it quantifies the average unreliability of the power, across trials at fixed

stimulus. The magnitudes of the noise and signal CV cannot be directly compared,

because they are computed over a different number of data points. However, noise

CV or signal CV at different frequencies can be directly compared: frequencies of

higher signal CV have a better capacity of following the stimulus features in the movie,

and thus to transmit information. Frequencies with lower Noise CV are more reliable

across trials and thus can represent the stimulus more reliably. Figure 3.1 B shows that

(on average across all channels) the noise CV is relatively stable across frequencies

(apart from an increase in the range 16-24 Hz). The signal CV, on the other hand, is

maximal for low frequencies (< 12 Hz) and high gamma frequencies (60-100 Hz).

3.2.1.3 Spike probability as function of phase across all LFP frequencies

Figure 3.2 reports the population average of the probability of a spike being emitted at

a given phase, for each frequency band. We found that the spike probability was modu-
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Figure 3.1: Spectral properties of LFPs.A: The spectrogram averaged over the movie time

is plotted (solid black line). The dashed line is the average spectrogram during spontaneous

activity, showing an increase of power at very low frequencies (< 4 Hz) and in the 20-150 Hz

bands during visual stimulation.B: The average signal and noise CV of LFPs as function of

frequency.
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Figure 3.2: Phase locking properties of V1 neurons under natural visual stimulation.The

color plot shows the probability (per unit angle) of finding a spike locked at a certain phase

as function of the LFP frequency, averaged across the whole dataset.The circles represent the

preferred phase in each frequency class (angular mean).

lated by LFP oscillations at all frequencies. The preferredphase for spiking was depen-

dent on frequency. The preferred phase in the 1-4 Hz frequency range was (on average

across the population)1.9π (middle of the raising phase). The population-averaged

preferred phase value decreased as the LFP frequency increased, and saturated around

1.2π (just before the trough of the oscillation) for high frequencies.

3.2.1.4 Circular statistics

The angular mean across trials of the LFP at a given time window during the movie

was computed as (Fisher (1993))

φ̄ = arg 〈exp(iφj)〉, (3.1)

whereφj is the series of phase values at each trialj, arg denotes that we are taking the

argument of the complex number, and〈. . .〉 is the average across trials at fixed time

window.

The circular variance (Fisher (1993)) across trials (CVAR) of the phase was com-

puted as

CVAR = 1 − |〈exp(iφj)〉| . (3.2)

CVAR values range from 0 (perfectly repeatable phases) to 1 (random phases over the

circle).
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3.2.2 Information theoretic analysis

3.2.2.1 Definition and meaning of Information

The mutual information (abbreviated to “information” in this paper) between a set of

stimuli S and a set of neural responsesR is defined as (Cover & Thomas (1991);

Shannon (1948)):

I(S;R) =
∑

r,s

P (s)P (r|s) log2

P (r|s)
P (r)

(3.3)

whereP (s) is the probability of presenting stimuluss, P (r|s) is the probability

of observing responser given presentation of stimuluss, P (r) is the probability of

observing responser across all trials to any stimulus.I(S;R) quantifies how much of

the information capacity provided by stimulus-evoked differences in neural activity is

robust to noise. An alternative but equivalent interpretation of I(S;R) is that it quanti-

fies the reduction of uncertainty about the stimulus that canbe gained from observation

of a single trial of the neural response. When base-2 logarithms are used, as in Eq. 3.3,

information is measured inbits. One extra bit of information reduces the uncertainty

about the stimulus after one observation of the neural response by a factor of 2.I(S;R)

is zero only when the stimulus and the response are statistically independent quanti-

ties, indicating that no knowledge about the stimulus can begained by observing the

response. When stimulus and response present statisticallysignificant covariations,

then the value of information is positive. The more the responses and the stimuli are

mutually predictable, the largerI(S;R). Unlike other simpler correlation measures,

information has the unique advantage of capturing all nonlinear dependences of any

statistical order that may be present in the data.

3.2.2.2 Quantifying the information carried about a movie stimulus

To quantify how neural responses encode movie stimuli, we computed the information

that the neural responses convey aboutwhich part of the moviewas being presented.

This was done (following de Ruyter van Stevenincket al.(1997); Stronget al.(1998))

by dividing the movie presentation time into a number of non-overlapping windows

of size ∆t, and considering each different movie window as a differentstimuluss

(because the associated neural response is evoked by a combination of visual features
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happing in its immediate past). Since our definition of “stimulus” does not need to

spell out which visual features (e.g. contrast, orientation, etc) are encoded, the in-

formation we compute is about all the possible visual attributes that may activate the

neuronal signals, and does not rely on any ad-hoc assumptions about stimulus selec-

tivity (de Ruyter van Stevenincket al. (1997)). This makes this formalism particularly

suited to the analysis of neural responses to complex, naturalistic stimuli.

We note that, since the response collected in individual windows is considered sep-

arately, this quantification of information ignores the information potentially present in

the correlation between the times of the spikes emitted in different stimulus windows.

3.2.2.3 Representation of the spike count and phase-of-firing codes

Although the evaluation of information does not require anyad-hocassumption about

what are the relevant stimulus features, it does require an explicit representation of the

neural responser. By specifying the neural response information can be used to probe

different neural codes and compare their efficiency in capturing information about the

stimulus. In particular, here we estimated the amount of information about the stimulus

conveyed by two candidate neural codes: thespike count codeand thephase-of-firing

code.

We proceeded as follows. Each movie had a durationT of 3.5-6 mins, and was

repeatedNs times (Ns varying from 12 to 44 depending on the experimental session;

57 out of 78 recordings were obtained withNs = 30). Each of the spike trains corre-

sponding to those stimulus presentations was divided into non-overlapping time bins of

duration∆t, which were labeled by an ascending numbers. Then, the actual response

r at a particular time bins, was determined according to which of the two codes was

analyzed.

When considering thespike count codethe neural responser was equal to the

number of spikes n fired in that time window. In this case, Eq. 3.3 becomes:

Icount(S;R) =
∑

n,s

P (s)P (n|s) log2

P (n|s)
P (n)

(3.4)

whereP (n|s) is the probability of observing n spikes in window s. As we used

short stimulus windows (∆t = 4 ms unless otherwise stated; see below) most of the
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time windows contained either 1 or zero spikes. We verified the information loss re-

sulting from assuming a binary spike train, rather than considering the full spike count

(n = 0, 1, 2, . . .) in each window, was negligible and statistical insignificant (p > 0.9;

bootstrap test). For simplicity, we therefore present results obtained with a binarized

0-1 code.

In the case of thephase codethe neural responser was coded as a spike train

where at the position of each spike we added a “label”φ indicating the phaseφ of

the LFP oscillation at that particular time. In practice, this was achieved as follows.

Since the phase is a continuous quantity, to sample the required probabilities from the

finite dataset we discretized the possible values of the phase by diving the cycle 0-2π

into a numberΦ of uniformly spaced bins. (We note that, for each given recordings

site, frequency range and number of equispaced phase bins tobe used, we set the

exact boundaries of the phase bins so that to extract maximalinformation from the

phase code under these conditions. We found that, in general, the maximal values

of information were obtained when setting the starting point of one of the bins to be

equal to the preferred phase of firing. This corresponded to adivision of phase in

quadrants as reported in Fig. 3.8 H.) The phase labelφ (φ = 1, . . . ,Φ) thus indicated

the number of the bin to which the continuous phase value belonged. If there was

one or more spike at the time bin corresponding to timet, then the response was set

equal to the phase bin at the time of the occurrence of the firstspike in the stimulus

window. Later spikes were rare as there was typically only upto one spike per stimulus

window (see above). However, neglecting later spikes can only reduce information due

to the “data processing inequality”(Cover & Thomas (1991)).Therefore this procedure

ensures that the information value estimated for phase codeis a lower bound to its real

value. In summary, symbols “1 − Φ” were used to code the angle bin at which a

spike was emitted, and symbol “0” was used to denote the absence of a spike; thus the

neural response in a given time bin can take one ofΦ + 1 different symbols, and the

information in Eq. 3.3 becomes as follows:

Iphase(S;RΦ) =
∑

s

P (s)
Φ
∑

φ=0

P (φ|s) log2

P (φ|s)
P (φ)

(3.5)

In Eq. 3.5,P (φ|s) is the probability of observing the symbolφ in response to

stimuluss. In this chapter (unless otherwise stated), the phase-of-firing information

56



3.2 Methods

values were obtained by dividing the phase into quadrants (i.e. usingΦ = 4 bins),

which amounts to registering the phase with a precision ofπ/2 rad. However, the

number of phase bins is a somehow arbitrary quantity. To estimate the phase precision

needed to read out the phase information, we varied the precision with which the phase

was quantized for the information calculation and we assessed the effect of the choice

of the number of phase bins. Results are reported in Fig. 3.3.When dividing the period

in two halves (i.e phase precision= π; Φ = 2), the information in the 1-4 Hz LFP

phases was reduced by a factor of 22% with respect to the phasecoding information

obtained with aπ/2 precision (quadrants). When registering the phase with precision

π/4 rad (period divided intoΦ = 8 bins), no information was gained with respect to

theπ/2 rad precision case. This indicates that a precision ofπ was not enough to read

the whole information in phase, whereas a precision ofπ/4 did not add anything useful

to what already obtained withπ/2. Thus,π/2 appears to be the precision needed to

read out the phase code. This is compatible with the phase reliability values reported

in Fig. 3.9. These results extended to higher LFP frequencies as well: results for the

4-8 Hz LFP were reported in Fig. 3.3.

3.2.2.4 Effects of variation of the size of the stimulus window

The size∆t of the “stimulus” time window (in which the response is computed with

the aim of reconstructing by which movie part it was provoked) is a free parameter of

the analysis. In all the results and figures in this chapter weused∆t = 4 ms unless

otherwise stated. We tested the effect of varying∆t on the 1-4 Hz LFP phase of firing.

We found that the extra amount of information (beyond that carried by spike counts)

obtained by labelling the spikes with the phase of the1-4Hz LFP increased from 55%

with ∆t = 4 ms, to 62% with∆t = 8 ms and to 73% with∆t = 16 ms. Average

information results at other LFP filtering frequencies are reported in Fig. 3.4 for the

∆t = 4 ms and∆t = 8 ms cases. The increase of phase-of-firing information with the

size of∆t is compatible with previous analytical results (Panzeri & Schultz (2001))

showing that (for relatively small stimulus windows) the extra information in a spike

time code typically increases monotonically with the size of the time window consid-

ered (either linearly or as the third power of the time windowdepending on the relation

between spike timing precision and the temporal scales of stimulus-induced responses
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Figure 3.3: Effect of phase precision of phase-of-firing information. The percentage of extra

information (above and beyond spike counts) of the phase code as function of the precision

used to sample the phase. Results are reported as mean± SEM over the dataset. Grey and

black histograms report the phase code information gain obtained using 1-4 Hz and 4-8 Hz

LFPs, respectively.

(Panzeri & Schultz (2001); Panzeriet al. (2001))). We decided to focus our presenta-

tion mainly on the results obtained using a stimulus window of ∆t = 4 ms because

(i) this fine resolution permitted a computation of phase coding information even for

high frequency LFPs up to the gamma range (ii) we aimed at providing conservative

estimates of the extra information that can be extracted from the phase of firing.

3.2.2.5 Estimation of information from limited samples

In order to estimate information it is necessary to estimatethe conditional probability

P (r|s) from the experimental dataset. Given that the amount of available data is lim-

ited, the estimation of the probabilities suffers from random statistical errors. These er-

rors translate into a bias in the estimation of the information (Panzeri & Treves (1996);

Panzeriet al. (2007)), which for limited data sets can represent a significant fraction

of the total information. If information is computed directly from Eq. 3.3, the bias is

positive and is bigger for the phase-of-firing code than for spike count code. If this

positive bias remains uncorrected, it may lead to misleading conclusions of important
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Figure 3.4: Broad band vs narrow band phase-of-firing information. Histograms plotthe in-

formation rates (mean± SEM over the dataset) carried by the spike count (denoted as “count”

in the x-axis label) and the LFP phase at which spikes were emitted as functionof the consid-

ered LFP frequency band (indicated in the x-axis label).A: Results obtained using a stimulus

window∆t = 4 ms.B: Results obtained using a stimulus window∆t = 8 ms.

phase-of-firing effects just because of a bias artifact. To correct for this problem, we

have implemented a two step procedure (developed followingclosely ideas presented

in Montemurroet al.(2007a,b)) that has two advantages: (i) it gives a much tighter es-

timation of the information than that obtained using Eq. 3.3(ii) in conditions in which

there are not enough data to fully remove the bias, the small residual bias is negative.

Consequently, our information estimations typically represent tight lower bounds that

are tighter for spike count than for spike timing codes. Thismakes our conclusion

about the extra information in phase code conservative: theactual amount of extra

information in the phase code is likely to be slightly higherthan the one reported.

The first step in the bias correction is given by a quadratic extrapolation (Strong

et al. (1998)) of the information values. This method assumes thatthe estimated

information, can be approximated by a second order polynomial in 1/ns (wherens

is the number of repetitions of the movie used to estimate theinformation), that is

I = Iraw + a/ns + b/n2
s, whereIraw is the result of the direct application of Eq. 3.3

to the data, anda andb are two parameters that depend on the stimulus-response prob-
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abilities. For a particular experiment consisting ofNs repetitions of the movie, we

obtained different raw estimates of the information. The first one was the result of

applying Eq. 3.3 to the full original dataset, wherens = Ns; a second set of estimates

corresponded to random selections ofns = Ns/2 of the trials; and the third corre-

sponded to the estimation of the information from random selections fromns = Ns/4

of the total available trials. Then, these estimates were plotted against1/ns, and a

quadratic polynomial was fitted by least squares. The asymptotic value of the infor-

mation was then taken as the intersection of this polynomialwith the vertical axis

(which is equivalent to taking the limit1/ns → 0). This correction was applied both to

the spike count code and the phase code information, giving the corresponding values

Icount andIphase.

The second step consisted in improving this estimate by means of a bootstrap pro-

cedure. For the estimation of the information in the spike count code the bootstrap

procedure consisted in obtaining an estimate of the information, Icount−boots, from

a dataset created from the original one by randomly permuting all the spike counts

across all time windows for all trials independently. When the number of trials is very

large, the value of the information obtained from the transformed dataset must be zero,

since all the information that the neural response carried about the stimulus was com-

pletely destroyed by shuffling. However, due to finite sampling effects, the quantity

Icount−boots will be nonzero. The final corrected estimate of the spike count informa-

tion Icount−corrected was obtained subtracting out this small residual bias revealed by

bootstrap: Icount−corrected = Icount − Icount−boots, whereIcount−boots was also corrected

with the quadratic extrapolation method.

The bootstrap procedure was also applied to the phase-of-firing information, as fol-

lows. We created a shuffled dataset in which, in each individual trial, we left all the

positions of the spikes unaltered but paired them with randomly shuffled values of the

phases observed in correspondence to a spike. We calledIphase−boots the information

estimated from these shuffled data. The information contained in the spike counts was

unaffected by this procedure, but all the extra informationby the phase of firing was

completely erased. However, due to a residual biasIphase−boots will still be slightly

larger thanIcount−corrected for a dataset with a limited number of trials resulting from

the use of several phase symbols that determine the responseoutcome in each stim-

ulus time window. Therefore, we computed an estimation for the bias of the phase
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Figure 3.5: Performance of the information bias correction method on simulated data. To

assess the bias correction methods we simulated spike trains and phase labeled spikes that

preserved the same statistical structure of real experimental datasets. Wethen applied the

information estimation methods described in the text to compute the values of the information

(normalized in bits/s) available in the spike count code (lower curve) and thephase code (upper

curve) as a function of the logarithm of the number of trials. The overall remaining bias is

negative, affecting more the information in thephase codethan that in thespike count code.

code asbiasphase = Iphase−boots − Icount−corrected, where again we previously corrected

Iphase−boots using the quadratic extrapolation method. Finally, the corrected value of

the information for the phase code was computed asIphase−corrected = Iphase−biasphase.

We verified the performance of the bias correction method by means of the follow-

ing numerical simulation. For a given experiment we measured the time varying firing

rate from the available spike trains. From the set of phase-labeled spikes, we also

measured the probability of each phase in correspondence toa spike for every time

window. Then, a simulated set of spike trials was generated using an inhomogeneous

Poisson process with the same spike rate as in the real experiment. In order to create

the phase-labeled set of spike trains we labeled each spike according to the real prob-

ability of each label for every time window. In this way we could create any number

of trials of a simulated set of spikes and labeled spikes thatconserved the statistics of

a real experimental data set. In generating these data, we binned the phase into 4 bins,

exactly as in the phase-of-firing information calculationsreported in Fig. 3.10.
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Figure 3.5 reports the behaviour of the bias correction methods on simulated data

with the statistics of one of the available experimental sessions (animal A98). For a

number of trials less than 30 the overall remaining bias is negative, affecting more the

estimation of the phase code information than the spike count code information. This

means that when the number of trials is less than 30, our estimation of the advantage

of the phase code over the spike count code is very conservative. (The mathematical

reasons why the bias is mostly negative are investigated in detail in Montemurroet al.

(2007b); Panzeriet al. (2007) and originate from the fact that bootstrap corrections

tend to overestimate the bias). When the number of trials is larger or equal than 30, any

relative residual error in the corrected information estimates is negligible and thus the

estimates are in practice unbiased. This suggests that in the data-size range collected

experimentally our information estimates are precise, andonly potentially affected by

a small residual bias which is slightly higher in the phase code information. This leads

to conservative estimates of the amount of extra information in the phase code and to

conservative conclusions about the importance of the phaseof firing in information

processing.

3.2.2.6 Information at fixed spike rate and independence of spike count and

phase coding information

An interesting and still highly debated Harris (2005); Harris et al. (2002); Mehtaet al.

(2002) question is whether phase and spike rate are just being produced by the same

mechanism and thus reflect largely redundant information, or if instead the phase-of-

firing information contributes information about the stimuli which is genuinely novel

with respect to that carried by spike counts. The finding (reported in Fig. 3.10 A and

Fig. 3.4) that the information in phase-of-firing is higher than the information in spike

counts is not enough to address this question. In fact, suppose we are labeling the

spikes with an informative phase signalφ, but the value of the phaseφ in response to

the stimulus is determined deterministically by the value of the mean spike count̄n

to that stimulus, i.e.φ = φ(n̄). In this case, spike count and phase-of-firing cannot

convey information about independent or different aspectsof the stimulus. However,

even in this situation the information in phase of firing may still be bigger than the

information in spike counts if the phase reports the stimulus more reliably than the
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spike rate itself. Thus, it is important to develop measuresthat determine whether

the information conveyed by phase-of-firing and counts is tosome extent novel and

unrelated.

One way to demonstrate that phase of firing encodes features of the stimulus not

encoded by spike counts is to show that the phase of firing enables to discern between

stimuli which cannot be possibly distinguished on the basisof spike counts alone.

Stimuli that cannot be distinguished on the basis of firing rate alone are stimuli with

the same spike count distribution in response to the stimuli. In the short-stimulus

windows regime considered here, this amounts to the stimulihaving the same mean

spike count. Therefore, for each recording channel, we tookonly movie parts eliciting

exactly a certain spike ratēn, and we computed what we called “the phase-of-firing

information at fixed spike ratēn”, i.e. the information between the phase of firing and

the stimuli at fixed spike ratēn, as follows:

In̄−phase(S;RΦ) =
∑

s′

1

Sn̄

Φ
∑

φ=0

P (φ|s′) log2

P (φ|s′)
P (φ)

(3.6)

where in Eq. 3.6 the sum overs′ is restricted to stimuli with a spike count exactly

equal ton̄ (whose total number isSn̄). The spike count code conveys no information

about these fixed-rate movie parts. If the phase of firing is totally redundant to the

spike rate, then it will too convey zero information about fixed-rate movie parts. If

instead the phase of firing conveys significant information about the fixed-rate movie

parts, then the phase code must contains novel and independent information to that

provided by spike counts, because stimuli undistinguishable from spike count alone

would become distinguishable from the phase of firing. Thus,a useful test that some

of the information convey by the phase of firing is genuinely novel with respect to that

carried by spike counts is to test thatIn̄−phase(S;RΦ) > 0 for some range of spike rate

n̄. Results for the 1-4 Hz LFP phase were reported in Fig. 3.10 B of the main text. As

reported in the main text, we found thatIn̄−phase(S;RΦ) was significantly positive for

all firing rates> 1 Hz, and it was as high at 30 bits/s at spike rates> 80 spk/s. This

demonstrates that the phase of firing conveys some novel information with respect to

spike rates, and suggests that this information is particularly useful to disambiguate

stimuli eliciting sustained spike responses with equal strength.
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It is intuitive that more information is to be gained by labeling the spikes with a

phase which is not redundant to the spike rate than when labeling spikes with a phase

totally redundant to the spike rate. To quantify how much additional phase-of-firing

information about all stimuli we gained because the phase labeling is not a redundant

function of the rate, we introduced a further measure that wecalled the “phase-of-firing

information in the redundant count-phase (RCP) case”IRCP−phase(S;RΦ), which is the

information that would be obtained if we kept the same overall distribution of observed

phase values but we destroyed any possible way for the phase to carry some informa-

tion about the stimulus which is independent from that of rates. This phase distribution

redundant with the spike rate can be constructed by forcing the phase distribution to

become a function of just the spike rate and not of the individual stimuli at fixed rate. In

practice, the redundant phase distribution can be built by randomly associating, within

each trial, the observed phase responses to a randomly selected stimulus with the same

mean spike rate rather than to the stimulus that elicited theconsidered phase response.

In this way, the phase distribution to any stimulus becomes only a function of the mean

spike rate to that stimulus, i.e.P (φ|s) = P (φ|n̄(s)), andIRCP−phase(S;RΦ) can be

expressed as:

IRCP−phase(S;RΦ) =
∑

n̄

1

Sn̄

Φ
∑

φ=0

P (φ|n̄) log2

P (φ|n̄)

P (φ)
(3.7)

where the sum over stimuli in the information definition was replaced by a sum

over all possible spike rate valuesn̄. P (φ|n̄) is the probability of observing phaseφ

in any window eliciting a mean spike ratēn, and is constructed by pooling together all

phase values obtained with the different stimuli at fixed rate. If IRCP−phase (Eq. 3.7)

is considerably smaller thanIphase (Eq. 3.5), it means that a substantial part of phase-

of-firing information about all stimuli is due to the fact that the phase labeling is not a

redundant copy of the rate.

We computedIRCP−phase for our dataset considering the 1-4 Hz LFP phase and we

found thatIRCP−phase was 40% smaller thanIphase, suggesting that a substantial part of

the extra amount of information gained by the knowledge of the phase of firing reflects

novel information about the stimulus with respect to that provided by spike counts.
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Figure 3.6: Distribution of phase-of-firing information. Population scatterplot of the phase

code information of the 1-4 Hz LFP vs the spike count information. The dashed line plots the

line in which the two informations would be equal.

3.2.2.7 Population average vs population distribution of the information in the

phase of firing

Figure 3.10 A of the main text shows that, on average over the population, the infor-

mation in the 1-4 Hz LFP phase of firing was 55% higher than the information in spike

counts. How typical is phase coding across the whole population of sampled neurons?

Figure 3.6 is a plot for all neurons of the information in spike counts versus the infor-

mation in the 1-4Hz LFP phase of firing. All channels but one had significantly higher

information (bootstrap test,p < 0.01) in the phase code than in the spike count code,

and most channels presented a large amount of extra information in the phase of firing.

This suggests that phase coding is common across the entire sampled population, and

not restricted to a few highly informative neurons.

3.2.2.8 Information obtained when labeling spikes with LFPenergy-of-firing as

well as phase

In this study we decided to consider whether the LFP phase at which spikes were emit-

ted is informative. The choice of considering the spike timing relative to the LFP phase

and not other characteristics of the LFP was somehow arbitrary and motivated by the
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theoretical and experimental literature that previously concentrated on phase coding

and its advantages. However, since the LFP is related to somedegree to the synaptic

input to a cortical area and thus reflects the “context” in which spikes were generated,

it is plausible that spikes are informative also with respect to others features of the LFP.

To investigate this issue, we computed, from the band-passed LFPs, also the instanta-

neous amplitudeǫ of the LFP fluctuation by taking the absolute value of the Hilbert

transform in each time point. We then computed, as before, the information that is ob-

tained by labeling the spikes with the instantaneous amplitudeǫ. We found, although

there was more information in the LFP amplitude at the time ofspiking than in spike

counts, that the information in the LFP amplitude at the timeof firing was always less

than the corresponding information in the phase of firing. Results for the 1-4 Hz LFP

band are reported in Fig. 3.7. An interesting question is whether the information in

the amplitude at the time of of firing is independent or redundant to that carried by the

phase of firing. To address this issue, we computed the information that is obtained by

labeling the spikes simultaneously with both the LFP phase and the amplitude at the

time of firing. Figure 3.7 shows that the information in the “amplitude and phase” at the

time of firing was equal to the information in the phase of firing. This means that the

LFP amplitude at the time of firing, though informative in itself, conveys information

which is redundant to the information carried by the phase offiring. Consistently, we

found that LFP amplitude and phase tended to be correlated inthe presence of a spike

(Fig. 3.7 B). Interestingly, amplitude and phase were only correlated during firing, and

they were not correlated in the absence of a spike (Fig. 3.7 C).Thus, it appears that

it is natural and sensible to refer spike times to LFP phases rather than to other LFP

variables.

3.2.2.9 Information in the phase of firing of isolated neurons

As reported above, the spikes used for the analysis represented the spiking activity of a

small population of cells rather than well separated spikesfrom a single neuron. For a

fraction of channels, it was possible to separate some single units. As reported above,

we could isolated 71 units from 37 channels. We checked whether the phase-of-firing

conveyed information also when considering the isolated units. The results were as

follows. For∆t = 4 ms, the 1-4Hz LFP phase of firing information about the movie
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Figure 3.7: Labeling spikes with different LFP features.A: Histograms plot the informa-

tion (mean± SEM over the dataset of channels for which≥ 30 movie repetitions could be

collected) carried by the spike count (denoted as “count” in the x-axis label); by the LFP am-

plitude at which spikes were emitted (denoted by “ǫ” in the x-axis label); by the LFP phase at

which spikes were emitted (“φ” in the x-axis label); and by the simultaneous phase and ampli-

tude at which spikes were emitted (“φ & ǫ” in the x-axis label).B: Joint probability density

(per unit angle and per unitǫ) of phase and amplitude in correspondence of a spike. Results

are expressed in terms of the angular distance∆Φ from the neuron’s preferred phase in the

corresponding window and of the amplitudeǫ. Results are averaged over all channels and time

windows containing a spike.C: Joint probability density (per unit angle and per unit epsilon)

of phase and amplitude in absence of a spike. Results averaged over all channels and time win-

dows where no spike was observed. In plotting Panels B and C, the amplitudewas normalized

to its average standard deviation in a trial.
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was 53% bigger than spike counts for the 37 multiunit channels and 46% bigger than

spike counts for the 71 well sorted units. For∆t = 8 ms, the 1-4Hz LFP phase of firing

information about the movie was 62% bigger than spike countsfor the 37 multiunit

channels and 54% bigger than spike counts for the 71 well sorted units. For∆t =

16 ms, the 1-4Hz LFP phase of firing information about the movie was 75% bigger

than spike counts for the 37 multiunit channels and 62% bigger than spike counts for

the 71 well sorted units. The small decrease of information from multi-unit to single

unit is that the residual error in correcting for the information sampling bias (which is

negative, see Fig. 3.5) has approximately the same absolutesize for the multiunit spikes

and the well sorted spikes (Panzeriet al.(2007)), but the well sorted spikes have overall

less information per channel because information is approximately proportional to the

mean firing rate for short stimulus windows (Panzeri & Schultz (2001)). Overall, the

conclusion is that phase-of-firing is informative also whenconsidering well isolated

spikes.

3.2.2.10 Robustness of the information in the phase of firingwith respect to ap-

proximate knowledge of LFP fluctuations

Can the phase-of-firing information still be accessed by decoders affected by limita-

tions similar to that likely encountered by downstream neural networks? A neural

decoder may not be able to finely filter the broad-band circuitoscillations. We veri-

fied (Fig. 3.4) that a substantial amount of phase-of-firing information was preserved

even if the neural signal was filtered within very broad frequency bands containing the

informative low-frequency components.

3.3 Results

The most established hypothesis on how sensory informationis represented in the brain

is the “spike count coding” hypothesis (Adrian (1928)), which suggests that neurons

represent information by the number of spikes discharged over some relevant time

window. However, the timing of spikes may add important information to that al-

ready carried by spike counts (de Ruyter van Stevenincket al. (1997); Gollisch &

Herz (2005); Hopfield (1995); MacKay & McCulloch (1952); Optican & Richmond
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(1987); Schnuppet al. (2006); Victor & Purpura (1996)). In particular, information

may be encoded in the spike times relative to the phase of someconcurrent network

oscillation (Bullock (1993); Buzsaki & Draguhn (304); Fries et al. (2007); Hopfield

(1995); Lisman (2005)): this is called “phase coding”. In this Chapter, we investigated

which of these coding strategies is used by the primary visual cortex (V1) during the

presentation of rich natural-like visual stimuli.

3.3.1 Spike and LFP responses to natural movies

We recorded neural signals with an array of extracellular electrodes from primary vi-

sual cortex of 4 anaesthetized macaques in response to a binocularly presented 3.5-6

min long natural color movie. Each recording site corresponded to a well defined

V1 visual receptive field within the field of movie projection. From each electrode,

we measured both spiking activity and Local Field Potentials (LFPs). Spikes were

detected by threshold-crossing of the 500-3500Hz band-passed neural signal, and rep-

resented the spiking activity of a small population of cellsrather than well separated

spikes from a single neuron. LFPs, which were recorded as the1-250 Hz band-passed

neural signal, reflect the fluctuations in the input and the intracortical processing of

the local cortical network, including the overall effect ofpopulation synaptic poten-

tials (Juergenset al. (1999); Mitzdorf (1987)) and other types of slow activity such as

spike afterpotentials and voltage-dependent membrane oscillations (Buzsaki (2002);

Harada & Takahashi (1983); Kamondiet al. (1998); Logothetis (2003)). Each movie

was repeated 12-40 times in order to sample the probability distribution over the neural

responses to each part of the film. We obtained a dataset of 78 V1 electrode channels

recorded during stimulation with a particular movie. Unless otherwise stated, we fo-

cused on the relationship between LFPs and spikes recorded from the same electrode.

Figure 3.8 reports responses recorded from one example recording site (electrode 2

in monkey A98) over repeated presentations of the same moviefragment. The pre-

sentation of the movie elicited patterns of spikes that weremodulated over time in a

reliable manner across trials (Fig. 3.8 D). As a consequence, and as summarized by the

trial-averaged instantaneous spike rate (Fig. 3.8 F), somemovie scenes elicited a high

and reliable firing rate, and some other scenes elicited instead a low (but still reliable)
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Figure 3.8: Illustration of the time course of the LFP and the spike phase, and of the difference

between the spike count and phase code. These data were recorded from electrode 2 in monkey

A98 in response to a movie.A: LFP traces from five presentations of a 12s long movie extract.

Traces were displaced on the vertical axis to make them distinguishable.B: Time courses of

the 1-4 Hz band-passed LFP to the same five presentations of a 12s long movie extract as in

Panel A. Traces were displaced on the vertical axis to make them distinguishable. Different

colors correspond to the phase of the 1-4 Hz LFP being in one of four quadrants set as shown

in Panel H (on the base of the phase locking properties of spikes).C: Time course of the

phases 1-4Hz LFP signal phases over 30 repetitions of the movie extract.Phase were color-

coded into quadrants as indicated above and illustrated in Panel H. The top 5trials in Panels

C-E correspond to the 5 trials in Panels A-B.
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firing rate. Thus counting the number of spikes emitted within some time interval re-

duces the observers uncertainty about which movie scene wasbeing presented. This

illustrates that spike counts encode movie scenes.

As for the spiking activity, the waveform of LFPs in single trials (Fig. 3.8 A)

showed fluctuations that were reliable across trials and modulated by the movie. Dur-

ing movie presentation, the power of the LFP spectrum was highest at low frequencies

(< 4 Hz) and then dropped with increasing frequency (Fig. 3.1). We thus started by

considering the behavior of the phase of LFPs fluctuations inthe highest-power band,

namely the 1-4 Hz frequency range (delta band). The single-trial 1-4 Hz band-passed

LFP traces during movie presentation (Fig. 3.8 B) show that 1-4 Hz LFPs too were

reliably modulated by the movie. To extract the instantaneous value of the phase of

the LFP fluctuations in each trial and at each time during the movie, we first computed

the Hilbert transform of the band-passed traces in each trial, and we then computed

the phase as the argument of the Hilbert transform (the resulting phase convention is

plotted in Fig. 3.8 G).

To visualize how LFP phases were modulated by the movie, we divided the phase

range into four equi-spaced quadrants and labeled each witha different color (Fig. 3.8 G).

It was apparent that the 1-4 Hz LFP also encoded the movie, because the phase values

were modulated by the movie time and this modulation was extremely reliable across

Figure 3.8 (continued): D: Raster plot of spike times (indicated by dots) resulting from re-

peated presentation of the selected 12 s movie extract.E: Raster plot of the same spike times as

in panel E, but with the dots representing the spikes color-coded according to the 1-4 Hz LFP

phase quadrant at which they were emitted. These colored spike times illustrate the “phase

code” whereas the colorless spike times in Panel D illustrate the spike count code.F: Spike

rate, averaged over all 30 trials and computed in 4 ms long sliding time bins, during the 12-s

movie extract. The green star and the blue circle indicate movie points that elicit similar spike

rate responses but different and reliable phase values. These two movie points can be much

better discriminated from each other by considering the phase at which spikes were emitted

rather than just counting spikes.G: The sinusoidal convention used for phase.H: The proba-

bility (per unit angle) of observing a spike at a given phase value. The curve is plotted with the

color-code used to label phase quadrants.
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trials at several times during the movie (Fig. 3.8 C).

Moreover, there was a correspondence between spike rate (Fig. 3.8 F) and across-

trials reliability of phase (Fig. 3.8 C): scenes eliciting a high spike rate also elicited a

highly repeatable phase. The distribution of 1-4 Hz LFP phases at spike times from this

example channel during the presentation of the movie (Fig. 3.8 F) was non-uniform

(Rayleigh test of non-uniform angular distribution (Fisher (1993)), p < 0.01): the

probability of spiking at the preferred phase (3π/2 rad) was twice the probability of

spiking at the anti-preferred phase (π/2 rad). The phase values around the preferred

one for firing (coded as green and blue in Fig. 3.8) appeared tobe the ones encoding

the movie more reliably during periods of firing (Fig. 3.8 C).

Since both spikes and LFP phases carry information about themovie, and since

phases are particular reliable in the presence of spikes, itis possible that, in addition

to encoding information by spike count, neurons may encode extra information about

the movie by the phase at which they fire. This hypothesis means that if we label the

spikes with a “color” (as in Fig. 3.8 E) reporting the phase quadrant at which they

were emitted (“the phase-of-firing code”), we can predict better which visual feature

elicited the firing than if we just count the “colorless” spikes expressing the spike count

code (Fig. 3.8 D). Figure 3.8 F illustrates how phase may playa role in representing

information about the visual scenes. Two scenes of the movieeliciting comparable

firing rates (e.g. those occurring at times marked respectively by a green star and

blue circle in Fig. 3.8 F) could not be discriminated by their“colorless” spike count

(Fig. 3.8 D), but could be discriminated when taking into account their phase label

(green vs. blue colored spikes in Fig. 3.8 E). The exact extent to which knowledge

of the phase of firing helps stimulus discrimination will be determined below using

information theory.

3.3.2 LFP phase reliability and spike-phase relationships

Having illustrated the phase-of-firing coding with an example recording channel and a

selected LFP frequency range, we next characterized the behavior of the entire datasets

over a wide range of LFP frequencies. To do so, we divided the LFP frequency range

into small frequency intervals (1-4 Hz; 4-8 Hz; and up to 124 Hz in 4-Hz-wide non-

overlapping intervals). We then computed band-passed LFPsin each such frequency
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interval, from which we extracted the instantaneous band-passed phase during the

course of the movie.

A first fundamental condition for phase coding is that LFP phases are reliable and

repeatable across different trials at fixed sensory input (i.e. at fixed time during the

movie). We investigated phase reliability by computing thecircular variance across

trials of the phase at each time during the movie. Circular variance is a measure of an-

gular dispersion (Eq. 3.2), and its values range from 0 (perfect reproducibility across

trials) to 1 (total unreliability). To be useful for phase-of-firing stimulus coding, the

reliable phase values must be observed during periods of firing: if the reliable phases

occur during silence, their information cannot be used to tag the spikes. Thus, in

Fig. 3.9 A we examined how the circular variance of the LFP phase depends upon the

spike rate observed in the same window. Fig. 3.9 A shows that,in the high-frequency

LFP regions (> 50 Hz), the circular variance is very high (population average: approx-

imately 0.85) across all spike rate levels. Thus, the phase in the high-LFP frequency

range is not reliable enough to support stimulus discrimination. In contrast, and for

all spike rate values, phase was far more reliable in the low LFP frequency bands. In

the LFP frequency regions below 12 Hz, movie segments eliciting high firing rates

also elicited substantially more reliable LFP phases: on average across the dataset, the

circular variance across trials of the 0-4 Hz LFP phase was approximately 0.5 in low

spike rate windows (< 25 spk/s) and approximately 0.3 in high (> 150 spk/s) spike rate

windows. A circular variance of 0.3 would be that achieved bya phase distributed uni-

formly over a0.65π-wide interval. This suggests that, in order to extract information

from the phase of firing, we need to measure phases with a precision of approximately

π/2 (i.e. a quarter of a phase cycle). A very similar dependence of phase reliability on

rate was obtained with 4-8 Hz and 8-12 Hz phases (data not shown). The increase of

phase reliability with firing strongly suggests that the role of phase-related spike times

may be to discriminate between stimuli each eliciting similarly high spike rates.

A second crucial requirement for phase coding is that the different movie time

windows elicit diverse reliable phase responses. For example, in Fig. 3.8 we observed

that several movie scenes elicited a reliable phase in the green-coded range, and other

different movie scenes elicited a reliable phase in the blue-coded range; it is the color

difference in the reliably colored phase ranges that makes it possible to use phase to tag

successfully different movie parts. We found that the results obtained for the example
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channel plotted in Fig. 3.8 extended to the whole dataset. Inparticular, for the vast

majority of all channels, the distribution of phases at spike times was significantly

non-uniform (Fig. 3.2 A), and we could define a preferred phase of spike times for

each channel. The preferred phase of the 1-4 Hz LFP varied from channel to channel,

and was located in most cases in the3π/2 to 2π range (between the trough and the

middle of the rising phase of the LFP oscillation). For the 1-4 Hz LFP, the average

over the dataset of the preferred phase was1.9π (Fig. 3.2 C). We qualitatively observed

that for the vast majority of channels phase values close to the preferred phase were

more reliably during firing, much as for the example channel reported in Fig. 3.8.

Thus, to quantify which phase range is more reliable during firing at the population

level, we realigned the 1-4 Hz LFP phase values for each channel so that the preferred

phase was set to a “zero” reference value, and we expressed each phase value as∆Φ,

the difference between the phase value and the channel’s preferred phase. We then

examined how the circular variance of the phase depended upon the mean across trials

of the phase (computed as “angular mean”; see Eq. 3.1) and upon the trial-averaged

spike rate observed in the same window. Fig. 3.9 B reports thepopulation average

of the phase circular variance as a function of the value of the trial-averaged phase

(expressed as∆Φ) and the spike rate. We found that (Fig. 3.9 B) at high spike rates

(> 100 spk/s) all phase values within angular distance∆Φ of π/2 from each channel’s

preferred phase were reliable (with circular variation in the range 0.3-0.4). This makes

it possible to disambiguate different stimuli eliciting anequally strong firing rate by

tagging them using some of the different reliable phase values occurring within angular

distance∆Φ of π/2 from the preferred phase. In this way, stimuli indistinguishable

from firing rates alone may become distinguishable after being labeled by their phase

of firing, and this permits the phase of firing to convey information about the movie

which is genuinely novel with respect to the one provided by spike rates.

3.3.3 The sensory information conveyed by spikes times relative

to LFP phase

Finally, we used Shannon’s information (Shannon (1948)) toaddress directly the issue

of how much additional information, beyond that available in spike counts, is conveyed

by phase of firing. Shannon’s information (see Eq. 3.3) between a set of stimuli and

74



3.3 Results

Figure 3.9: Phase locking properties of V1 neurons under natural visual stimulation.A: The

blue curve plots the locking strength as a function of the frequency, averaged over the dataset

(solid blue line: mean; light-gray area:± 1 SEM confidence region). The locking strength

was computed for each channel as the difference between maximal and minimal probability

of spike locking across all channels. The red curve plots the number of channels showing

significant spike locking (Rayleigh test,p < 0.01) at fixed frequency.B: The value of the

circular variance across trials at fixed time windows of the phase of LFPs band-passed in a

given frequency range is plotted as function of spike rate in the corresponding window. Results

averaged over all channels and time windows.C: The value of the circular variance across

trials of the phase of 1-4Hz LFPs at fixed time windows is plotted as function ofthe spike

rate and of the angular distance∆φ from the neuron’s preferred phase in the corresponding

window. Results averaged over all channels and time windows.D: Probability of observing

a preferred phase of 1-4Hz LFPs at a given angular distance∆φ from the neuron’s preferred

phase as function of the spike rate of the neuron. Results were averaged over the whole dataset.
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the neural responses is a principled measure of single-trial discriminability. It quanti-

fies (in units of bits) the reduction of uncertainty about thestimulus which is gained

by a single-trial observation of a neural response: one bit corresponds to a reduction

of uncertainty of a factor of two. In the following we computed the information that

the neural response conveys about which section of the moviewas being presented.

This characterization of information about the movie does not need any assumption

about which features in the movie made the neuron respond (deRuyter van Steveninck

et al. (1997)): thus we are computing information about all possible visual attributes

occurring in the movie. Information values were expressed in bits/s by dividing the

information value by the time window length (typically 4 ms wide; see Methods Sec-

tion 3.2) in which the neural response is computed.

The amount of information transmitted by a neural response depends on the way

the response is quantified, which in turn reflects our assumption on what is the “neu-

ral code”. We considered and compared the information carried by the two candidate

neural codes: the spike count code (the neural response to a part of the movie was

quantified as the total number of spikes emitted in the selected response time win-

dow), and the phase-of-firing code (the neural response is quantified as the LFP phase

at which each spike was emitted). The latter was equivalent to computing informa-

tion from the “colored” spikes as in Fig. 3.8 E; the former to computing information

counting “colorless” spikes as in Fig. 3.8 D. We registered the phase of firing with a

π/2 precision (i.e. phase divided into quadrants) because (consistently with the above

phase-reliability analysis) using a precision finer thanπ/2 did not increase the infor-

mation further (Fig. 3.3).

We first investigated how well spike counts encode the movie.We found that,

across the entire dataset, spike counts conveyed 6.23± 0.66 bits/s of information about

the movie (mean± SEM). We then considered the information about the movie that

is carried via the phase of firing. We found (Fig. 3.10 A) that there was considerably

more information in the spike times relative to phase than inthe spike counts, and

that the amount of phase-of-firing information strongly depended on the considered

LFP frequency range. The 1-4Hz LFP phase of firing carried 9.6± 0.94 bits/s of

information about the movie: thus the phase code in 1-4Hz LFPband conveys 54%

extra information that it is not possible to obtain in any wayfrom spike counts. As
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Figure 3.10: The information about the movie conveyed by spike counts and by phase offiring.

A: Black dots plot the information carried by the LFP phase at which spikes were emitted as

function of the considered LFP frequency (mean± SEM over the dataset). The black dashed

line plots the mean over the dataset of the spike count information (SEM over dataset indicated

as grey area)B: The phase code (1-4 Hz LFP) information in movie points eliciting exactly the

same spike rate is plotted as function of the firing rate (mean± SEM across population reported

as full line and shaded area respectively). For the purpose of plotting the line in Panel B, the

information values computed between stimuli at exactly the same rate were averaged over

10 spk/s wide spike rate bins.

reported in Methods (Section 3.2.2.9), the extra amount of information in the phase-

of-firing did not change much when considering only spikes from well-isolated single

neurons. The phases of firing in the 4-8Hz and 8-12 Hz LFPs wereless informative

than the 1-4 Hz LFP phase, but still carried much more information than spike counts

(46% and 32% respectively). The amount of information in thephase of firing then

rapidly decreased at higher LFP frequencies, and it became equal to the spike count

information for LFP frequencies> 24 Hz. Further, additionally labeling the spikes

with LFP amplitude instead than just with LFP phase did not lead to any increase of

information (Fig. 3.7). Taken together, these results suggest that spike times are only

informative with respect to the phase of low-frequency LFPs.

Can the phase-of-firing information still be accessed by decoders affected by limi-

tations similar to that likely encountered by downstream neural networks? On the one

hand, a neural decoder may not be able to finely filter the broad-band circuit fluctua-
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tions.

To address this concern, we computed the phase-of-firing information obtained

when the phase is extracted from LFPs filtered between 1 Hz anda low-pass fre-

quency cutoff that was progressively varied between 4 and 250 Hz. We found that

the amount of extra information in LFPs decreased from 54% for 1-4 Hz LFPs to 46%,

39% and 38% for 1-25 Hz, 1-100 Hz and 1-250 Hz LFPs, respectively (Fig. 3.4).

Thus, a substantial amount of phase-of-firing information was preserved even if the

neural signal was filtered within very broad frequency bandscontaining the informa-

tive low-frequency components. On the other hand, althoughcortical low-frequency

oscillations have high spatial coherence, a further-away decoder may not receive a per-

fect copy of the phase signal. To verify if this leads to a lossof decoded information,

we paired the spikes with 1-4 Hz LFPs recorded simultaneously from electrodes up to

4 mm away, rather than pairing them with the same-electrode 1-4Hz LFP. We found

that there was less than 1% loss of information (not significant p > 0.2; bootstrap test)

when pairing spikes with LFP phases at other electrodes, at all inter-electrode distance

considered (≤ 2 mm; ≤ 3 mm; ≤ 4 mm). Thus, the phase-of-firing information was

robust to limitations of the downstream decoder.

Is some of phase-of-firing information genuinely novel withrespect to that carried

by spike counts? In the following we demonstrate that this isthe case, by showing

that the phase of firing enables to discern between stimuli which cannot be possibly

distinguished on the basis of spike counts alone. For each recording channel, we took

only movie parts eliciting exactly a certain spike rate. Thespike count code conveys

no information about these fixed-rate movie parts. If the phase of firing is totally

redundant to the spike rate, it will also convey zero information about fixed-rate movie

parts. If instead the phase of firing conveys significant information about the fixed-

rate movie parts, then the phase code must contain novel and independent information

to that provided by spike counts, because stimuli undistinguishable from spike count

alone become now distinguishable from the phase of firing. Results for the 1-4 Hz LFP

(reported in Fig. 3.10 B as population average) show that thephase code information

about movie parts at fixed rate was small at low spike rates andsteeply increased at

higher spike rates: it reached a value of 30 bits/s at rates> 100 Hz. The phase-of-firing

information about movie parts at fixed rate was significantlypositive (p < 0.0001;

bootstrap test) for all rates> 10 Hz. Similar results (although with an overall scaling
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down of the information value) were obtained for 4-8 Hz and 8-16 Hz LFPs. This

proves our hypothesis: the phase of firing conveys information about the movie which

is not redundant to that of spike rates, as it disambiguates stimuli which elicit equally

high spike rates and thus cannot possibly be distinguished from spike counts alone.

(See Methods Section 3.2 for further studies on the independence between spike count

and phase-of-firing information)

3.4 Discussion

The hypothesis that neurons may encode information by the phase at which they fire

has received renewed attention in recent years. Evidence has been reported that spatial-

navigation- and memory-related structures encode some information by phase-of-firing

(Huxteret al.(2003); Jensen & Lisman (2000); Leeet al.(2005)). However, the extent

to which firing rate and phase encode genuinely different information, rather than just

being produced by the same mechanism and thus reflecting largely redundant informa-

tion, has remained debated (Harris (2005); Harriset al. (2002); Mehtaet al. (2002)).

Further, it has been unclear whether phase coding represents a fundamental currency

for cortical information exchange right from the primary sensory representation, and

if it is a robust enough coding mechanism to represent complex stimuli.

Here we have addressed some of these open questions about thenature of phase

coding by demonstrating for the first time that, in primary visual cortex of anaes-

thetized monkeys, a substantial amount of information about natural stimuli is carried

by the phase of firing, and that some of this phase-of-firing information is genuinely

different from the information carried by spike counts. In fact, phase-of-firing permits

the discrimination of stimulus features that elicit an equally high spike rate and thus

cannot be distinguished when considering firing rate alone.This coding mechanism

provides neurons in sensory cortex with a mean to represent more than one effective

stimulus by “tagging” several effective stimuli with similar firing rates with different

values of the phase of the network fluctuations.

We found that only low-frequency (< 12 Hz) LFP phases were reliable enough

during periods of firing to be useful for coding, whereas> 40 Hz gamma-range phases

(Frieset al. (2007)) were not. Gamma oscillations were present in our data and are
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stimulus-driven (the highest increase of LFP power from spontaneous activity to movie

stimulation was in the gamma range; Fig. 3.1), but they did not generate a reliable and

informative spike-phase relationship. An interesting question is how the information-

rich phase of low-frequency LFPs is generated. On the one hand, it could reflect the

intrinsic dynamics of the sensory or neuromodulatory processing pathways commonly

associated to the generation of these low-frequency oscillations. On the other hand it

could be driven by the dynamics of natural movies, which contains the highest power

in the low frequency range (see Section 3.2). To clarify the origin of the informa-

tive phase signal, an important direction for future research is to change the stimulus

dynamics by using faster stimuli than natural movies and study how this affects the

phase-informative LFP frequency range, as well the accompanying spiking precision

(Buttset al. (2007)).

Previous reports have documented that the timing of individual spikes with re-

spect to the stimulus onset (such as “latency codes” (Panzeri et al. (2001))) is very

informative. One objection to such individual-spike-timing codes is that their infor-

mation may not be relevant because the brain does not have a separate representation

of stimulus onset which could allow the interpretation of this spike timing code. Our

results demonstrate that the timing of individual spikes isnot only informative rela-

tive to stimulus onset, but is also informative relative to slow fluctuations in the input

and the intracortical processing of the local cortical network. Since the latter signal

is presumably available to a downstream area decoding the stimulus attributes, our

demonstration of phase-of-firing coding suggest that the visual cortex can access and

use the information available in the timing of individual spikes. In this respect, one

particular advantage of using low frequency oscillations for phase coding is that such

low frequency oscillations are those with greater spatial coherence, and can thus be

made more widely available to decoding networks.

The type of biophysical mechanisms needed to decode the phase-of-firing infor-

mation depends on the origin of the informative phase signal. A simple scenario is

that low-frequency LFP fluctuations reflect coherent membrane potential oscillations

of populations of neurons (such as transition between up anddown states). In this

case, different phase-of-firing values may be decoded on thebasis of their different

post-synaptic responses. A more complex scenario is that the reliable LFP phase is the

reflection of a very precise interaction of large cell assembly (Harris (2005)). In such
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case, a precisely wired circuit may be needed to detect assembly activation, but the in-

formation advantage offered by relative time of firing can beeven more quantitatively

prominent.
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Chapter 4

A kernel approach to comparing

distributions

“Den rechten Handschuh könnte man an die linke Hand ziehen, wenn

man ihn im vierdimensionalen Raum umdrehen koennte.”

[Ludwig Wittgenstein, 1921]
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We describe a technique for comparing distributions withoutthe need for density

estimation as an intermediate step. Our approach relies on mapping the distributions

into a Reproducing Kernel Hilbert Space. We apply this technique to construct a two-

sample test, which is used for determining whether two sets of observations arise from

the same distribution. We use this test in attribute matching for databases using the

Hungarian marriage method, where it performs strongly. We also demonstrate excel-

lent performance when comparing distributions over graphs,for which no alternative

tests currently exist.

4.1 Introduction

We address the problem of comparing samples from two probability distributions, by

proposing a statistical test of the hypothesis that these distributions are different (this

is called the two-sample or homogeneity problem).

Here, we propose to test whether distributionsp andq are different on the basis

of samples drawn from each of them, by finding a smooth function which is large on

the points drawn fromp, and small (as negative as possible) on the points fromq. We

use as our test statistic the difference between the mean function values on the two

samples; when this is large, the samples are likely from different distributions. We call

this statistic the Maximum Mean Discrepancy (MMD).

Clearly the quality of MMD as a statistic depends heavily on the classF of smooth

functions that define it. On one hand,F must be “rich enough” so that the population

MMD vanishes if and only ifp = q. On the other hand, for the test to be consistent,

F needs to be “restrictive” enough for the empirical estimateof MMD to converge

quickly to its expectation as the sample size increases. We shall use the unit balls

in universal reproducing kernel Hilbert spaces Steinwart (2002) as our function class,

since these will be shown to satisfy both of the foregoing properties. On a more prac-

tical note, MMD is cheap to compute: givenm points sampled fromp andn from q,

the cost isO(m+ n)2 time.

We develop a non-parametric statistical test for the two-sample problem, based on

the asymptotic distribution of an unbiased empirical estimate of the MMD.
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We demonstrate the good performance of our test on problems from bioinformatics

and attribute matching. In addition, we are able to successfully apply our test to graph

data, for which no alternative tests exist.

4.2 The Two-Sample-Problem

Letp andq be distributions defined on a domainX. Given observationsX := {x1, . . . , xm}
andY := {y1, . . . , yn}, drawn independently and identically distributed (i.i.d.) from p

andq respectively, we wish to test whetherp 6= q.

To start with, we must determine a criterion that, in the population setting, takes on

a unique and distinctive value only whenp = q. It will be defined based on (Dudley,

2002, Lemma 9.3.2).

Lemma 4.1 Let (X, d) be a separable metric space, and letp, q be two Borel proba-

bility measures defined onX. Thenp = q if and only ifEp(f(x)) = Eq(f(x)) for all

f ∈ C(X), whereC(X) is the space of continuous bounded functions onX.

AlthoughC(X) in principle allows us to identifyp = q uniquely, it is not practical

to work with such a rich function class in the finite sample setting. We thus define a

more general class of statistic, for as yet unspecified function classesF, to measure the

discrepancy betweenp andq, as proposed in Fortet & Mourier (1953).

Definition 4.2 Let F be a class of functionsf : X → R and letp, q be defined as

above. Then we define the maximum mean discrepancy (MMD) as

MMD [F, p, q] := sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)]) . (4.1)

We must now identify a function class that is rich enough to uniquely establish whether

p = q, yet restrictive enough to provide useful finite sample estimates (the latter prop-

erty will be established in subsequent sections). To this end, we selectF to be the unit

ball in a universal RKHSH Steinwart (2002); we will henceforth useF only to de-

note this function class. With the additional restriction thatX be compact, a universal

RKHS is dense inC(X) with respect to theL∞ norm. It is shown in Steinwart (2002)

that Gaussian and Laplace kernels are universal.
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Figure 4.1: Illustration of the function maximizing the mean discrepancy in the case where a

Gaussian is being compared with a Laplace distribution. Both distributions havezero mean and

unit variance. The functionf that witnesses the MMD has been scaled for plotting purposes,

and was computed empirically on the basis of2 × 104 samples, using a Gaussian kernel with

σ = 0.5.

Theorem 4.3 Let F be a unit ball in a universal RKHSH, defined on the compact

metric spaceX, with associated kernelk(·, ·). ThenMMD [F, p, q] = 0 if and only if

p = q.

See Grettonet al. (2007) for more detail. We plot the witness functionf from Defi-

nition 4.2 in Figure 4.1, whenp is Gaussian andq is Laplace, for a Gaussian RKHS

kernel.

We next express the MMD in a more easily computable form.

Lemma 4.4 Givenx andx′ independent random variables with distributionp, andy

andy′ independent random variables with distributionq, the populationMMD2 is

MMD2 [F, p, q] = Ex,x′∼p [k(x, x′)] (4.2)

− 2Ex∼p,y∼q [k(x, y)] + Ey,y′∼q [k(y, y′)] .

Let Z := (z1, . . . , zm) bem i.i.d. random variables, wherezi := (xi, yi) (i.e. we

assumem = n). Anunbiased empirical estimate ofMMD2 is

MMD2
u [F, X, Y ] =

1

(m)(m− 1)

m
∑

i6=j

h(zi, zj), (4.3)
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which is a one-sample U-statistic withh(zi, zj) := k(xi, xj) + k(yi, yj) − k(xi, yj) −
k(xj, yi).

Proof [Eq. (4.2) in Lemma 4.4] In an RKHS, function evaluations canbe written

f(x) = 〈φ(x), f〉, whereφ(x) = k(x, .). Denote byµp := Ex∼p(x) [φ(x)] the expecta-

tion of φ(x) (assuming that it exists),1 and note thatEp[f(x)] = 〈µp, f〉. Then

MMD2[F, p, q]

=

(

sup
‖f‖

H
≤1

Ep [f(x)] − Eq [f(y)]

)2

=

(

sup
‖f‖

H
≤1

Ep [〈φ(x), f〉
H

] − Eq [〈φ(y), f〉
H

]

)2

=

(

sup
‖f‖

H
≤1

〈µp − µq, f〉H

)2

= ‖µp − µq‖2
H

= 〈µp, µp〉H + 〈µq, µq〉H − 2 〈µp, µq〉H
= Ep 〈φ(x), φ(x′)〉

H
+ Eq 〈φ(y), φ(y′)〉

H

− 2Ep,q 〈φ(x), φ(y)〉
H
,

wherex′ is a random variable independent ofx with distributionp, andy′ is a random

variable independent ofy with distribution q. The proof is completed by applying

〈φ(x), φ(x′)〉
H

= k(x, x′).

The empirical statistic is an unbiased estimate ofMMD2, although it does not have

minimum variance (the minimum variance estimate is almost identical: see (Serfling,

1980, Section 5.1.4)). Intuitively we expectMMD2
u[F, X, Y ] to be small ifp = q, and

the quantity to be large if the distributions are far apart. Note that it costsO((m+n)2)

time to compute the statistic.

Having defined our test statistic, we briefly describe the framework of statistical

hypothesis testing as it applies in the present context, following (Casella & Berger,

2002, Chapter 8). Given i.i.d. samplesX ∼ p of sizem andY ∼ q of sizen, the

1A sufficient condition for this is‖µp‖2

H
< ∞, which is rearranged asEp[k(x, x′)] < ∞, wherex

andx′ are independent random variables drawn according top.

87



A K ERNEL APPROACH TO COMPARING DISTRIBUTIONS

statistical test,T(X,Y ) : Xm × Xn 7→ {0, 1} is used to distinguish between the

null hypothesisH0 : p = q and the alternative hypothesisH1 : p 6= q. This is

achieved by comparing the test statisticMMD[F, X, Y ] with a particular threshold: if

the threshold is exceeded, then the test rejects the null hypothesis (bearing in mind

that a zero population MMD indicatesp = q). The acceptance region of the test is

thus defined as any real number below the threshold. Since thetest is based on finite

samples, it is possible that an incorrect answer will be returned: we define the Type I

error as the probability of rejectingp = q based on the observed sample, despite the

null hypothesis being true. Conversely, the Type II error is the probability of accepting

p = q despite the underlying distributions being different. Thelevelα of a test is an

upper bound on the Type I error: this is a design parameter of the test, and is used to

set the threshold to which we compare the test statistic. A consistent test achieves a

levelα, and a Type II error of zero, in the large sample limit. We willsee that the test

proposed in this paper is consistent.

4.3 An unbiased test based on the asymptotic distribu-

tion of the U-Statistic

We now propose a statistical test of whetherp 6= q, which is based on the asymptotic

distribution ofMMD2
u. This distribution underH1 is given by (Serfling, 1980, Section

5.5.1), and the distribution underH0 is computed based on (Serfling, 1980, Section

5.5.2) and (Andersonet al., 1994, Appendix); see Grettonet al. (2007) for details.

Theorem 4.5 We assumeE (h2) < ∞. UnderH1, MMD2
u converges in distribution

to a Gaussian according to

m
1

2

(

MMD2
u − MMD2 [F, p, q]

) D→ N
(

0, σ2
u

)

,

whereσ2
u = 4

(

Ez [(Ez′h(z, z
′))2] − [Ez,z′(h(z, z

′))]2
)

, uniformly at rate1/
√
m (Ser-

fling, 1980, Theorem B, p. 193). UnderH0, the U-statistic is degenerate, meaning

Ez′h(z, z
′) = 0. In this case,MMD2

u converges in distribution according to

mMMD2
u

D→
∞
∑

l=1

λl

[

z2
l − 2

]

, (4.4)
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Figure 4.2: Left: Empirical distribution of the MMD underH0, with p andq both Gaussians

with unit standard deviation, using 50 samples from each.Right: Empirical distribution of the

MMD underH1, with p a Laplace distribution with unit standard deviation, andq a Laplace

distribution with standard deviation3
√

2, using 100 samples from each. In both cases, the

histograms were obtained by computing 2000 independent instances of the MMD.

wherezl ∼ N(0, 2) i.i.d., λi are the solutions to the eigenvalue equation

∫

X

k̃(x, x′)ψi(x)dp(x) = λiψi(x
′),

and k̃(xi, xj) := k(xi, xj) − Exk(xi, x) − Exk(x, xj) + Ex,x′k(x, x′) is the centred

RKHS kernel.

We illustrate the MMD density under both the null and alternative hypotheses by ap-

proximating it empirically for bothp = q andp 6= q. Results are plotted in Figure

4.2.

Our goal is to determine whether the empirical test statistic MMD2
u is so large as

to be outside the1 − α quantile of the null distribution in (4.4) (consistency of the

resulting test is guaranteed by the form of the distributionunderH1). One way to

estimate this quantile is using the bootstrap Arcones & Giné (1992) on the aggregated

data. Alternatively, we may approximate the null distribution by fitting Pearson curves

to its first four moments (Johnsonet al., 1994, Section 18.8).
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4.4 Experiments

We conducted distribution comparisons using our MMD-basedtests on datasets from

bioinformatics and database applications. We applied tests based on both moment

matching to Pearson curves (MMD2
u M) and the bootstrap (MMD2

u B). For our kernel,

we used a Gaussian withσ set to the median distance between points in the aggre-

gate sample, besides on the graph data, where we used the graph kernel for proteins

from Borgwardtet al. (2005). We also compared against several alternatives from

the literature (see below): the multivariate t-test, the Friedman-Rafsky Kolmogorov-

Smirnov generalisation (Smir), the Friedman-Rafsky Wald-Wolfowitz generalisation

(Wolf), the Biau-Gÿorfi test (Biau), and the Hall-Tajvidi test (Hall). Note that the

Biau-Gÿorfi test does not apply to very high-dimensional problems (since it requires

partitioning of the space into a grid), and that MMD is the only method applicable to

structured data such as graphs.

Overview of previous approaches to statistical hypothesistesting We give a brief

overview of previous approaches to the two sample problem for multivariate data. A

generalisation of the Wald-Wolfowitz runs test to the multivariate domain was pro-

posed and analysed in Friedman & Rafsky (1979); Henze & Penrose (1999) (Wolf),

which involves counting the number of edges in the minimum spanning tree over the

aggregated data that connect points inX to points inY . The resulting test relies on the

asymptotic normality of the test statistic, and this quantity is not distribution-free under

the null hypothesis for finite samples (it depends onp andq). The computational cost

of this method using Kruskal’s algorithm isO((m + n)2 log(m + n)), although more

modern methods improve on thelog(m+ n) term (see Chazelle (2000); note also that

Friedman and Rafsky, the authors of Friedman & Rafsky (1979), state that calculating

the matrix of distances, which costsO((m+n)2), dominates their computing time; this

may not be the case for large sample sizes, however). Two possible generalisations of

the Kolmogorov-Smirnov test to the multivariate case were studied in Bickel (1969);

Friedman & Rafsky (1979). The approach of Friedman and Rafsky (Smir) in this case

again requires a minimal spanning tree, and has a similar cost to their multivariate runs

test.
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A more recent multivariate test was proposed in Rosenbaum (2005). This entails

computing the minimum distance non-bipartite matching over the aggregate data, and

using the number of pairs containing a sample from bothX andY as a test statistic.

The resulting statistic is distribution-free under the null hypothesis at finite sample

sizes, in which respect it is superior to the Friedman-Rafsky test; on the other hand, it

costsO((m+ n)3) to compute. Another distribution-free test was proposed byHall &

Tajvidi (2002) (Hall): this requires us to aggregate the data asZ = {X,Y }, find the

j points inZ closest to each point inX for all j ∈ {1, . . . ,m}, count how many of

these are fromY , and compare this with the number of points expected under the null

hypothesis (the procedure is repeated for each point inY w.r.t. points inX). As we

shall see in our experimental comparisons, the test statistic is costly to compute; Hall

& Tajvidi (2002) consider only tens of points in their experiments.

Yet another approach is to use some distance (e.g.L1 or L2) between Parzen win-

dow estimates of the densities as a test statistic Andersonet al. (1994); Biau & Gyorfi

(2005), based on the asymptotic distribution of this distance givenp = q. One prob-

lem with theL1 approach of Biau & Gyorfi (2005) (Biau), however, is that it requires

the space to be partitioned into a grid of bins, which becomesdifficult or impossible

for high dimensional problems. Hence we do not use this test for high-dimensional

problems in our experiments.

Toy Example: Two Gaussians In our first experiment, we investigated the scal-

ing performance of the various tests as a function of the dimensionalityd of the space

X ⊂ R
d, when bothp andq were Gaussian. We considered values ofd up to 2500. The

levels for all tests were set atα = 0.05,m = 250 samples were used, and results were

averaged over100 repetitions. In the first case, the distributions had different means

and unit variance. The percentage of times the null hypothesis was correctly rejected

over a set of Euclidean distances between the distribution means (20 values logarith-

mically spaced from 0.05 to 50), was computed as a function ofthe dimensionality

of the normal distributions. In case of the t-test, a ridge was added to the covariance

estimate, to avoid singularity (the ratio of largest to smallest eigenvalue was ensured to

be at most 2). In the second case, samples were drawn from distributionsN(0, I) and

N(0, σ2
I) with different variance. The percentage of null rejectionswas averaged over
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Figure 4.3: Type II performance of the various tests when separating two Gaussians, with test

levelα = 0.05. A Gaussians have same variance and different means.B Gaussians have same

mean and different variances.

20 σ values logarithmically spaced from100.01 to 10. The t-test was not compared in

this case, since its output would have been irrelevant. Results are plotted in Figure 4.3.

In the case of Gaussians with differing means, we observe thet-test performs best

in low dimensions, however its performance is severely weakened when the number

of samples exceeds the number of dimensions. The performance ofMMD2
u M is com-

parable to the t-test for low sample sizes, and outperforms all other methods for larger

sample sizes.

In the case of Gaussians of differing variance, theHall test performs best, followed

closely byMMD2
u. FR Wolf and (to a much greater extent)FR Smirnovboth have

difficulties in high dimensions, failing completely once the dimensionality becomes

too great.

Data integration As a first application ofMMD, we performed distribution testing

for data integration: the objective is to aggregate two datasets into a single sample, with

the understanding that both original samples are generatedfrom the same distribution.

Clearly, it is important to check this last condition before proceeding, or an analysis

could detect patterns in the new dataset that are caused by combining the two different

source distributions, and not by real-world phenomena.
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We chose several real-world settings to perform this task: we compared microarray

data from microarray data from normal and tumor tissues (Health status), microarray

data from different subtypes of cancer (Subtype), and neural data recordings with and

without spike events (Neural Data I and II). In all cases, thetwo data sets have different

statistical properties, but the detection of these differences is made difficult by the high

data dimensionality.

We applied our tests to these datasets in the following fashion. Given two datasets

A and B, we either chose one sample from A and the other from B (Attributes =

different); or both samples from either A or B (Attributes = same). We then repeated

this process up to 1200 times. Results are reported in Table 4.1. We see thatMMD2
u

is consistently the best test over all these data, always detecting differences where they

occurred while still getting a lower Type I error probability than any other test besides

the t-test andMMD. However the latter two tests were much too conservative, and

failed to detect the vast majority of differences (besides for the data set with the largest

sample size, i.e. Neural Data I).

Dataset Attr. MMD2
u B MMD2

u M t-test Wolf Smir Hall

Neural Data I Same 96.5 96.5∗ 100.0 97.0 95.0 96.0

Different 0.0 0.0∗ 42.0 0.0 10.0 49.0

Neural Data II Same 94.6 95.2∗ 100.0 95.0 94.5 96.0

Different 3.3 3.4∗ 100.0 0.8 31.8 5.9

Health status Same 95.5 94.4 100.0 94.7 96.1 95.6

Different 1.0 0.8 100.0 2.8 44.0 35.7

Subtype Same 99.1 96.4 100.0 94.6 97.3 96.5

Different 0.0 0.0 100.0 0.0 28.4 0.2

Table 4.1: Distribution testing for data integration on multivariate data. Numbers indicate the

percentage of repetitions for which the null hypothesis (p=q) was accepted, givenα = 0.05.

Sample size (dimension; repetitions of experiment): Neural I 4000 (63; 100) ; Neural II 1000

(100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000). ∗ approximation to

4th moment used.
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Dataset Attr. MMD2
u B MMD2

u M t-test Wolf Smir Hall Biau

BIO Same 93.8 94.8 95.2 90.3 95.8 95.3 99.3

Different 17.2 17.6 36.2 17.2 18.6 17.9 42.1

FOREST Same 96.4 96.0 97.4 94.6 99.8 95.5 100.0

Different 0.0 0.0 0.2 3.8 0.0 50.1 0.0

CNUM Same 94.5 93.8 94.0 98.4 97.5 91.2 98.5

Different 2.7 2.5 19.17 22.5 11.6 79.1 50.5

FOR10D Same 94.0 94.0 100.0 93.5 96.5 97.0 100.0

Different 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 4.2: Attribute matching on univariate (BIO, FOREST, CNUM) and multivariate data

(FOR10D). Numbers indicate the percentage of accepted null hypothesis(p=q) pooled over

attributes.α = 0.05. Sample size (dimension; attributes; repetitions of experiment): BIO 377

(1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); FOR10D 1000 (10; 2; 100).

Attribute matching Our experiments address automatic attribute matching. Given

two databases, we want to detect corresponding attributes in the schemas of these

databases, based on their data-content (as a simple example, two databases might have

respective fields Wage and Salary, which are assumed to be observed via a subsam-

pling of a particular population, and we wish to automatically determine that both

Wage and Salary denote to the same underlying attribute). Weuse a two-sample test

on pairs of attributes from two databases to find corresponding pairs.1 This proce-

dure is also calledtable matchingfor tables from different databases. We performed

attribute matching as follows: first, the dataset D was splitinto two halves A and B.

Each of then attributes in A (and B, resp.) was then represented by its instances in A

(resp. B). We then tested all pairs of attributes from A and B against each other, to find

the optimal assignment of attributesA1, . . . , An from A to attributesB1, . . . , Bn from

B. We assumed that A and B contained the same number of attributes.

As a naive approach, one could assume that any possible pair of attributes might

correspond, and thus that every attribute ofA needs to be tested against all the attributes

1Note that corresponding attributes may have different distributions in real-world databases. Hence,

schema matching cannot solely rely on distribution testing. Advanced approaches to schema matching

usingMMD as one key statistical test are a topic of current research.
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of B to find the optimal match. We report results for this naive approach, aggregated

over all pairs of possible attribute matches, in Table 4.2. We used three datasets: the

census income dataset from the UCI KDD archive (CNUM), the protein homology

dataset from the 2004 KDD Cup (BIO) Caruana & Joachims (2004), and the forest

dataset from the UCI ML archive Blake & Merz (1998). For the final dataset, we

performed univariate matching of attributes (FOREST) and multivariate matching of

tables (FOR10D) from two different databases, where each table represents one type

of forest. Both our asymptoticMMD2
u-based tests perform as well as or better than

the alternatives, notably for CNUM, where the advantage ofMMD2
u is large. The next

best alternatives are not consistently the same across all data: e.g. in BIO they areWolf

or Hall, whereas in FOREST they areSmir, Biau, or the t-test. Thus,MMD2
u appears

to perform more consistently across the multiple datasets.The Friedman-Rafsky tests

do not always return a Type I error close to the design parameter: for instance,Wolf

has a Type I error of 9.7% on the BIO dataset (on these data,MMD2
u has the joint best

Type II error without compromising the designed Type I performance).

4.5 Summary and discussion

We have established a simple statistical test for comparingtwo distributionsp andq.

The test statistic is based on the maximum deviation of the expectation of a function

evaluated on each of the random variables, taken over a sufficiently rich function class.

We do not require density estimates as an intermediate step.Our method either outper-

forms competing methods, or is close to the best performing alternative. Finally, our

test was successfully used to compare distributions on graphs, for which it is currently

the only option.
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Chapter 5

Relation of electrophysiological data to

state-of-the art V1 model
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RELATION OF ELECTROPHYSIOLOGICAL DATA TO V1 MODEL

We present a cortical circuit model for a patch of primary visual cortex (V1), that is

based on detailed anatomical data and adapted, wherever possible, to the physiology

of macaque monkeys. The model is complemented by a standard model for the retina

and the LGN. Parameters of the model are fitted to an inter-spike interval distribution

(including higher order statistics) of the experimental data usingMMD as a diver-

gence of distributions. Stimulating both, the monkey and the circuit model, with the

same semi-natural movie stimulus the statistics of firing activity of the circuit model is

compared with multi-electrode data simultaneously recorded from areas V1 and LGN.

We find that the model reasonable resembles electrophysiological data in its firing

statistics. However, a direct comparison of model spike trains to recorded electrodes

shows only weak correlation, suggesting that current state-of-the-art network models

do not capture all computational aspects of V1 under naturalmovie stimulation.

5.1 Introduction

Processing of visual information in the primary visual cortex (V1) has been a subject of

extensive research. Nevertheless, many aspects of its computational role and the mech-

anisms underlying it remain poorly understood (Olshausen &Field (2005)). Numerical

simulations of detailed biophysical models provide powerful tools for investigating the

computational function of cortical microcircuits. In general, approaches along this line

attempt to incorporate the known anatomy and physiology of the primary visual cor-

tex to replicate experimental data on emergent functional properties as for instance the

structure of preferred orientation maps (Adorjanet al. (1999); Bartsch & van Hem-

men (2001); Blumenfeldet al. (2006)), direction selectivity maps (Ernstet al. (2001);

Wenischet al. (2005)) and simple and complex cells (Chanceet al. (1999); Taoet al.

(2004); Wielaardet al. (2001)).

When trying to understand aspects of a complex system, such asthe primary visual

system, it is necessary and inevitable to simplify and specialize the model to aspects

under consideration. Here we take a different approach, in that we want to analyze

in what sense a state-of-the-art model of the early visual pathway, is compatible with

electrophysiological recordings from the monkey.

Network models incorporating many anatomical details of cortical systems still

contain approximations and abstractions in respect to the real system. One aspect not
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captured in common connectionists models is the interaction of LFP and spikes (see

Chapter 2), which nevertheless seem to be important for stimulus encoding (see Chap-

ter 3). Thus it is necessary but usually difficult to benchmark the “realisticness” of

such network models. Here we develop a tool for optimizing some aspect of thestatis-

tics of spiking in a few chosen parameters in comparison to real data obtained from

electrophysiological recordings. This method also enables the systematic evaluation

of components of the model which are necessary to achieve a close match to realistic

dynamics. We exemplary fit a detailed network model in a few meta-parameters and

characterize the spike statistics of the resulting optimized model in detail. We then try

to pin down statistical aspects of the real data which are notmodeled by our generic

model.

For this purpose we develop a model of a patch of V1 with an areaof 25 mm2

cortical surface comprising several hypercolumns. The model is based on the cortical

microcircuit model described in Haeusler & Maass (2007) that implements experimen-

tal data from Thomson & Bannister (2003) on lamina-specific connection probabilities

and connection strengths between excitatory and inhibitory neurons of three cortical

layers and data from Markramet al. (1998) and Guptaet al. (2000) regarding stereo-

typical dynamic properties (such as paired pulse depression and paired pulse facilita-

tion) of synaptic connections between excitatory and inhibitory cortical neurons. We

here extend this model laterally and incorporate the anatomical particularities of V1 of

macaques. Due to its lateral extend it will be possible to include lateral (long-range)

connections, which are thought of to be essential for important computational func-

tions of V1 such as spatial integration of extra-classical receptive field context (Gilbert

et al. (1996)).

Furthermore, in contrast to Haeusler & Maass (2007), we hereexplicitly modeled

the output of the lateral geniculate nucleus (LGN) in response to photoreceptor activity

on the retina evoked by visual stimuli. For the retina and theLGN we used the model

described in Dong & Atick (1995) which is based on the assumption that in the visual

system natural inputs are decorrelated spatially at the level of the retina and temporally

in the LGN so that signals that arrive in the visual cortex areencoded in an efficient

form. This model accounts for lagged and non-lagged cells, which have been observed

experimentally (Humphrey & Weller (1988a,b); Mastronarde(1987)). We also incor-

porated a tonic LGN response and a tendency to produce a structured spiking output for
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high firing rates (as opposed to a pure Poisson spikes train),based on a more recently

suggested phenomenological model of the (cat) LGN (Gazereset al. (1998)).

Using the thalamic input model together with the V1 model, weare in principle

able to present the same semi-natural movie stimulus to the model, which were used

during experiment in our available dataset from V1 in macaque monkeys. Thus, con-

clusively, we try to directly compare model output with the measured spikes in the

experiment.

5.2 Methods

5.2.1 Electrophysiological recordings

For details on experimental setup we refer to Chapter 2 (Section 2.2.1) and Chapter 3

(Section 3.2.1), where it is described in detail. In this Chapter we used V1 and LGN

data from 6 sessions (4 monkeys) of Chapter 2 (“a98nm5”, “a98nm6”, “d04nm1”,

“d04nm2”, “c98nm1”, “l97nm1”). Briefly, in all sessions an identical semi-natural

movie with about 5 minutes duration was shown repetitively.Data was recorded us-

ing multi-electrodes arrays penetrating V1 (and simultaneously LGN in 3 sessions) of

anesthetized macaque.

5.2.1.1 Spike extraction

As in Chapter 2, spike times are detected by applying a threshold to the high-pass

filtered 7 kHz signal described above (4th order Butterworth, cutoff frequency 500 Hz).

However, in this chapter the threshold was set to a high valueof 7 times the standard

deviationσ of the “noise component” of the high-pass filtered signal. Therefore only

very prominent spikes, or spikes originating from neurons very close to the electrode

tip, are likely to be present in the spike trains. Because most recordings were done

with single tip electrodes we do not employ any kind of spike sorting.

5.2.2 Model

In this section we describe a biological realistic V1 model developed for compari-

son of electrophysiological recordings from macaque. It consists of an input model
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(equivalent to retina and thalamus) and a V1 model for a patchof cortex, receiving

and processing the input. In the following we will first describe the V1 model and

subsequently the input model in detail.

5.2.2.1 V1 Model

We developed a biological realistic model of a small patch ofV1 based on various

experimental data. The core of this model is similar to a model of a generic cortical

microcircuit suggested by Haeusler & Maass (2007). The model of Haeusler & Maass

(2007) consisted of three layers with neurons assigned to layer 2/3, layer 4 and layer 5.

Each layer contained a population of excitatory neurons anda population of inhibitory

neurons. Inter-layer connectivity (probabilities and strength) were chosen according to

experimental data assembled in Thomson & Bannister (2003).

In this Chapter this generic model was extended to match the anatomical partic-

ularities of the V1 cortex of macaques. However, since a detailed description of the

layer specific connectivity structure is not available for monkeys to our knowledge,

we decided to use the same data derived from cat cortex slices(Thomson & Bannis-

ter (2003)). Although there exist differences, the primaryconnectivity structure in

macaque is similar to that of the cat (Callaway (1998)). In particular, if one identifies

layer 2/3 and 4 in cat with 2-4B and 4C in macaque, respectively, the major geniculate

input in both species first reaches layer 4C, is projected to layer 2-4B, which in turn

projects it further to layer 5 (and layer 6 via layer 5), wherefeedback connections are

made to layers 2-4 (see Callaway (1998) for a review). Thus using the connectivity

data from cat seems to be a first but reasonable approximation.

Three layer population of neurons (excitatory and inhibitory in a ratio of 4:1,

Beaulieuet al. (1992); Markramet al. (2004)) were modeled separately (and spaced

on a cuboid grid). As in Haeusler & Maass (2007), we used conductance based single

compartment neuron models. However, due to a considerable gain in computational

speed we employed a simpler neuron model suggested by Izhikevich (2003), which can

be fitted to a wide range of firing dynamics (Izhikevich (2006)). We randomly draw

the parameters for each neuron in the network from within thebounds provided by

Izhikevichet al. (2004). In this parameter range the excitatory pool consists of a mix-

ture of regular spiking, intrinsically bursting, and chattering cells, with a bias to regular
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spiking cells. The inhibitory pool of neurons comprises fast spiking and low-threshold

spiking cells. Thus individual neurons and hence firing behaviors within our model

will have richer and more realistic diversity than in Haeusler & Maass (2007), where

all neuron had fixed parameter setting. The scale of synapticinput conductances will

be optimized to match firing statistics of electrophysiological data (see Section 5.2.3).

In addition to synaptic input from fellow neurons in the network, each neuron re-

ceives synaptic background noise reflecting the bombardment of synaptic inputs from

a large number of more distal neurons which causes a depolarization of the mem-

brane potential and a lower input resistance commonly referred to as “high conduc-

tance state” (Destexheet al.(2001b)). Short term synaptic dynamics was implemented

according to Markramet al.(1998), with synaptic parameters chosen as in Maasset al.

(2002) to fit data from microcircuits in rat somatosensory cortex (based on Guptaet al.

(2000) and Markramet al. (1998)). For details we refer to Haeusler & Maass (2007).

In contrast to Haeusler & Maass (2007), we set the relative amount of neurons

per layer to 33%. These numbers corresponds to experimentaldata from macaques

(Beaulieuet al. (1992); O’Kusky & Colonnier (1982); Tyleret al. (1998)), although

we slightly adjusted the relative amount of neurons compared to the experimental val-

ues (where layer 4 has about a third more neurons), because our model neglects the

magnocellular and koniocellular pathways in favor of the parvocellular pathway (Call-

away (1998)). The three layers of the model can be identified with layers 2-4B, 4Cβ

and 5-6. To avoid confusion in analogy to Haeusler & Maass (2007) we will neverthe-

less call them 2/3, 4 and 5 in the following text.

In macaques each of our three layers would contain approximately 50000 neurons

under a surface area of 1 mm2 (Beaulieuet al. (1992)). In our model we neglected

that neuron density varies with layer about 1.5 fold (Beaulieu et al. (1992)) and in-

stead assumed that positions are uniformly distributed throughout the cortex. Thus, for

simplicity, we positioned all neurons on a cuboid grid with fixed grid spacings. Using

the true neuron density, e.g. for layer 2/3, the grid spacingwould amount to20µm in

all directions. Because simulating such a dense network would take too much time,

we diluted the neuron density by increasing the lateral gridspacing to80µm and the

vertical spacing to about200µm (see Results Section 5.3).

Note that sublaminar organization, such as the 2/3 blobs andinter-blob regions

(Callaway (1998)) are neglected for simplicity and for the lack of precise data. How-
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ever, as described in the following sections, the model contained a realistic thalamic

input, smooth orientation map and patchy long-range connections in the superficial

layer.

Lateral connectivity structure Whereas the generic microcircuit model of Haeusler

& Maass (2007) was restricted to a few 100µm with uniform connectivity per layer

and neuron type, we here extended the model laterally to the order of several mil-

limeters. Thus connection probabilities in our model depend on lateral distance. For

intra-cortical connections we generally used a bell-shaped (Gaussian) probability dis-

tribution for determining the lateral extend. The standarddeviation of the Gaussian

was set to200µm for excitatory neurons (Blasdelet al. (1985); Buzaset al. (2006);

Lundet al.(2003)) and somewhat smaller, namely150µm, for inhibitory neurons to in-

corporate the occurrence of extremely narrow inhibitory dendritic and axonal spreads

observed (70µm, Lundet al. (2003)). Arborization of excitatory neurons in layer 5

seems to be wider and more diffuse and has a spread of more than500µm laterally

from the soma (Blasdelet al. (1985)). Thus for these connections we set the standard

deviation to 300µm. Note that the value for the standard deviation is about half the

expected maximal extend of 95% of the arborizations.

To ensure consistency with the inter-layer connectivity data of Thomson & Ban-

nister (2003), which were obtained from cortical slices of around100µm thickness, we

scaled the Gaussian profile such that the peak probability corresponds to the experi-

mentally measured connection probabilities. Therefore the connectivity data is locally

preserved. All lateral connections are subject to toroidalboundary conditions yielding

positional independence in synaptic drive throughout the lateral extend of the circuit.

Patchy lateral long-range connections In both cat and macaque, many pyramidal

cells in layer 2/3 of the striate cortex (and elsewhere in cortex (Lundet al. (2003)))

send characteristic long-range projections targeting laterally 80% excitatory and 20%

inhibitory cells (McGuireet al. (1991)) which are up to 6 mm and more away (Buzas

et al.(2006); Gilbertet al.(1996); Lundet al.(2003)). Moreover, targeted neurons tend

to have similar feature preference as its origin, resultingin patchy connections linking

similar preferred orientations (Buzaset al. (2006); Gilbertet al. (1996)). Combining

anatomical reconstruction of neurons and optical imaging of orientation maps, Buzas
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et al.(2006) proposed a formula for the button densityρ of a typical layer 2/3 pyramidal

cell:

ρ(r,∆φ) = Z

(

e
− r

2

2σ
2
1 +me

− r
2
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2
2 eκ cos 2(∆φ−µ)

)

(5.1)

Herer is the distance and∆φ the difference of preferred orientation of the pre- and

postsynaptic neurons. Parameterm is the scaling of importance between a local ori-

entation independent and a long-range orientation dependent term. The orientation

dependent term is a product between a Gaussian and a von Misesdistribution, and

accounts for the higher likelihood of connecting neurons with preferred orientation

difference nearµ degree. Standard deviationsσ1 andσ2 regulate the spatial width of

the non-oriented and oriented term, respectively. Parameterκ signifies the “peakiness”

of the density on the orientation axis.Z is a normalization constant.

If one assumes that in first approximation dendrites (or equivalently axons) have

no spatial extend (i.e. they collapse to a point at the position of the soma), the button

density defined by Eq. 5.1 can be seen as an estimate for the connection probability

of a neuron to neurons at distancer having preferred orientation difference∆φ. Since

we defined preferred orientation in a hard-wired manner via “oriented” input connec-

tions (see Section 5.2.2.3) one can readily apply Eq. 5.1 forthe lateral connections

in layer 2/3. Thus, we applied Eq. 5.1 to projections from excitatory cells targeting

excitatory and inhibitory cells (McGuireet al. (1991)).

Parameters were set as follows. For the local non-oriented term we tookσ1 =

200µm, as for the connections between other layers (see above). In Buzaset al.(2006)

values forµ jitter around zero degree for individual cells. We therefore setµ = 0◦ im-

plicating that the connection probability is highest for iso-oriented cells. We set other

parameters to values in between the two populations described by Buzaset al. (2006),

but in the vicinity of their population 1, where the experimentally mapped cortical sur-

face region is bigger. Thus we setσ2 = 1000µm, κ = 1, andm = 10. As before,

the connection probability was scaled according to the Thomson & Bannister (2003)

data (by settingZ to appropriate values). Thus, locally, i.e. for a neuron of the same

lateral position (and orientation preference), such as a neuron located in the same layer

beneath or above the pre-synaptic neuron, the connection probabilities are preserved.

However, the weight distribution of the long-range connection is not constraint by
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Thomson & Bannister (2003). Therefore we obtained the mean of the synaptic weight

distribution by fitting the firing statistics to experimental data (see Section 5.2.3).

Distance dependent synaptic delay Synaptic delays differ for inhibitory and exci-

tatory neurons and were set according to measurements by Gupta et al. (2000) (as in

Haeusler & Maass (2007)). These delays stem from molecular processes of synaptic

transmission. In addition, a second delay originating fromfinite spike propagation ve-

locity of the fibers was included. This delay is dependent on the (Euclidean) distance

of pre- and post-synaptic neurons. Girardet al. (2001) measured spike propagation

orthodromically as well as antidromically and found a median conduction velocity of

0.3 m/s for the upper half and 1 m/s for the lower half of V1 in macaque. Thus for

each excitatory synapse in layer 2/3 we sampled velocity from a Gaussian distribu-

tion with mean0.3 m/s and standard deviation0.5 m/s (with enforced lower and upper

bounds 0.1 and 5 m/s, respectively). For the other layers conduction velocities were

drawn from a Gaussian with mean1 m/s and standard deviation0.9 m/s (with bounds

as before). Due to myelination, conduction velocities of inhibitory fibers are generally

higher than for excitatory cells (Thomson & Bannister (2003)). Thus for all inhibitory

cells we sampled velocities from a distribution with a mean and standard deviation

twice as high as for excitatory neurons in the deep layers.

5.2.2.2 Input model

In the available data set, recordings were done while monkeys watched an semi-natural

movie stimulus of several minutes duration. Although our modeling effort was con-

centrated on the V1 model, to successfully compare these data with the model, one

also needs a sufficiently realistic transformation of moviestimulus to (V1 input) spike

trains. Therefore retina and lateral geniculate nucleus (LGN) were modeled accord-

ing to Dong & Atick (1995) as a spatio-temporal filter bank with nonlinearities, which

seems to be a good compromise between simplicity and realism(Gazereset al.(1998)).

The filter bank converted time varying input signals on the retina, such as movies, into

firing rates of LGN neurons. From these firing rates V1 input spike trains were gen-

erated. We neglected for simplicity that the ganglion cellstypically react to color

opponency rather than to pure luminance differences (Perryet al. (1984)). Thus all
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color information from the movie was converted to gray scaleprior to application to

the input model.

Retina model The two-dimensional retinal inputs (movie frames) were filtered by a

“Mexican hat” (difference of Gaussians) spatial filter (Dong & Atick (1995); Enroth-

Cugell & Robson (1966); Rodieck (1965)). Filter sizes (describing the receptive fields

of ganglion cells) were adapted to the geometry of parvocellular cells of macaque,

where the standard deviations of the Gaussian for center andsurround was estimated to

σcenter = (0.0177◦+0.00196ǫ) andσsurround ≈ 6.67σcenter at eccentricityǫ, respectively

(in visual degrees; estimated from Figure 4 a and b in Croner & Kaplan (1995)). After

convolution of the stimulus luminance portrait with these kernels (yieldingScenter and

Ssurround), the response of a retinal on-cell at visual field positionr can be described

by

RON(r) = C(r) [Scenter(r) − ωSsurround(r)]+ (5.2)

Following Croner & Kaplan (1995) we set the ratio of center to surroundω = 0.642.

The positive parts of the center and surround interaction (indicated by the brackets

[. . .]+) were assigned to the response of on-cells and analogously the absolute value of

the negative part to the response off-cells (Dong & Atick (1995)). For simplicity and in

accordance with the established Difference-of-Gaussian model, we assumed that the

origins of the center and surround summation fields are identical, although a recent

study suggests that there might be an offset between them (Conway & Livingstone

(2006)).

Applying the Difference-of-Gaussians model to the luminance of a stimulus results

in a quantity called “contrast gain” (Croner & Kaplan (1995);Enroth-Cugell & Rob-

son (1966); Rodieck (1965)). To calculate the firing rate of ganglion cells one has to

multiply the “contrast gain” with thelocal contrastC(r) (as done in Eq. 5.2), if one ne-

glects non-linear saturation in the high contrast regime. Locality is important because

the concept of a global contrast, easily defined for full-field grating stimuli commonly

used in experiments, is not applicable for real world imagesand movies (Tadmor &

Tolhurst (2000)). Following Tadmor & Tolhurst (2000) we estimated the local contrast

using the same kernels as

C(r) =
|Scenter(r) − Ssurround(r)|
Scenter(r) + Ssurround(r)

(5.3)
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where we additionally set the contrast to be zero in the case of darkness. Note that ap-

plying Eq. 5.3 results in a responseRON(r), which is sparser than for a constant global

contrast, since the response is now quadratic in the center and surround luminance

difference (see Eq. 5.2).

LGN model The retinal output is filtered by the LGN model using a temporal kernel.

Our temporal kernel combines a phasic (taken from Dong & Atick (1995)) and a tonic

component (as in Gazereset al. (1998)), i.e. kLGN = kphasic + ktonic. It is for non-

negative times

kphasic(t) = t (1 − πwct) exp(−2πwct) (5.4)

and

ktonic(t) = A exp(−t/τ)/τ. (5.5)

ParameterA = 0.3 is the fraction of tonic activation (in respect to the peak firing

rate) for a given stimulus integrated over a time scale ofτ = 15 ms. Parameterwc =

5.5 sec−1 defines the shape of the phasic kernel (Dong & Atick (1995)).

Analogously to the retina, the positive part and the absolute value of the negative

part of the temporal convolution were assigned to lagged cells and non-lagged cells,

respectively. Altogether, there are four different time-varying rate outputs, i.e. that of

any combination of non-lagged or lagged cells in the LGN witheither on- or off-cells

from the retina (Dong & Atick (1995)). Following Gazereset al. (1998), a so-called

“switching Gamma renewal process” used these time-varyingrates to generate spike

trains. This process, which was suggested to fit experimental data from cat LGN X-

cells (Gazereset al. (1998)), adopts a higher spike time regularity for high input rates

(≥ 30 Hz; regularity parameterr = 5) and switches to a Poisson process for low rates

(< 30 Hz). Spontaneous background activity of each LGN input neuron was set to a

low value of0.15 Hz. The peak LGN spike ratefmax was adjusted to achieve a mean

firing rate of about7 Hz under movie stimulation, when the four input channels are

combined. The7 Hz mean rate was estimated from our electrophysiological data from

macaque monkey. Applying a typical 50 seconds movie section, we found that a mean

rate of7 Hz was achieved forfmax = 250 Hz. The peak response would be evoked

by a dot of highest contrast filling the center region of a ganglion cell with optimal

107



RELATION OF ELECTROPHYSIOLOGICAL DATA TO V1 MODEL

duration. This value is in good agreement with Gazereset al. (1998), who report peak

rates in the range of50 to 400 Hz.

Input connectivity to V1 The visual field is retinotopically arranged on the cortical

surface. However, while there exists one retinal ganglion cell per LGN cell corre-

sponding to the same visual field position at all eccentricities in macaque, there is a

considerable magnification in density of cortical neurons in V1 per degree visual field

(Schein & de Monasterio (1987); Tootellet al.(1982)). Comparing several earlier stud-

ies, Schein & de Monasterio (1987) estimated the cortical magnification factor (CMF)

at eccentricityǫ to be (in mm cortex per degree visual field)

CMF =
12.2

ǫ+ 0.94
. (5.6)

Note that the definition of the cortical magnification factor(Eq. 5.6) is very conve-

nient: for a fixed eccentricity and distance between adjacent neurons (grid spacing),

one immediately gets the lateral extend of the network needed to cover a given visual

field size.

The main input from LGN parvocellular pathway is projected into layer 4Cβ.

There is still an ongoing debate to which extent oriented input shape the orientation

selectivity exhibited by neurons in primary visual cortex or to what extent local cor-

tical processing is involved (see Teich & Qian (2006) for a review). It seems that in

macaques, orientation selectivity is thought to arise fromthe interaction of cells with

gradually shifted input characteristics across the sublaminas of the layer 4C (Callaway

(1998); Lundet al. (2003)), whereas the inputs to a single cell might not be oriented

in macaques as suggested for the cat (Hubel & Wiesel (1977)).However, since we

did not model sublaminas, we simplified the circuitry by nevertheless assuming that

input connections to each neurons generate orientation tunings. This not only includes

orientation selectivity in our model but allows to define orientation maps in a straight-

forward “hard-wired” manner (see Section 5.2.2.3).

Therefore thalamic input connection probability to a cell in the circuit was modeled

as an oriented Gabor function, i.e. a Gaussian multiplied bya cosine function. The

height of the Gabor function corresponds to the connection probability of LGN neu-

rons with a cortical cell positioned at the cortical equivalent position of the origin of the
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Gabor patch in the visual field. Negative and positive regions correspond to the con-

nection probabilities of LGN on- and off-response cells, respectively. Lagged and non-

lagged cells connected equally likely to cortical cells. Following Troyeret al. (1998),

we expressed the Gabor function in parameters defining the number of subregionsns,

the aspect ratio of width and height of the Gaussian envelopea, the orientationφ, the

offset of the cosineψ, and the frequency of the cosinef . From these parameters one

calculates the standard deviation of the Gaussian envelopeas (see Troyeret al.(1998))

Σ
1

2 =
1

4 · 2.448 f

(

ns 0
0 a

)

(5.7)

while using coordinates rotated byφ. The advantage of using these parameters is that

the frequency implicitly defines the size of the Gabor patch (as the number of subre-

gions is kept constant). Therefore the much smaller receptive fields of macaque V1

as compared to the cat, can be easily included in this framework. We used data from

Bredfeldt & Ringach (2002) and chose the frequencyf from a Gaussian distribution

with mean and standard deviation3.7deg−1 and2.1deg−1, respectively (and enforc-

ing a minimum and maximum of0.7deg−1 and8deg−1, respectively). Phase shiftψ

and the number of subregionsns were drawn from uniform distributions in the ranges

(1.85, 2.65), and(0, 2π) (from cat as in Troyeret al. (1998)).

To incorporate the smooth maps for the preferred orientation φ and orientation

preferenceq depending on cortical positionu (see Section 5.2.2.3) we setφ = φ(u) and

the aspect ratio toa(u) = (amax−amin) q(u)+amin, where we used values reported by

Troyeret al.(1998) for the boundsamin = 3.8 andamax = 4.54 for excitatory neurons,

and for the generally less well tuned inhibitory neuronsamin = 1.4 andamax = 2.

Lastly, the overall connection probability, defined by the Gabor functions, was

scaled to achieve an average number of input synapse of24 for both excitatory and

inhibitory neurons, which is the estimated number of parvocellular afferent connec-

tion per cortical neuron in layer 4C of macaques (Peterset al. (1994)). There is evi-

dence that layer 6 receives occasional collaterals of the LGN input to layer 4 (Callaway

(1998)). Thus we set the connection probability to excitatory neurons of layer 5 of our

model (comprising layer 5 of 6 in the macaque nomenclature) to 20% of that of the

input to layer 4. These values are in good agreement with the data from Binzegger

et al. (2004) estimated from cat. In macaques, layer 2/3 receives only koniocellular

109



RELATION OF ELECTROPHYSIOLOGICAL DATA TO V1 MODEL

input (Callaway (1998)). As we have omitted the koniocellular pathway, layer 2/3 of

our model does not receive any thalamic input.

Due to finite conduction velocities of the fibers, signals from the retina reach V1

with a characteristic delay of about30 ms (Maunsellet al. (1999)). As the retina and

LGN model did not include any delay so far, we sampled the delay of the LGN input

synapses according from a Gaussian distribution with mean31 ms and standard devi-

ation5 ms (and additionally enforced delays below24 ms and above50 ms to a value

uniformly in the latter range). These values were taken fromFigure 3 of Maunsell

et al. (1999).

Top-down connections Besides thalamic input V1 receives multiple feedback con-

nections from extra striate cortices (Felleman & Essen (1991)), especially from V2,

where the feedback connections are almost as numerous as thefeedforward connec-

tions (see Sincich & Horton (2005) for a review). Feedback projections predominantly

project to targets in the upper layers but also to layer 5 (Rockland & Virga (1989);

Sincich & Horton (2005)), although altogether there is little known about the exact

(sublaminar) targets of these feedback projections (Sincich & Horton (2005)). As our

model is restricted to V1 we model these projections as an additional input to layers 2/3

and 5. This second input stream has (arbitrarily) the same number of cells as the first

(LGN) input stream and is aligned on a virtual grid of the sameextent (in mm) as the

V1 model. Connections from the input cells are established totheir targets by a Gaus-

sian probability profile in their lateral distance with200µm standard deviation (Lund

et al. (2003)). The Gaussian connectivity was scaled to yield a peak connection prob-

ability of 10% for layer 2/3 and 5% for layer 5. Only excitatory neurons receive the

second input stream. In the simulations each input cell emits a Poisson spikes train of

step-wise constant rates estimated from our data (see Section 5.2.3.1). Synaptic delays

are sampled from a Gaussian with mean 1.25 ms and standard deviation 1.53 ms (with

bounds 0.5 ms and 5 ms). These values correspond to delays measured antidromically

for feedback connections from V2 (Girardet al. (2001)).
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5.2.2.3 Orientation map

It is well established that orientation preference and other features (such as visual field

position, ocular dominance, or direction preference) formintertwined maps, where

neighboring neurons tend to respond to similar features (Hubel & Wiesel (1977); Ober-

mayer & Blasdel (1993)).

We employed Kohonen’s Self-Organizing Map algorithm (Kohonen (1982)) for the

creation of realistic orientation maps across cortical surface. An orientation attribute

for each neuron is necessary for defining thalamic inputs, aswell as for preferred orien-

tation dependent patchy lateral long-range connections (see above). The algorithm has

been used to generate feature maps which very well resemble cortical measured feature

maps in overall appearance as well as e.g. in the structure ofoccurrence of pinwheels

(Brockmannet al. (1997); Erwinet al. (1995); Obermayer & Blasdel (1993); Ober-

mayeret al. (1990, 1992)). Basically, the algorithm tries to map a low dimensional

manifold (a horizontal sheet of neurons) to a high dimensional feature space while en-

suring that neighboring points on the manifold exhibit similar feature preference. Let

z = (x, y, q cos(2φ), q sin(2φ))T define a feature vector, where0 ≤ x, y < k are the

positions in visual space,0 ≤ q < 1 the orientation preference (or tuning strength)

and0 ≤ φ < π the preferred orientation (we do not model ocular dominancebecause

our V1 model is essentially one-eyed). If one uses the low-dimensional variant of

the learning rule (Erwinet al. (1995); Obermayer & Blasdel (1993)), one attributes to

each point on the manifold, i.e. each neurons having cortical 2D surface coordinates

u = (u1, u2)
T , its current “optimal” feature vectorw(u). Relations between neuronsu

andv are enforced by the neighborhood functionh(u, v) = exp
(

− |u−v|2

2δ2

)

. With that

the weight update for a neuronv can be written as

∆w(v) = αh(u∗, v) (z − w(u∗)) . (5.8)

One notes that in each learning step the neuronu∗ showing maximal response to the

current inputz is updated in the direction of the input, weighted by a learning rate

α. Depending on thecortical distance to the maximally activated neuron, the pre-

ferred features of the remainder of the neurons will be updated to a lesser extend in

the same direction (mediated by the neighborhood function). In this rule we took the

maximally activated neuron to be the nearest in feature space to the current input,
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u∗ = argmin |w(u) − z|. We sampled the input features from uniform distribution

(within the above bounds).k regulates the hierarchy between different features (Ober-

mayeret al. (1992)) and was set tok = 5. If one starts from a retinotopic initial

condition, a high value fork ensures that cortical position corresponds to visual space

in an approximate one-to-one map. The characteristic length scaleδ was set to match

the experimental observed correlation length in cortical orientation maps (or pinwheel

center distance) ofdpin = 660µm (Obermayer & Blasdel (1993)). We used the approx-

imate formulaδ =
√
k dpin/D/8, whereD denotes the lateral extent of our V1 model.

See Figure Fig. 5.1 C for a typical orientation map generatedby this algorithm.

5.2.3 Fitting parameters of the V1 model

Many parameters such as most synaptic weight scalings, i.e.the mean peak conduc-

tance of synaptic weight distributions of the intra-laminar projections, are constraint

by the literature (see Section 5.2.2). However, other parameters are not constraint and

therefore have to be adjusted. For example, the overall synaptic weight depends on the

number of synapses received by each neuron, and has to balance the effect that there

are less neurons per volume in the V1 model than in reality. Inthe following we at-

tempted to estimate free parameters by fitting the statistics of extracellularly recorded

spike data.

Comparing model circuit dynamics to the electrophysiological recordings is diffi-

cult for various reasons. For one, although detailed, our model circuit is still lacking

many aspects of the cortex, which nevertheless contribute to the recorded signal, e.g.

the cortical spatial arrangement in gyri and sulci, biophysical properties of the tissue,

3-D structure of the axonal and dendritic tree, or a high temporal and spatial dynamic

of current sources and sinks (Koch (2004); Nunez & Shrinivasan (2006)). Conversely,

spike trains do not constrain many aspects of the model, as for instance the exact layer

position of the electrodes or the neuron type recorded from (inhibitory or excitatory)

as well as its synaptic targets and weights etc are unknown.

Even if one accepts the simplistic few of an abstract circuitmodel, it is not clear

which spikes of the circuit should be compared with the recorded signal. Most impor-

tantly, the recordings are made with extracellularly applied single tip electrodes, and

thus necessarily record from multiple neurons simultaneously (see also Chapter 2 for
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Figure 5.1: Long-range patchy connectivity of an example neuron implemented in a model

circuit having165× 165× 3 neurons in layer 2/3 positioned on a cuboid grid with a spacing of

25 µm. (Note that these dimensions are different from that used in the simulations of the Re-

sults Section 5.3)A andB: Conditional probability that the neuron (marked with a white square

in the center of plot C) is connected to a neuron having lateral distancer or orientation selectiv-

ity φ, respectively. Connection probability to a post-synaptic neuron at zerolateral distance and

same orientation preference was scaled to experimental data (C ≈ 0.24; Thomson & Bannister

(2003)). A: Blue and red curves show the connection probabilities for neurons which have

aligned or orthogonal preferred orientation to the pre-synaptic neuron, respectively.C: Con-

nections established according to the probability distributions for a presynaptic neuron in the

origin of the circuit (white square). Small white dots represent lateral positions of post-synaptic

neurons. Colors code for orientation tuning of each neuron (generated by a Kohonen’s Self-

organizing map). Conditional connection probability is indicated by contour lines. One notes

that the connection probability rises for regions with similar orientation as the pre-synaptic

neuron (about90◦) thereby generating a patchy appearance. Only the orientated (long-range)

part of Eq. 5.1 (second term) is used for establishing connection in this example plot. However,

because of the high weighting factorm = 10 (see Eq. 5.1) only very few local connection will

be added when considering both terms in the simulations. The orientation map additionally

determines the orientation of thalamic input connections (see Methods Section 5.2.2.2).
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a detailed discussion). It has been theoretically estimated that the number of possi-

ble neurons contributing to the measured spike train is up to1000 and higher (Henze

et al. (2000)). However, in practice when using tetrodes, where reliable unit sorting

is possible, one is typically able to clearly distinguish a few, typically up to five or

six, neuron clusters (see also Chapter 3). To restrict our analysis to as few neurons as

possible, we set the threshold for spikes detections to a high value, namely 7 SD of the

noise component (see Methods Section 5.2.1.1). Thus the spike trains contained only

prominent spikes, which most likely originated from neurons in the immediate vicinity

of the electrode tip. Nevertheless, if we would compare single neurons of the model

directly to the extracellular recorded spike trains, firingrates would be overestimated.

Therefore we add the number of neurons comprised in a single electrode channel to the

list of parameters fitted (see below). By doing this we obtainmuch better agreement

of the inter-spike interval distributions between model and recordings.

5.2.3.1 Fitting the relative strength of the thalamic and top-down inputs

In recorded spike trains, the mean firing rate of multiple trials (5 min duration) across

monkeys and V1 electrode channels is11.7 ± 1.7 Hz (mean± standard error of the

mean) during movie stimulation and9.9 ± 1.6 Hz during spontaneous activity (blank

screen). Thus one could state that due to the thalamic input the mean firing rate of

the circuit increases by about2 Hz or enhances it by about20 %. From simultaneous

extracellular recordings in LGN (see Methods), we analogously find a mean firing rate

of 7.1 ± 2.9 Hz during visual stimulation and4.4 ± 2.1 Hz during absence of visual

stimulation. Hence in LGN the movie stimulus increases the mean firing rate by about

60 % as compared to spontaneous activity.

We used these values for determining the synaptic input weight scaling and the

overall weight scaling of inter-laminar connections, i.e.the overall scaling of the peak

conductances, in the following manner. In the absence ofall inter-cortical connections,

the weight scaling of the two input streams were set to valuesachieving closest match

to a given target mean firing ratertarget in each neuron population (minimal Euclidean

distance). Assuming that the main input drive to V1 (during visual stimulation) is from

the thalamus we set the target mean rate for layer 4 to 4 Hz and layer 2/3 and layer 5 to

1 Hz. Since each layer consisted of same amounts of neurons both inputs then drive the
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whole model to a mean firing rate of 2 Hz which corresponds to the activity increase

seen during visual stimulation in our experimental data. For this fit the thalamic input

resembled the input during movie stimulation. More specifically, we applied a typical

10 sec segment of the movie stimulus to our LGN model, which generated spike trains

as described above (Section 5.2.2.2).

Since no data from V2 or higher areas was simultaneously recorded, the top-down

input stream was approximated by the firing statistics of V1 neurons as follows. Each

top-down input neuron was independently set to emit a Poisson spike train with a mean

rate drawn from a mean rate distribution estimated from the electrophysiological data

of V1 under spontaneous activity condition. To allow for rate changes, the duration

of the constant rate periods for each individual input neuron is drawn from a second

Poisson distribution with mean of0.5 Hz corresponding to the 2 s interval used for

the rate estimation on electrophysiological data. Note that in this approximation the

top-down inputs were therefore not modulated by the stimulus and merely act as a

background noise source to V1 neurons.

5.2.3.2 Fitting the average weight of all intra-cortical projections and the rela-

tive weight of lateral long-range synapses

Having established the synapse strength of the inputs, the overall weight scale of all

recurrent (inter and intra-laminar) synapses are to be determined. Additionally, we

have to establish the mean of the synaptic weight distribution for the superficial long-

range connections, because the measurements of Thomson & Bannister (2003) are

restricted to thin cortical slices and therefore not applicable.

Optimization criterion via MMD To find reasonable values for both parameters,

we fitted the firing statistics to the real data. In particular, we tried to match inter-spike

interval distributions between electrophysiological data and simulated spike trains. As

error function to be minimized we used the Maximum Mean Discrepancy (MMD)

developed in Chapter 4. It is shown in Chapter 4 that theMMD of two distributionsp

andq is zero iff both distributions are identical. In practice, if uses a quadratic estimate

of MMD, positive values (which are above the test threshold) indicate a mismatch of

the two distributions under consideration, and intuitively, MMD will be the bigger the
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more different the distributions are. Note that theMMD does not necessarily define a

metric on the space of distributions. In that sense it is similar to the Kulback-Leibler

divergence. However, since no density estimation is neededfor computing theMMD,

it is superior in various respects to Kulback-Leibler divergence, for instance in the ease

of use and computational speed. Moreover, using the two-sample tests of Chapter 4

we readily obtain information whether the two distributions aresignificantlydifferent

based on afinitesample or not.

To incorporate possible higher order spike correlations wecompared thek-ISI dis-

tributions of spike trains. Thek-ISI distributionsp(τ1, . . . , τk) defines the probability

of occurrence ofk sequential spike intervals of lengthsτ1, . . . , τk. Thus our goal find-

ing the optimal parameter vectora
∗ can formally be written as

a
∗ = argmin

a

MMD[F, p (τ1, . . . , τk| a), q (τ1, . . . , τk)] (5.9)

wherep andq denote thek-ISI probability distribution of the model and from the target

data, respectively, andF denoted the function space (see Chapter 4 for details). For

fitting we employed the unbiased estimate ofMMD (Eq. 4.3), averaged over 10 trials

with samples size 2000, and using RBF kernels of fixed size (σ = 0.1). Different

kernel sizes or Laplace kernels produced similar results. We setk = 2 and compared

the log-ISIs distribution (i.e.τi := log ti, whereti is thei-th interval in the sequence

of k intervals).

We used only one model random seed for the fitting process, to reduce computa-

tional costs. Thus the neuron-to-neuron connections were identical, only the synaptic

weights are changed. Since our networks contains a great amount of synapses (about

4 ·107; see below), it is likely that random effects are averaged already within a model.

Indeed, even for a smaller network (20 × 20 × 9 grid size) the fitted parameters were

very similar for different construction seeds (not shown).

Generating multi-unit spike trains from the model circuit For generating multi-

unit spike trains from the model circuit we simply combined spike trains of neurons

situated on nearby grid positions within the circuit. In detail, at a random “electrode”

position with the circuit (uniformly drawn from all neuron positions), spike trains from

n neurons were combined to yield an pseudo-electrode signal.Exactlyn unique model

neurons were drawn from a Gaussian sphere around the “electrode” position. The

116



5.3 Results

diameter of the sphere is dynamically set toσ = (4n)
2

3

2πβ
1

3
z

, meaning that for highern

units might be combined from further apart and for lown, only neighboring neurons

are considered candidate units.βz is the fraction of the lateral distance to the vertical

distance of neurons within the cuboid grid and was set toβz = 0.4. This approximate

value resulted because our model had higher neuron density in lateral area than in depth

(see Section 5.2.2.1). The number of neuronsn is drawn from a Poisson distribution

of meanλn. The parameterλn was a free parameter to be fitted (see Section 5.3.1).

5.3 Results

5.3.1 Fitting the model response to experimentally measured data

We developed a V1 model based on many anatomical details frommacaque monkey.

As described in the Methods Section 5.2, it consists of inhibitory and excitatory pools

of point neurons arranged in 3 different layers with probabilistic rules for connec-

tivity taken from the literature. Here we compared the spikestatistics from the V1

model to electrophysiological data recorded from from V1 and LGN of anesthetized

macaque monkeys. In experiments, 5 minutes lasting commercial color movies were

repetitively presented and responses were recorded with extracellular multi-electrode

arrays. Movie frames were centered at the fovea and covered an area of10◦×7◦ degree

visual field.

In simulations, it was taken care that the stimulus presented to the V1 model resem-

bled that presented to the monkeys as much as possible. However, modeling the whole

10◦ × 7◦ degree visual field was not feasible because of computational speed. There-

fore we trimmed the movie frames to a smaller size, covering3 × 3◦ visual degree.

The center of the extracted region was aligned at the center of a receptive field of one

of the electrode (channel 7) of a particular session (“d04nm1”). Since the approximate

diameter of the receptive field of that electrode was experimentally determined to be

1.2◦ degree, the reduced stimulus should at least contain all direct input information

available for neurons recorded by that electrode. On the retina this receptive field was

centered at(0.69◦,−2.39◦) eccentricities relative to the fovea. In the model we set

the eccentricity nevertheless to5◦, since otherwise the lateral extend (and therefore the
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amount of neurons in the model) per visual degree would be prohibitively large (com-

pare to Eq. 5.6). At5◦ eccentricity a V1 model covering2.4◦ × 2.4◦ visual degree has

a lateral extend of5 × 5 mm2 cortical surface and neurons are positioned on a virtual

grid of size62 × 62 × 9, if one assumes a grid spacing of 80µm laterally. Vertically,

the grid spacing corresponds to200 µm (see MethodSection 5.2.2.1). The visual field

covered by the V1 model is somewhat smaller than the stimulusto avoid boundary

effects in the input connectivity. For analogous reasons the LGN neurons were set to

cover an intermediate area of2.8◦ × 2.8◦ (77 × 77 grid).

Having set up the input appropriately we simulated 10 seconds of a typical movie

segment and fitted four parameters (see Methods Section 5.2.3): Average input synapse

strength of both input streams, the average synaptic weightof the weight distribution

for the long-range lateral connections in layer 2/3, and theoverall synaptic weight

which scales all intracortical synaptic weights relative to the input connections. As

outlined in Section 5.2.3, we additionally fitted the average number of units com-

prised in the multi-units spikes trains from the experimental data. This target data

contained spike responses measured in 6 sessions (4 anesthetized macaque monkeys)

during about 5 minutes of repeated movie stimulation1. As described in the Methods

Section 5.2.3, the input synapse strengths were adjusted tothe average firing rate in-

crease observed when presenting a movie stimulus relative to spontaneous background.

The remaining parameters were varied to yield a close match to spike statistics of the

electrophysiological data during a semi-natural movie stimulus. In particular, we fitted

the distribution of 2-ISIs, i.e. the distribution of sequential inter-spike interval pairs

(see Methods Section 5.2.3). Note that the ISI-distribution is implicitly fitted when

using 2-ISI distributions in the optimization.

Figure 5.2 displays the discrepancy of the 2-ISI distribution of models with varied

parameters to the distribution derived from the target data. Figure 5.2 A reports that

the 2-ISI distribution cannot be matched to a satisfactory degree when one does not

extract multi-unit activity from the model (λn = 0, see Methods Section 5.2.3). The

resulting “best” ISI-distribution is bimodal not unimodal(Fig. 5.2 B): The network

strongly oscillates, when using this “best” parameters. Extending the bounds of the

1Note that this target data set contained spike responses to regions of the movie not shown in the

simulation, to avoid overfitting the neural dynamics to the particular section of the movie shown to the

model.
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parameter variation did not change this result (not shown).However, if nearby neurons

of the model are pooled to form a single spike train as it is likely to be the case for the

experimental data, the fitness landscape resembles a valleywith high borders, which

has a well defined minimum in the bounds of the parameter variations. Figure 5.2 C

shows the result forλn = 3, where theMMD is minimally above its significance

threshold (λn was varied from0 to 10). This means that on average3 neurons are

pooled together to form multi-unit spike trains and suggests that joining spike trains of

the model to form pseudo multi-unit spike trains is essential for our data.

At the optimal parameters settings the patchy long-range weight scale has to be

reduced by a factor of about 2.5 in respect to the average weight reported by Thom-

son & Bannister (2003) for more local layer 2/3 recurrent connections (having scale

1 in Fig. 5.2 B). The fitted overall weight scale is110. Although these parame-

ter values show greatest similarity of the 2-ISI distribution and the ISI-distribution

matches the target data reasonable well (Fig. 5.2 D), both distributions are not iden-

tical. For instance, one notices that longer spike intervals (> 50 ms) are under-

represented (Fig. 5.2 D). Indeed, even for the best fit theMMD statistics is well

above threshold (about 50% higher), indicating that 2-ISI distributions derived from

the model and the experiments are still significantly different. Choosing different ker-

nel widths or using linear spike intervals did not change this fact considerable. We

conjecture that for an improved match of the distributions other parameters, such as

individual synaptic weights of neurons, have to be tuned as well. Recall that these

parameter are drawn from random distributions and are not constraint by the available

experimental data (see Discussion).

Figure 5.3 shows stimulus and response of the network with optimized parameters

(Fig. 5.2 B) for a period of 1 second. Network dynamic was richand laterally struc-

tured. Burst-like activity varied in strength and in the amount of participating neurons.

The high activity bursts were stimulus induced. Note that the dense spiking activity at

second6.1 in the thalamic input (Fig. 5.3 A) was followed by a strong burst in all lay-

ers (Fig. 5.3 C-E). Especially in layer 5 (Fig. 5.3 E), the onset of a burst was laterally

displaced, suggesting a traveling wave like activity.

The response pattern is different for individual layers. Layer 4 receives strongest

thalamic input and is almost free of bursts. The activity of layer 5 is somewhat reduced

in comparison to that in layer 2/3. Bursts are small and shortand spatially restricted. In
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Figure 5.2: Model parameter fit to the 2-ISI distribution of extracellular recorded spikes from

V1. A andB: Optimization criterion Eq. 5.9 for the variation of synaptic weight scale parame-

ters (patchy-long range connections and overall recurrent weight scale).MMD is displayed in

color code, in logarithmic units above of the significant threshold (thus a negative value would

indicate that the samples derived from model and real data can be assumedto originate from

the same underlying 2-ISI distribution with an error ofα = 0.05). PlotsA andC show the

fitness landscape and the resulted ISI-distribution for the optimal parameters when using single

neuron spikes trains of the model. PlotsB andD shows the same plots, when one generates

pseudo-electrode spike trains and includes the mean number of neuronsλn pooled as a param-

eter to be optimized (optimal is hereλn = 3, varied from 0 to 10). The best fits are indicated

by lines in the upper plots. PlotC andD show the ISI-distribution of the best fit. Note that the

ISI-distribution (which is only implicitly fitted) matches much better the real data when using

pseudo electrodes. However, the 2-ISI-distribution is still significantly different from the real

data (MMD statistics about 50% above significance threshold). Pseudo electrode position were

randomly chosen from all layers.
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Figure 5.3: Network activity for optimized parameters (see Fig. 5.2 B and D). PlotA shows the

thalamic input (with spikes of on and off, lagged and non-lagged cells pooled in single spike

trains). Neurons on the cuboid grid are ordered linearly for plotting purposes (first vertical

axis, then both horizontal axes). That means that highest and lowest index correspond to dia-

metrical opposed corners of the cuboid grid. Due to toroidal boundary conditions these points

will most likely be connected, however (Method Section 5.2.2.1).B: Top-down input which

resembles firing rate distributions (but not in respect to channels correlations and higher order

spike statistics) of experimental data from V1.C-E: Spike trains of all neuron in layer 2/3, 4,

and 5, respectively. Inhibitory neurons are plotted in red, excitatory neurons in black. Note that

due to the enormous amount of neurons the overall circuit activity appears exaggerated. The

different lateral connectivity structure causes characteristic activity patterns in each layer.
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contrast, layer 2/3 exhibits higher activity and larger bursts, which often extends over

the whole surface of the model. These structural different dynamics are caused by the

more numerous lateral connections introduced by the long-range patchy projections

within layer 2/3. As the circuit width is 5 mm, long-range projections extend almost

across the whole circuit, inducing spatially higher correlated firing pattern. However,

because of the preferred connectivity of iso-oriented neurons (compare to Fig. 5.1),

activity is likely to be correlated in orientation domains.

5.3.2 Comparison of simulated and experimentally measured spik-

ing statistics

Having optimized the 2-ISI distribution to the experimental data in two general pa-

rameters (average weight scales), we compared the resulting firing statistics to that of

experimental data in detail. Although our fitting process found parameters where the

firing 2-ISI-distributions are similar, the best fit nevertheless exhibited a discrepancy

between distributions. Thus firing statistics still be different in the model. Comparing

model and experiment using other measures of spiking statistics helps to describe the

deviations in more detail, and quantitatively shows which aspects are not captured by

the model.

For characterizing the firing statistics in the model we simulated a model repeatedly

(60 times) during a typical 20 seconds extract of the movie input using the optimized

parameter values from the last section. 1000 pseudo-electrodes were positioned uni-

formly in the circuit and multi-units spikes trains generated (with optimalλn = 3).

These spike trains were compared to all available data from V1. Additionally, the tha-

lamic input stream during movie activity was compared to allavailable data recorded

from dLGN. Thalamic input spike trains were not pooled with neighboring neurons,

but the four LGN cell types (on, off, lagged, non-lagged) were combined to form a

single spike train.

The results are summarized in Fig. 5.4 and Fig. 5.5. Panel A ofFig. 5.4 displays the

ISI-distribution on a logarithmic scale. Simulation and experiment agree quite well, at

least for short ISIs; remember that this distribution was implicitly optimized by the

parameter fit. As already stated above, the V1 simulation lacked longer spike intervals

relative to the experiment. In LGN, simulation and experiments disagree: probability
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Experiment: V1

Experiment: LGN

Simulation: V1

Simulation: LGN

Figure 5.4: Comparison of spike train statistics of electrophysiological recordings from V1

(red) and LGN (blue) of anesthetized macaque to that of the V1 model (gray) and its thala-

mic input (green). From the V1 model response pseudo-electrode spiketrains are generated

before comparison (λn = 3). A: Inter-spike interval (ISI) distribution estimated on all avail-

able data.B: Contributions of a given ISI to the dependence of the following ISI (function

J(y) of Eq. 5.10)). C: Average cross-correlation for simultaneously recorded electrodes (or

pseudo-electrode positions in the model). Cross-correlations are expressed in the probability

of occurrence of individual spike pairs with fixed lags divided by the mean firing rates of both

electrodes. LGN data is omitted because the set of simultaneous recorded electrodes was too

small.D: Fano factor of spike counts, i.e. the ratio of variance to mean of the spike count within

a fixed window, is plotted versus window length. Mean and variance of the spike count are es-

timated across trials on non-overlapping windows. See Section 5.3.2 for a detailed discussion

of the results.

of long ISIs is generally too low in the model. In both areas, LGN and V1, the shape
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Experiment: V1

Experiment: LGN

Simulation: V1

Simulation: LGN

Figure 5.5: Comparison of burst characteristics of experimental data and model. Same data

as in Fig. 5.4. Histograms are estimated on overlapping, 2 second lasting time regions and

pooled over all available data.A: Firing rate distribution.B: Inter-spike interval coefficient of

variation (ISI-CV) distribution. ISI-CV is defined as the ratio of standarddeviation to mean of

the ISI-distribution (on each time region).C: Burst rate distribution. Burst events are defined

as having at least 2 spikes with average ISI of at most 5 ms.D: Mean rates of bursts containing

at leastn spikes with maximal average ISI of 5 ms. See Section 5.3.2 for discussion of the

results.

of the distributions from model and experiments agree, however, having a single peak

and a monotonous decrease in case of LGN and V1, respectively.

Panel B of Fig. 5.4 summarizes the dependence of one ISI on thefollowing ISI.

For homogeneous Poisson spike trains, where spike positionare uniformly distributed

in time, the length of a given ISI will no tell anything about the length of the following

ISI. In neural spike trains, however, this will commonly be the case. The current and
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following ISIs can be seen as two random variableX andY , respectively. A measure

for their dependence is the mutual informationI(X,Y ) =
∑

x

∑

y p(x, y) log2
p(x,y)

p(x)p(y)

(see Chapter 3 for references). Then the function

J(y) = p(y)
∑

x

p(x|y) log2

p(x|y)
p(x)

(5.10)

measures the contribution of each ISIy to the overall dependence, since it isI(X,Y ) =
∑

y J(y). In other words, ifJ(y) is high for a particular ISIy this means that the next

ISI is well determined by the length ofy; one gains information aboutx. Note that in

our case the 2-ISI distributions are symmetric (if one neglects boundary effects), be-

cause they are estimated using all possible ISIs of a spike train. We see from Fig. 5.4 B

that for experimental data the dependency is quite strong. In V1 in particular, the con-

tribution of ISI to the information is rather constant with ISI duration. The model spike

trains seem more random, as the two subsequent ISIs depend less on each other, and

in case of the V1 model the dependence is only close to the experiment at the two

peaks. These peaks probably arise in the model because of therelatively stereotyped

burst length and its slight oscillatory behavior (see below): within a burst it is likely

that a short interval is followed by a short one (or a very longone if the bursts hap-

pens to end), and a long interval might be preferable followed by a short one within

the next burst. In the LGN model the dependence of following ISIs is generally very

low, which is to be expected because of the Poissonian rate process generating the

spike trains (at least for lower rates). Here the bimodalitymight arise on the left side

due to the regularity inducing gamma renewal process for high firing rates (see Meth-

ods Section 5.2.2.2) and for long interval due to the movie content changes. In the

experimental data, on the other hand, the relatively constant and high dependence of

inter-spike intervals might be caused by slow changing state variables: it is likely that

for a given interval duration a similar interval follows.

In Fig. 5.4 C the average cross-correlation between different electrodes is plotted.

While electrodes in V1 are correlated for lags up to about 250 ms, the model shows a

faster fall-off and a small oscillatory compound (compare also to the network activity

in Fig. 5.3 C). The relatively small lateral extend of the model might promote the os-

cillatory behavior. Similarly, the trial-to-trail variability of model does not reach the

variability of the experimental data, although for larger window size the Fano factor at
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least increases (Fig. 5.4 D). The LGN model does not match theLGN data: its trial-to-

trial variability is not too low for longer times. On the other hand, in the experimental

data the variability might be exaggerated because of experimental artifacts. For in-

stance, the electrode might move slightly during a recording session of several hours

and thus pick up a different set of neurons in later trials.

In Fig. 5.5 the bursting behavior of experiment and model spike trains are com-

pared. All histograms of Fig. 5.5 are calculated on (overlapping) 2 second regions

and pooled over all available electrodes. The firing rate distribution (Fig. 5.5 A) is

markedly different for the thalamic input and the LGN. Although the mean firing rate

of the LGN model is fitted to the experiments (7 Hz, see Section5.2.2.2), it is much

more likely that there occurs no spike in a random 2 second region in the experimental

data than in model spike trains. This is partly an effect of pooling all LGN cell types

in the LGN model.

In case of V1, the slope of the tail of the firing distribution is matched well (Fig. 5.5 A),

but the probability of low spike rates is too low, similarly to the LGN model. This low

probability of long pauses might partly induced by the top-down input model. Because

the top-down input is not modulated by the stimulus (which obviously is the case in

the brain), it merely acts like a stimulus independent noisesource. We set the strength

of the top-down input to achieve 2 Hz average firing rate (see Method Section 5.2.3).

While this value is realistic as it is estimated from the data,the fact that the rate of each

input neuron wereindependentlydrawn is not. However, lacking precise data about the

top-down input correlations we can only state this fact.

Burst rates are generally higher in V1 than in LGN data, whichis reproduced in

the model (Fig. 5.5 C). However, burst rates are actually higher in the V1 model than

in the experiment (see Discussion). The dependence of the rate of the size of bursts is

matched qualitatively well for the V1 model (Fig. 5.5 D), whereas long bursts do not

occur in our LGN model, although there is some (low) probability that they occur in

reality (Fig. 5.5 D). Similarly, high frequency bursts are underrepresented in the LGN

model. This can also be seen in Fig. 5.5 C and D where the rate ofshorter and longer

bursts are compared. The deviations of the LGN model to the data suggests that the

simplistic rate-based input model of the LGN is not enough tocapture non-Poissonian

effects present already in the LGN spike trains.
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Figure 5.5 B shows that the high variability of spike intervals in V1 is not captured

in the spikes trains from the model. The ISI coefficient of variation (ISI-CV) is higher

in reality. For LGN data, however, ISI-CV is lower and peaks near 1, indicating that

spike intervals are more regular and more like a Poissonian spike train than in V1. In

that respect the LGN data is similar to the LGN model.

In summary, we find that the spike characteristics of the generic V1 and LGN

model has similarity to the experimental data but still differs from it in some aspects.

In particular, the variability is lower and the changes in firing dynamics over interme-

diate times is less extreme: the experimental data exhibitsboth long silent periods and

prolonged bursting events. However, besides the differences, there is a general trend

that the model statistics resemble the experimental data. It seems that the more sophis-

ticated V1 model is closer to reality than the much simpler rate-based LGN model.

Generally, data derived from LGN and V1 is more similar to itssimulated counterpart,

than experimental data and simulated data to themselves.

5.3.3 Does the model predict the response of experimental data to

a movie stimulus?

A model having qualitatively similar spike statistics to experimental data, does not

necessarily respond similarly to given stimuli. We wondered to what degree the model

predicts the spike trains measured at an electrode in vivo? Figure 5.6 shows the re-

sponse to repeated trials of a section of a movie stimulus of both an electrode channel

and neurons of the model. As described above the movie extract was chosen to in-

clude the receptive field of an electrode from one experimental session (channel 7 of

“d04nm1”). The center of the circuit is aligned to the centerof the receptive field of

that electrode. Thus if the model were a reasonable abstraction of the reality, one would

assume that firing patterns at a pseudo-electrode in the center of the circuit would be

very similar to those observed at this particular electrodechannel.

In Fig. 5.6 multiple trials of movie presentation are shown for both the electrode

and an pseudo-electrode (withλn = 3) inserted in layer 2/3 of the model (Fig. 5.6 B

and Fig. 5.6 D, respectively). The layer position of the electrode is not determined

experimentally and electrode tip distance from the dura is not necessarily a reliable

indicator (because of the geometry of the cortex). However,the chance that channel 7
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Figure 5.6: Spike trains elicited in response to multiple trials of movie presentations for two

experimental electrodes and two pseudo electrodes in the circuit. Movie stimulus the same in

experiment and simulation. In simulations a black and white version of the color movie was

presented.A Movie stimulus in original colors. Movie frames are shown on a 1-dimensional

line to visualize the time course (order: pixel columns first, then rows). PlotB andC show

recorded spike trains of two electrodes. The center of the receptive field of electrode in B

(channel 7) is used as a reference point to align the center of the circuitto the center of the

movie region. The electrode shown in C (channel 5) has overlapping receptive fields with

slightly shifted center and is positioned about 1.5 mm further away. PlotD andE show trials of

two pseudo-electrodes generated from the model circuit (λn = 3). They are positioned in the

center of the network in layer 2/3 and offset laterally by (simulated) 1.5 mm in layer 5, respec-

tively. Thus their positions correspond to the experimental electrodes in Panel B and Panel C,

respectively. PlotF shows the mean firing rates of the electrodes in plots B–E using the same

color code (smoothed with a50 ms Gaussian kernel). Note that bursts occur reliably across

trials in both, simulation and experiment. Trial-to-trial variability is realistic in simulations.

However, correlations of the mean firing rates is not perfect. Nevertheless, at some times the

responses of the simulation resembles the experimental observations (e.g. at 52 sec).
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recorded in superficial layers is higher since its depth is about 1 mm smaller than a

second electrode (channel 5), which is plotted in Fig. 5.6 C. Thus the second electrode

is more likely to be positioned in a deeper layer. For comparison we show a pseudo-

electrode positioned in layer 5 of the model in Fig. 5.6 E, which also is shifted by

1.5 mm lateral distance as it is the case for the second electrode in the experimental

session. Panel A of Fig. 5.6 shows the movie extract which is presented to both model

and monkey. In the experiment the movie was shown in color (asdepicted), whereas

in the model a black and white version was used because only one type of ganglion

cells was modeled. The two dimensions of the movie is lined upto one dimension to

visualize its temporal evolution.

One can see that the trials of both experiments and simulations show reliable ac-

tivity to certain parts of the movie. For instance, at second52, when an object flies

through the blue sky in the movie, the response of both model and simulation is a re-

liable burst at very similar times. On the other hand some prominent and very reliable

bursts in the experimental data are not anticipated by the model. At second55.3 chan-

nel 7 fires strongly (Fig. 5.6 B), but in the model no burst occurs in either spike train

(Fig. 5.6 D and E).

The mean firing rate of the two experimental electrodes and the pseudo-electrodes

from the model are displayed in Fig. 5.6 F. The simulated traces matches at some

times the increase seen in one of the electrodes, but in general the correlation is weak.

In Fig. 5.7 B the distribution of correlation coefficient between 1000 randomly placed

pseudo-electrodes within the circuit and both electrodes of Fig. 5.6 B and C are shown

(calculated over 20 seconds stimulus and 200 ms windows). Assaid, there exist a

correlation for most locations in the circuit, but it is relatively low: highest correlation

coefficients lie around0.3.

The trial-to-trial variability is similar in the simulation and the model at least for

this movie section. This can be seen when comparing the mean spike counts with the

variance over trials (Fig. 5.7 A). The ratio of both values isclose to one (for 50 ms

windows). Note that we show here only selected electrodes for 20 seconds stimulus

duration, whereas all available data was analyzed in Fig. 5.4 D. The overall appearance

of spike trials generated by the model is a bit noisier, with less silence in between

activity phases (as noted above). Moreover, bursts in the experiment appear to be

slightly longer in duration. In the experiments there is a slight drift over trials (trials
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Figure 5.7: Trial-to-trial variability and correlations of responses to movie trials in experiment

and simulations (compare to Fig. 5.6).A: Mean of spike count across trials on 50 ms windows

plotted against variance. Electrodes are identical to that displayed in Fig. 5.6 B-E (but for 20

seconds stimulus duration).B: Histogram of correlation coefficients of the two experimental

electrodes with 1000 randomly placed pseudo-electrodes from the V1 model, separately plotted

for layer position of the pseudo-electrode. Correlation is weak but present in all layers. The

mean firing rate was estimated on non-overlapping windows of 200 ms duration.

are number in the order of their recording time), which is probably due to experimental

conditions.

In summary, we have applied exemplary a shown that adjustingthe network param-

eters to the 2-ISI distribution of the real data results in firing statistics which resemble

the experimentally measured data. However, not all detailsof the real statistic are cap-

tured by the model. This knowledge can be used to systematically improve aspects

of the model to achieve a closer match to the data. In a direct comparison of spike

trains to the same movie stimulus the correlations in the mean rate remain low. This

suggests that the response of the real system is still more complex than our state-of-the

art connectionists model.

5.4 Discussion

In this Chapter developed a detailed computer model of several square millimeters area

of macaque V1. We have compared it to spike train statistics of electrophysiological
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recordings from area V1 and LGN in anesthetized macaque monkey.

The last years have seen several attempts to model large areas of the brain with sim-

ilar components that we used here, such as inter-laminar connectivity, laterally struc-

tured connectivity, realistic input connections, synaptic depression and facilitation, and

neurons having one or a few compartments (e.g. Izhikevich & Edelman (2008); Jo-

hansson & Lansner (2007); Kremkowet al.(2007); Taoet al.(2004)). The anatomical

detail, e.g. the inclusion of orientation dependent long-range patchy connections, and

lateral extend of our V1 model matches recent approaches very well. These models, as

well as ours, incorporate many anatomical and physiological details, but they are, of

course, still a strong abstraction of reality. For instance, genetic and metabolic main-

tenance, the electrochemically milieu, blood vessels, or cell signaling systems etc. are

completely ignored – just to name a few aspects. However, thecomputational function

of neural systems is thought to arise mainly through communication between neurons

using spikes, although other signals might be involved as well (see Chapter 3). Thus it

is feasible to try to capture the neural spike train statistics with a model concentrating

on neurons and their interactions.

Having a surface area of25mm2 the network size of our model is still very small

compared to an average of1200mm2 for striate cortex of macaque (Essenet al.(1984)).

In relation to the extend of the long-range connections (SD of 1mm in each lateral

direction), our model is of minimal size in that sense that lateral connections are not

likely to connect to neuron near its origin via the toroidal boundaries. In principle,

thanks to the PCSIM simulation environment1 used throughout, the network size is

easily scalable in the expense of simulation time. Simulating a circuit of100mm2

(having a neuron grid of166 × 166 × 9 at lower eccentricities) for a few seconds,

for example, required about two days simulation time on a 16 CPU cores machine, as

compared to roughly 6 hours simulation time of the presentedmodel on a dual core

machine (for 20 seconds simulation time). Since we simulated the model repetitively

for long times (20 seconds and more), we have restricted thisstudy to a relatively small

circuit.

With about 35000 neurons and over 4 million synapses our model has still many

parameters, which in principle had to be estimated from data. With the limited amount

of data available to us, this is impossible. It would take a great amount of collaborative

1available fromhttp://sourceforge.net/projects/pcsim/
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effort to try to fit parameters on the basis of single neurons;although recently the

Blue Brain Project started to do just that (Markram (2006)).Thus it is very difficult

to constraint such model. In this Chapter we develop a method for adjusting network

parameters to achieve realistic firing dynamics in responseto a semi-natural movie

stimulus.

This method could be used to systematically investigate components of the net-

works important for achieving certain aspects of realisticdynamics. We exempli-

fied the fitting process in three parameters and achieved a reasonable fit to the ISI-

distribution. One could choose different parameters to investigate the importance of

components of the network. As optimization algorithm we performed simple grid

search, because it is very efficient on a multi-processor system. If more parameters

were to be adjusted any gradient descent algorithm, such as adaptive simulated anneal-

ing (Ingber (1989)), could readily be applied.

One also could change the optimization criterion for further investigations. For

instance, we here exemplary optimized our network model in afew free parameters

to the 2-ISI distribution. One could likewise fit more complicated distributions, such

as thek-ISI distributions for higherk, or e.g. the distribution of waiting times to the

next spikes seen from randomly sampled timest for n neurons simultaneously. The

latter distribution could be used to fit correlations between electrodes (and neurons)

of multi-electrode recordings. Moreover, theMMD could in principle be used to fit

distributions of whole spike trains directly using a kernelfor comparing spikes trains

(e.g. Shpigelmanet al. (2003)). In our case, where the model has an enormous degree

of freedom, a direct match of spike trains seems unlikely, however.

In comparing the resulting model with statistics of the experimental data, we found

that even after having optimizing parameters, the model does not reproduce all subtle

aspects of spike trains experimentally observed. In particular, the bursting character-

istics of model and experiment are different in that bursts occur more likely and more

regularly in the model (Fig. 5.5). Although there might be even an increase in burst-

ing due to anesthesia in the data (see Chapter 2 for a discussion), the mismatch of

experiment and simulation is probably due to approximations done within the model.

Recall that the fit included the estimation of the number of neurons pooled to multi-

unit spike trains. If the bursting behavior of the neuron model would be devoid of short

bursts, this number will be artificially increased to match the ISI-distribution of the
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experimental data. We found a mean number ofλn = 3 which might be correct, but

intuitively seems to be a bit too high, given that we increased the threshold for spike

detection to a very high7 SD of the noise component. Thus the lack of longer inter-

spike intervals observed in the simulations might be partlyan effect of pooling more

spike trains in need of short ISIs to match the target. Another reason for the lack of

longer ISIs might the possibly unrealistic noise source from the top-down projection.

However, simulating the circuit without top-down input resulted in a less severe, but

still similar underrepresentation of longer inter-spike intervals (not shown).

One possibility for the deviation of model and experiment isthat the simplified

neuron model might misses aspects of the dynamics of real neurons. Although the

neuron model can in principle capture a wide variety of firingcharacteristics (Izhike-

vich (2006)), and is thus unlikely to fail completely, the mixture of different firing

types (e.g. the ratio of regular spiking to intrinsically bursting cells) is generic and

might not correspond specifically to V1 of macaques. Therefore in future studies one

could attempt to adjust the mixture of firing types by including additional parameters

in the ISI-fitting process, which describe the distributionof firing types present in the

circuit. However, for this task it would be advantageous to compare spike trains to

multi-dimensional polytrode recordings, which allow to sort multi-unit activity to ob-

tain single units spike trains. With single unit spike trains the fitting process would be

greatly improved because no pseudo-electrode signals had to be estimated. Addition-

ally, the risk of introducing a sample bias towards very big neurons via the high spike

detection threshold would be minimized (Olshausen & Field (2005)).

Moreover, the neuron model lacks complicated dendrite morphology seen in vivo,

which are thought to actively and non-linearly shape the response of single neurons (see

Yuste & Tank (1996) for a review). Instead the model uses point neurons. In the

simulation we saw that the model did not seem capable of reproducing longer-lasting

changes in the firing dynamics, e.g. that a neuron is silent for seconds and then bursts

reliably (see Fig. 5.6 A for an example). This behavior results in the high ISI-CV in the

experiment (Fig. 5.5 B). Dynamics on intermediate time scales might be induced in the

cortex by second messengers such as calcium ions. Calcium dynamics is known to be

complex, showing waves and spikes, and has pronounced effects on the firing of neu-

rons (see Berridge (1998) for a review). In our model no explicit calcium dynamics,

nor that of any other second messenger, are included. Furthermore, since we based the
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synapse model on that used by Haeusler & Maass (2007), no slowsynaptic currents

are included in the model, such as GABAB and NMDA (Dayan & Abbott (2001)).

We expect that a model containing such slow synaptic dynamics will achieve a closer

match to the experimentally observed spike train statistics. Analyzing the effects of

slow dynamics is a promising direction for future studies.

Besides many anatomical details included in the model, we also neglected some

known aspects. For instance, we incorporate only 3 instead of 6 layers and neglected

several sublaminar structures existing in macaque V1 (Callaway (1998)). Since con-

nection probabilities are not measured in such detail in macaque as it is done for cat, we

instead used data obtained from cat slices of different cortices (Thomson & Bannister

(2003)). Presently, there is only one other study describing layer specific connection

probability in cat (Binzeggeret al.(2004)). Although the latter data set is based on the

visual cortex, it is derived solely on anatomical consideration, whereas the former data

set incorporates functional synaptic weight estimates as well. Since both data sets are

from cat and therefore can only serve as a rough approximation to macaque V1, we

decided to apply the former because of their advantage having synaptic strength esti-

mated and thus stick to the three layer layout used by Haeusler & Maass (2007). We

are aware that particularities of macaque V1 such as the firstfeedback loop from layer

4C to layer 6 and vice versa suggested by Callaway (1998) is notincluded. Similarly,

the probability distribution for patchy long-range connections in superficial layers, as

well as the hard-wired orientation tuning are inspired fromcat. Thus, using connec-

tion probabilities derived from macaque V1 would most likely lessen the gap of the

correspondence of experiment and simulation.

We found that in a direct comparison to experimental data during movie presen-

tation the predictive power of the V1 model was low. Such a direct comparison of a

network model to data during complex stimulation has not been attempted so far. The

low correlation is to be expected since the synaptic weightsare only randomly chosen

and unconstrained by the experiment. In future studies one could for example learn

the weights to a readout neurons to achieve a high correlation to the experimentally

measure neurons.

There are also several other caveats, which explain the relatively low correlation.

Despite the approximations and abstraction within the V1 model described above, a

main reason might be simplifications in the input model. We found that the statistics
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of our rate-based LGN does only very poorly resemble the experimentally data from

LGN. Thus, the LGN model might have to be improved to achieve acloser match of the

model spike trains to that of experimentally recorded spikes. Besides the LGN model

the stimulus was adjusted, too. Since we had to adjust the stimulus size (see Results

Section 5.3.1), only about a sixth of the original movie frame area was presented to

the model. Even though the reference electrode had a receptive field in the center of

this region, neurons might interact with neurons beyond their receptive field. Neither

these interacting neurons nor their input were included in the model, because of the

size restrictions. Moreover, the color movie had to be transformed to black and white

(by simply averaging all color channels). More appropriatewould be to incorporate

color pathways into the model by including multiple types ofcolor opponent ganglion

cells (Sincich & Horton (2005)). In principle, this could bedone straightforwardly,

although many details about color processing in the visual cortex are unknown (Sincich

& Horton (2005)). However, neglecting color information might have a strong effect

on the response, because many colors share identical gray scales.

5.5 Conclusion

We have presented a detailed circuit of V1 and its thalamic input stream. Often these

models are difficult to adjust to generate reasonable firing dynamics, so that they could

be used as basis for further investigations. The method developed and applied here

is very helpful in adjusting free parameters to the statistics of experimental measured

spikes train. We are confident that the gap in understanding neural systems in terms of

neural network models (Olshausen & Field (2005)) will lessen by developing models

in close relation to experimental data.
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This dissertation focused on a particular dataset of electrophysiological recordings

from macaque monkeys. Machine learning techniques were developed and applied in

order to characterize the interdependence between different signals and their role in

information processing. Two signals, commonly recorded with electrophysiological

electrodes, were analyzed: spiking activity and local fieldpotentials (LFP).

In Chapter 2 their interdependence were analyzed in details while attempting to

systematically infer spikes from the local field potentials. This approach did not only

visualize concrete spike trains estimated solely on the basis of LFP, it was also possible

to pin down the frequency components and oscillation phase features which were most

important carriers of the information about spikes, and to investigate the redundancy or

independence of individual features. Several findings werequite unexpected. For in-

stance, the relatively high information in low frequency bands, especially at times after

spike position. Furthermore, the prediction accuracy as well as the important features

did not differ much in case of spontaneous activity or stimulus evoked activity. Both

conditions exhibited different spatial decay constant of the prediction performance,

however, indicating that during stimulus, neurons are spatially more decorrelated.

Although it was previously known that e.g.γ-power correlates best with spiking

activity, the relative contribution and redundancies of different features were quanti-

fied. Supervised learning method (support vector machines)are capable of using many

features simultaneously to non-linearly predict the target outcome. This method has

not been applied to investigate the relationship between LFP and spiking activity be-

fore.

The results of this dissertation strongly suggest that local field potentials are an

important carrier of information and analyzing LFP in addition to spike trains might

be elucidate cortical functions.

This is underlined by the findings of Chapter 3 that LFP might play an active role

in information processing. Using information theoretic arguments the gain in infor-

mation about naturalistic movie scenes is quantified to be over 50%. Remarkably,

this improvement is achieved not for simplistic, abstract stimuli but for stimuli which

resemble moving natural surroundings. Most notable, the information theoretic ap-

proach does not need to know what kind of features of the natural scenes is encoded

but instead analyzes any kind of possible features. Although phase-of-firing codes has

been suggested earlier for the hippocampal formation (for references see Chapter 3),
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this is the first time a phase-of-firing code has been shown to exist for the primary vi-

sual cortex. In visual cortex the code is subtle and not immediately accessible by eye.

Spikes generally occur more likely at certain phases of the LFP, only a small but crucial

jitter, depending reliably on the stimulus content, together with the reliability of LFP

phases in response to the stimulus, carries the additional information. In particular, this

additional information can be used to disambiguate scenes which illicit similar spike

rates.

In state-of-the-art network models the extracellular milieu, and thus a signal like

LFP, is commonly neglected and all communications and computational properties are

thought to emerge through spiking activity. In Chapter 5 sucha network model of

a patch of the primary visual cortex was developed. The modelincorporates many

anatomical and physiological details of the macaque monkey. The laminar organi-

zation of neurons, lateral connection profiles as well as orientation tuned input con-

nections are modeled according to anatomical studies. The model shows rich and

structured dynamics in response to movie stimuli, including reliable activity bursts

and realistic trial-to-trial variability. However, it is evident that temporal structure of

responses is still richer in experimental data.

For optimizing parameters of the network model a new method for comparing two

multidimensional distributions has been developed in Chapter 4 and applied in Chap-

ter 5. Most remarkably this new method, using the Maximum Mean Discrepancy,

can be efficiently computed when relying on kernel spaces andtherefore inherits their

enormous modularity and capabilities. For instance, distributions on graphs can read-

ily be compared using graph kernels. Moreover, the method performs at least similar

to the best existing method. In multidimensional problems it commonly outperforms

existing methods, both in accuracy and computational speed.

In Chapter 5 is shown that, although tuned in a few parameters,the firing dynamics

of such a model does not capture every detail of the dynamics seenin vivo. Although

many approximations were made when developing the artificial network model, to-

gether with the finding that LFP code for additional information beyond that coded by

the spike count alone, it suggests that the restriction on modeling only spiking com-

munications might not be sufficient.

Given the discrepancy between experiment and model, the approximation com-

monly done in even the most detailed network models, one might conclude that much
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6. CONCLUSION

remains to be done to finally understand the computational function of neural systems.
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FRIES, P., NIKOLI Ć, D. & SINGER, W. (2007). The gamma cycle.Trends in Neuro-

sciences, 30, 309–316. 69, 79

FROMM, G.H. & BOND, H.W. (1964). Slow changes in the electrocorticogram and

the activity of cortical neurons.Electroencephalogrraphy Clinical Neurophysiology,

17, 520–3. 9, 43

FROMM, G.H. & BOND, H.W. (1967). The relationship between neuron activity and

cortical steady potentials.Electroencephalography & Clinical Neurophysiology, 22,

159–166. 9

GASSER, H.S. & GRUNDFEST, H. (1939). Axon diameters in relation to the spike

dimensions and the conduction velocity in mammalian A fibers. Am J Physiol, 393–

414. 9

GAZERES, N., BORG-GRAHAM , L.J. & FREGNAC, Y. (1998). A phenomenologi-

cal model of visually evoked spike trains in cat geniculate nonlagged X-cells.Vis

Neurosci, 15, 1157–74. 100, 105, 107, 108

GILBERT, C.D., DAS, A., ITO, M., KAPADIA , M. & W ESTHEIMER, G. (1996).

Spatial integration and cortical dynamics.Proc Natl Acad Sci U S A, 93, 615–22.

99, 103

146



REFERENCES

GIRARD, P., HUPE, J.M. & BULLIER , J. (2001). Feedforward and feedback con-

nections between areas V1 and V2 of the monkey have similar rapid conduction

velocities.J Neurophysiol, 85, 1328–31. 105, 110

GOLLISCH, T. & HERZ, A. (2005). Disentangling sub-millisecond processes within

an auditory transduction chain.PLOS Biology, 3, 144–154. 68

GRAY, C.M., KONIG, P., ENGEL, A.K. & SINGER, W. (1989). Oscillatory responses

in cat visual cortex exhibit inter-columnar synchronization which reflects global

stimulus properties.Nature, 338, 334–7. 42

GRETTON, A., BORGWARDT, K., RASCH, M.J., SCHÖLKOPF, B. & SMOLA , A.J.
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