
Ph.D. Thesis in

Systems Engineering

XX Ciclo

Visual Estimation and Control of

Robot Manipulating Systems

Paolo Robuffo Giordano

Supervisor Coordinator

Prof. Alessandro De Luca Prof. Carlo Bruni

December 2007

All men by nature desire to know. An indication of this is the delight we

take in our senses; for even apart from their usefulness they are loved for

themselves; and above all others the sense of sight. For not only with a view

to action, but even when we are not going to do anything, we prefer seeing

(one might say) to everything else. The reason is that this, most of all the

senses, makes us know and brings to light many differences between things.

– Aristotle

Abstract

With this sentence from his Metaphysica, Aristotle perfectly introduces us to the

importance of eyesight for humans, as well as for any advanced living being. Since, to

a large extent, robotics is concerned with the emulation of human skills in an artificial

context, a natural requirement is to cope with vision for a full interaction with the world. In this

respect, this Thesis explores the problem of exploiting visual information to control the motion

of robotic systems equipped with onboard cameras. We build our proposals upon the Visual

Servoing paradigm, which bridges Computer Vision (image processing, scene interpretation,

feature extraction, etc.) with topics proper to the Control Theory field. Indeed, within Visual

Servoing, a camera is modeled as a nonlinear function of the scene, i.e., of 3D states subject to

rigid body kinematics. Therefore, visual pose control reduces to a problem of output regulation,

or task realization if we conform to the robotic nomenclature. Once this view is adopted, any

task realization algorithm can be used to fulfill a visual task, and, more in general, the problem

can be tackled with the tools of Control Theory.

In order to fully exploit this formulation, however, a suitable task-oriented modeling of robot

manipulators is required. Therefore, in the first part of the Thesis, we develop a theoretical

framework for kinematic modeling and control of such systems. While keeping the treatment at

the most general level, we place some emphasis on the cases of fixed and nonholonomic mobile

manipulators. Indeed, the former class is ubiquitous in robotics, and the latter conveniently

merges dexterity with extended (∼ unlimited) workspace capabilities. A special attention is

also devoted to the exploitation of possible redundancy with respect to a given task, in terms

of both improvement of overall performance, and satisfaction of secondary constraints.

Such modeling framework is then combined with the schemes proper to Visual Servoing

to obtain a unique formulation for visual task control. Again, the two cases of fixed-base

and nonholonomic mobile manipulators are explicitly considered, and any inherent peculiarity

is pointed out. We also show how a suitable use of redundancy can effectively improve the

fulfillment of Visual Servoing tasks. For instance, it can allow realization of tasks that would

be close to singularity when addressed altogether. Another contribution to this topic is the

i

possibility to estimate online several unmeasurable 3D quantities that are lost through the

projective mapping performed by a camera. To this end, a set of estimation tools based on the

nonlinear observation theory is proposed, so as to recover at runtime any 3D information needed

by Visual Servoing schemes. With respect to other possible approximations, this solution takes

advantage of the observation convergence in order to improve the overall closed-loop stability.

Finally, the theoretical claims and simulation results presented in the Thesis are further

validated by a number of experiments run on real robots equipped with cameras. The proposed

methodology is also exploited within an industrial application involving pick-and-assemble

tasks. A fixed-base manipulator carrying a camera on the gripper must (i) autonomously

locate a set of planar parts on a table, (ii) pick them up, (iii) locate the corresponding

holes on a movable plate, and (iv) insert the parts. Robot motion during the approaching

phases to parts/holes is governed by Visual Servoing techniques, so as to obtain the needed

degree of robustness and reactivity with respect to external ‘disturbances’, such as unexpected

displacements of the target items.

Keywords: Vision, Robotics, Kinematic Modeling, Kinematic Control, Visual Servoing,

Nonlinear Estimation.

ii

Acknowledgments

By completing this dissertation, my Doctorate takes the final step towards its conclusion. The

last three years have been so intense that, sometimes, they seem to have passed in a trice.

While conceiving these few words, I realized how many people I owe for their support, so that

acknowledging all of them within this limited space is not possible. Therefore, I wish to express

my sincere gratitude to all those who have helped me in attaining such a goal.

Besides that, it is my pleasure to thank my supervisor, Prof. Alessandro De Luca, for all

that I could learn from his talent and experience, and for all the (quite many) possibilities he

gave me during this time. I particularly appreciated the freedom he accorded to my research,

and his trust in my capabilities that always encouraged my steps from the very beginning. I am

aware that spending these years under his supervision was an invaluable opportunity in my

professional and scientific career.

In addition, I also greatly benefited from the constant support of Prof. Giuseppe Oriolo who

advised me throughout the Doctorate as if he were my ‘second’ supervisor. Among the many

skills I have gained by working with him, I believe rigorousness and care for the details were

the most important for my education. Therefore I wish to thank him for his helpfulness and

patience in front of my (sometimes clumsy) research attempts.

The same, of course, goes with Dr. Marilena Vendittelli and Dr. Raffaella Mattone who

contributed to ‘steer’ my footsteps towards the art of doing research in a systematic fashion.

Hearty thanks also go to my colleagues who accompanied me along these years:

Dr. Massimo Cefalo, Dr. Luigi Freda, Andrea Pranzo Cherubini, and Antonio Franchi just to

cite a few (for the missing ones: ok, I owe you one coffee).

During the last year of my Doctorate, I had the opportunity to spend a fruitful stay at the

Institute of Robotics and Mechatronics of the German Aerospace Center (DLR). It is, therefore,

my wish to express my full gratitude to Prof. Dr. Gerhard Hirzinger who kindly agreed to host

me at his Institute.

A special thank is also meant for Dr. Alin Albu-Schäffer who friendly welcomed and

supported me to a great extent during this period, both scientifically and practically.

iii

And I cannot forget the many colleagues met at DLR: Andreas Stemmer, Klaus H. Strobl,

Wolfgang Sepp, Roberto Lampariello, Sami Haddadin, Thomas Wimböck, Sebastian Wolf, and

many more. The nice atmosphere they shared with me was very enjoyable from all points of

view.

Finally, a special mention for Dr. Klaus Arbter who dedicated considerable amounts of his

time to teach me the knowledge and expertise gained from his wide experience. He followed

me step-by-step and constantly supported me whenever I ran in trouble.

Last, but not least, my gratitude goes to my parents for their ‘being always there’ regardless of

my choices, and for having allowed, with their efforts, to get to where I am now.

Sharing life with someone involved in research activities may be an hard task from time

to time. Luckily, if the other one is a researcher too, things can go smoother thanks to the

understanding of the mutual needs. For this, and for many other reasons, I am very delighted

of having met my wife Lilia and express my gratitude for her patience and love.

iv

Contents

Abstract i

Acknowledgments iii

Notations 5

Introduction 11

Organization of the Thesis . 14

Outline of part I . 15

Outline of part II . 15

Outline of part III . 16

1 Kinematic Modeling of Robot Manipulators 21

1.1 Introduction . 22

1.1.1 Behind kinematic modeling . 22

1.1.2 Mobile manipulators . 22

1.2 From dynamics to kinematics . 24

1.3 Task-oriented kinematic modeling . 26

2 Kinematic Control of Robot Manipulators 29

2.1 The non-redundant case . 30

2.2 The redundant case . 30

2.2.1 Extended Jacobian (EJ) . 31

2.2.2 Projected Gradient (PG) . 31

2.2.3 Reduced Gradient (RG) . 32

2.2.4 Task Priority (TP) . 33

2.2.5 Task Sequencing (TS) . 35

2.3 Case studies . 36

2.3.1 Unicycle platform with 2R planar manipulator 36

1

CONTENTS 2

2.3.2 Unicycle platform with 3R elbow-type manipulator 38

2.4 Simulation results . 39

2.4.1 Position task for the NMM with planar manipulator 40

2.4.2 Position/orientation task for the NMM with planar manipulator 41

2.4.3 Position task for the NMM with elbow-type manipulator 42

3 Elements of 3D Vision 45

3.1 Rigid body kinematics . 46

3.2 Pin-hole camera model . 49

3.3 Geometry of two views . 52

3.3.1 Epipolar constraint . 53

3.3.2 Planar homography . 54

4 Visual Servoing 57

4.1 Overview . 58

4.2 Position-based visual servoing . 60

4.3 Image-based visual servoing . 62

4.3.1 The interaction matrix . 63

4.3.2 Stability analysis of IBVS . 66

4.4 Hybrid approaches . 69

4.5 Velocity-level control schemes . 70

4.5.1 The FBM case . 71

4.5.2 The NMM case . 72

4.6 Simulations . 74

4.6.1 Unicycle platform with 3R elbow-type manipulator 74

4.6.2 Unicycle platform with 2R polar manipulator 79

5 Estimation of Geometric and Camera Quantities 85

5.1 Persistency of excitation . 87

5.2 3D Observation . 88

5.2.1 Observer design for point features . 89

5.2.2 Observer design for image moments . 94

5.3 Focal Length Estimation . 100

5.4 Simulations . 102

5.4.1 Observation of 3D quantities . 102

5.4.2 Observation of focal length . 109

3 CONTENTS

6 Experimental Validation 115

6.1 Experiments of redundancy exploitation . 116

6.1.1 Experiments with Task Priority . 117

6.1.2 Experiments with Task Sequencing . 120

6.2 Experiments of 3D structure observation . 123

6.2.1 Point features . 125

6.2.2 Image moments . 130

6.3 Experiments of focal length observation . 134

7 Application 137

7.1 Experimental setup description . 138

7.1.1 Robot manipulator . 138

7.1.2 Parts and plate . 139

7.1.3 The overall task . 140

7.2 Robot pose control . 143

7.2.1 Visual task definition . 144

7.2.2 Control algorithm . 146

7.3 Experimental results . 148

Conclusions 157

Summary . 157

Open points . 159

Future directions . 159

A Nonholonomic Constraints 163

A.1 Tools from differential geometry . 163

A.2 Integrability of nonholonomic constraints . 165

B Pattern Recognition 167

B.1 Affine-invariant Fourier descriptors . 168

B.2 Shape classification . 170

References 185

Notations

General rules

Throughout the text, the following conventions hold

- scalar quantities are denoted by plain lower-case symbols (e.g., m, n, t)

- vector quantities, intended as column vectors unless otherwise stated, are denoted by bold

lower-case symbols (e.g., u, vC , ωC)

- matrix quantities are denoted by bold upper-case symbols (e.g., A, J, Ω). The symbol

In represents the identity matrix of dimension n

- notation ξ̂ stands for estimation/approximation of quantity ξ

- notation ḡ denotes homogeneous representation of g

- a leading superscript (e.g., CT) specifies the reference frame where a quantity is expressed

- subscript rd specifies desired value of quantity r

- superscript r∗(t) denotes a planned trajectory for r

Acronyms

w.r.t. 7−→ With respect to

lhs (rhs) 7−→ Left (right) hand side

iff 7−→ If and only if

dof 7−→ Degree of freedom

FBM 7−→ Fixed-base manipulator

NNM 7−→ Nonholonomic mobile manipulator

LWR 7−→ Light-weight robot

VS 7−→ Visual Servoing

PBVS 7−→ Position-based Visual Servoing

IBVS 7−→ Image-based Visual Servoing

HVS 7−→ Hybrid Visual Servoing

5

Notations 6

Sets

N 7−→ The set of nonnegative integers

R 7−→ The set of real numbers

C 7−→ The set of complex numbers

En 7−→ The n-dimensional Euclidean space

Rn 7−→ The n-dimensional real linear space

Sn 7−→ The unit n-sphere

E 7−→ The essential space

TpS 7−→ Tangent space of S at p

SO(n) 7−→ Special orthogonal group in Rn

so(n) 7−→ Lie algebra (tangent space at the identity) of group SO(n)

SE(n) 7−→ Special Euclidean group in Rn

se(n) 7−→ Lie algebra (tangent space at the identity) of group SE(n)

Q 7−→ Configuration space of a manipulator locally diffeomorphic

to Rn

Vector space operations

〈u, v〉 , u, v ∈ Rn 7−→ Inner (scalar) product of vectors u and v

[u]× , u ∈ R3 7−→ The 3× 3 skew-symmetric matrix associated to vector u

u× v, u, v ∈ R3 7−→ Cross product of vectors u and v: u× v = [u]× v

∇qH(q) 7−→ Gradient of a scalar function H(q) at q

u ∼ v, u, v ∈ Rn 7−→ Equivalence up to a scalar factor

AT ∈ Rm×n 7−→ Transpose of a matrix A ∈ Rn×m

A−1 ∈ Rn×n 7−→ Inverse of a square nonsingular matrix A ∈ Rn×n

A† ∈ Rm×n 7−→ Moore Penrose pseudoinverse of a matrix A ∈ Rn×m

σ(A) 7−→ Smallest singular value of a matrix A

A Q 0 7−→ (semi-)positive/negative definiteness of matrix A

detA ∈ Rn×n 7−→ Determinant of a square matrix A ∈ Rn×n

rankA 7−→ Rank of a matrix A

kerA 7−→ Null space of a matrix A

ImA 7−→ Range space of a matrix A

diag a, a ∈ Rn 7−→ Square diagonal n× n matrix having the components of a on

the main diagonal

‖u‖ 7−→ The standard vector 2-norm
√
〈u, u〉

‖A‖ 7−→ The standard matrix 2-norm max‖u‖=1 ‖Au‖

7 Notations

Robotics

q ∈ Q 7−→ Configuration vector of a manipulator

h(q) = 0 7−→ Scalar holonomic constraint

aTi (q)q̇ = 0 7−→ Scalar nonholonomic constraint

AT (q) ∈ Rk×n 7−→ Matrix having vectors aTi , i = 1 . . . k, as rows

N(q) ∈ Rn×(n−k) 7−→ Matrix spanning the null space of AT (q)

T (q, q̇) 7−→ Kinetic energy of a manipulator

U(q) 7−→ Potential energy of a manipulator

B(q) ∈ Rn×n 7−→ The n × n symmetric and positive definite inertia matrix of

the manipulator

n(q, q̇) ∈ Rn 7−→ Vector of Coriolis and centrifugal terms

λ ∈ Rn 7−→ Vector of Lagrange multipliers

τ ∈ Rm 7−→ Vector of external forces/torque performing work on q

v ∈ Rn−k 7−→ Pseudo-velocity vector

a ∈ Rn−k 7−→ Pseudo-acceleration vector

qp ∈ Rnp 7−→ Platform configuration variables

qm ∈ Rnm 7−→ Manipulator configuration variables

up ∈ Rnp−k 7−→ Platform pseudo-velocity inputs

um ∈ Rnm 7−→ Manipulator velocity inputs

u ∈ Rs×(nm+np−k)) 7−→ Vector of velocity input

G(qp) ∈ Rnp×(np−k) 7−→ Platform kinematic model

r ∈ Rs 7−→ Task variables

Jp(q) ∈ Rs×np 7−→ Platform task Jacobian

Jm(q) ∈ Rs×nm 7−→ Manipulator task Jacobian

J(q) ∈ Rs×(nm+np−k)) 7−→ Robot task Jacobian

H(q) 7−→ Scalar optimization criterion

3D vision

FO ∈ SE(3) 7−→ World reference frame

FC ∈ SE(3) 7−→ Camera reference frame
OTOC ∈ R3 7−→ Translation vector from the origin of FO to the origin of FC

expressed in FO
ROC ∈ SO(3) 7−→ Rotation matrix representing the orientation of FC w.r.t. FO
gOC ∈ SE(3) 7−→ Rigid displacement from FO to FC
OVOC ∈ se(3) 7−→ Velocity twist of FC w.r.t. FO expressed in FO
vC ∈ R3 7−→ Linear velocity of FC w.r.t. FO expressed in FC (camera

linear velocity)

Notations 8

ωC ∈ R3 7−→ Angular velocity of FC w.r.t. FO expressed in FC (camera

angular velocity)

p 7−→ Image of a 3D point P ∈ E3

λ 7−→ Distance of the image plane from the camera optical center

(focal length)

Π0 ∈ R3×4 7−→ Standard projection matrix

KC ∈ R3×3 7−→ Camera calibration matrix

E ∈ E 7−→ Essential matrix

π 7−→ Target plane in the scene

n ∈ S2 7−→ Unit vector normal to the target plane

d 7−→ Distance of the target plane from FC
H ∈ R3×3 7−→ Homography matrix

Visual servoing

m(t) 7−→ Vector of image quantities

χ(t) 7−→ Vector of 3D quantities

r ∈ Rs 7−→ Feature vector

Jr ∈ Rs×6 7−→ Interaction matrix of r

FCd ∈ SE(3) 7−→ Camera frame at the desired pose

Jp ∈ R2×6 7−→ Interaction matrix of a feature point p

f ∈ R2k 7−→ Vector of k feature points pi

Jf ∈ R2k×6 7−→ Interaction matrix of f

mij 7−→ Image moment of order i + j

µij 7−→ Centered image moment of order i + j

nij 7−→ Normalized centered moment of order i + j

a 7−→ Area of an image region

(xg, yg) 7−→ Barycenter of an image region

α 7−→ Main orientation of an image region

M 7−→ Set of unrealizable image motions

Jimg 7−→ Image Jacobian

JM 7−→ Robot geometric Jacobian relating velocity inputs u to the

pair (vC , ωC)

Nonlinear observation

xm ∈ Rn 7−→ Vector of measurable quantities

xu ∈ Rl 7−→ Vector of unmeasurable quantities

9 Notations

ξ ∈ Rn 7−→ Error vector xm − x̂m
z ∈ Rl 7−→ Error vector xu − x̂u
e ∈ Rn+l 7−→ Total error vector e = [ξT zT]T

Ω(t) ∈ Rl×n 7−→ Persistency of excitation matrix

A(t) ∈ R(n+l)×(n+l) 7−→ State matrix of the error dynamics

g(e, t) ∈ Rn+l 7−→ Perturbation term of the error dynamics

Introduction

Empowering robots with the ability to see makes it possible to realize advanced

tasks like grasping, assembling, exploring, and, more in general, to actively interact with

the surrounding environment. In some sense, eyesight can actually shift robot behavior

towards higher levels of complexity, thus contributing to fill the gap between machines and

human beings. Such a substantial improvement, however, comes at a price: vision provides

rich but unstructured information, and the extraction of the relevant data hardly ever results

in a trivial task. As an order of magnitude of the difficulties behind scene interpretation, it

is worth noting that about half of the primate cerebral cortex is devoted to processing visual

information [Felleman & Essen 1991]. Hence, it should not be surprising that making a robot

see, i.e., soundly interpret a 3D scene, proves to be a major issue in many practical situations.

In addition, once the relevant information is available, the problem of exploiting it so as to

reach a location, or grasp an item, still remains. Indeed, cameras (and human eyes) perform

a nonlinear and non-injective projection from 3D world objects to 2D image quantities. The

‘missing dimension’ does not allow to instantaneously invert this mapping and to recover full

knowledge of the original 3D scene. As a consequence, two objects with the same shape, but

different size and depth, may project onto the very same 2D image on a camera/eye system —

an effect known as scale ambiguity [Faugeras 1993].

Usually, living beings overcome this problem by exploiting both stereovision, and the context

where images are taken thanks to the experience ripened from daily life. The first solution allows

to recover depth by comparing two views (from the two eyes) of the same scene, and works well

in a close-range setting. More generally, the same principle can be extended to a stream

of images taken from a moving viewpoint/target, so that, by exploiting the two dimensional

image motion, one can infer information about the 3D structure of the scene as well as its

motion relative to the viewer. This possibility, for instance, endows predators with the ability

of localizing a moving prey even in presence of big occlusions, cluttered environments, or poor

lighting conditions. Besides such ‘low-level’ strategies, however, the context still plays a central

role in scene interpretation. Consider two objects of interest, say an apple and a car. Humans

11

Introduction 12

are able to (i) recognize them as belonging to different classes, and, by relying on internal

geometric models built upon prior experience, to (ii) conjecture in advance the approximate

size of apples and cars, and to infer their pose regardless of projective ambiguities.

Unfortunately, such an understanding of the ‘external world’ is still out of reach for artificial

machines. However, the significant improvement experienced over the last decades in the vision

hardware is encouraging. Nowadays, commercial cameras can acquire images with a resolution

close enough to the one of human eyes at high frame rates (about 30 [Hz]). Furthermore,

the ever-growing computational power of standard PCs allows to process the image stream

in real-time, and to implement sophisticated algorithms for scene interpretation. Therefore,

to some extent, reasonable solutions are at hand, though typically tailored to the specific

applications. It is then possible to consider the problem in a more general perspective, i.e., how

an artificial machine (a robot) can effectively take advantage of the available (structured) visual

information in order to fulfill a given task, such as positioning itself w.r.t. a target object, or

grasping items on a table.

In this respect, this dissertation proposes a general framework for exploiting robotic systems

equipped with cameras, with the emphasis placed on Control Theory: we assume that the

problem of scene interpretation is solved separately, and discuss the algorithms needed to control

the motion of a robot by means of visual information. The fundamental idea is to model cameras

as sensors yielding a nonlinear output function of 3D states subjected to Euclidean rigid body

dynamics, so that visual pose control reduces to an output regulation problem. Taking a parallel

with standard robotic nomenclature, image quantities can be regarded as task variables, and

regulation of their value becomes a task realization problem. A natural consequence of this

conceptual step is the possibility to adopt any existing task realization algorithm to fulfill a

visual task, giving rise to the so-called Visual Servoing paradigm, upon which the methods

proposed in this Thesis are based. In particular, we address visual pose control from two sides.

First, the proposed ‘robotic task’ interpretation requires suitable task-oriented models for

robot manipulators that can act as building blocks for any subsequent visual feedback law. To

this end, we develop a general methodology for task-oriented modeling and control of robotic

systems, with a particular attention to the cases of fixed-base manipulators and nonholonomic

mobile manipulators. Indeed, the latter class of robots is particularly suited for visual tasks such

as navigation/exploration or pick and place operations, thanks to its extended (∼ unlimited)

workspace capabilities. Special attention is also placed on the exploitation of (possible)

redundancy w.r.t. the given task in terms of both execution performance and satisfaction of

secondary constraints.

Subsequently, we study how this general framework for task modeling of manipulators can

be tailored to the special case of visual tasks. We analyze the merging between cameras,

seen as nonlinear output functions, and classical task realization schemes, by pointing out the

13 Introduction

relevant peculiarities of their coupling, and the possible benefits of a suitable exploitation of

redundancy. Considerable effort is also devoted to developing tools for the online estimation of

unmeasurable 3D quantities, with the aim of improving the stability and overall performance of

Visual Servoing schemes. Indeed, because of the aforementioned projective ambiguities, a direct

measurement of, e.g., depth or other related 3D quantities is not possible by processing just one

image at a time, unless special hypotheses on the scene are assumed. In this respect, we propose

a set of techniques borrowed from the nonlinear observation theory to estimate at runtime the

missing 3D information, so as to make it available to any Visual Servoing feedback law.

(a) Hovering over the parts. (b) Picking the selected part.

(c) Hovering over the plate. (d) Inserting the part.

Figure 1: Screenshots of the industrial application developed during this Thesis at the Institute

of Robotics and Mechatronics of the German Aerospace Center (DLR). The 3-rd generation

DLR light-weight robot, equipped with an onboard camera, must locate complex planar parts

(Fig. (a)), pick them (Fig. (b)), locate the corresponding hole on a movable plate (Fig. (c)),

and insert them (Fig. (d)). Motion during the approaching phases to parts/holes is governed

by Visual Servoing feedback laws.

Finally, we present a thorough experimental campaign, run on fixed and mobile manipulators

equipped with cameras, whose goal is to validate both the theoretical claims and simulation

results given throughout the Thesis. These results are then further exploited within a potential

industrial application involving a robot manipulator committed with the task of looking for

http://www.dlr.de/rm/en/
http://www.dlr.de/rm/en/
http://www.dlr.de/rm-neu/en/desktopdefault.aspx/tabid-3803/6175_read-8961/
http://www.dlr.de/rm-neu/en/desktopdefault.aspx/tabid-3803/6175_read-8961/

Introduction 14

given parts on a table, picking them, and assembling them inside the corresponding holes on a

target movable plate (Figs. 1(a–d)). In this context, robot pose control during the approaching

phases to parts/holes is realized via Visual Servoing techniques. This choice, indeed, guarantees

the needed robustness and reactivity for a sound task fulfillment in realistic conditions, such

as, for instance, possible displacements of parts/plate during the execution of the task.

Organization of the Thesis

This Thesis is composed of three main parts according to the conceptual subdivision mentioned

before, i.e., (i) modeling of fixed/mobile manipulators, (ii) development of theoretical tools for

robot visual control, and (iii) discussion of experimental results — Fig. 2 shows a logical scheme.

Within each part, Chapters represent self-consistent modules with their own introductive

sections and overviews. Any dependency among units is explicitly reported throughout the

text to the best of the author’s possibilities.

Part I

Part II

Part III

Ch. 3:

3D Vision

Ch. 4:

Visual Servoing

Ch. 5:

3D Estimation

Ch. 6:

Experimental validation

App. A:

Nonholonomy

Ch. 2:

Kinematic Control

Ch. 1:

Kinematic modeling

App. B:

Pattern Recognition

Ch. 7:

Application

Figure 2: Logical scheme of parts and Chapters of the Thesis.

15 Introduction

Outline of part I

In the first part, a general framework for task-oriented modeling of robot manipulators is

proposed.

Chapter 1 introduces the so-called kinematic modeling approach, which consists in separating,

from a control point of view, the kinematic properties of a manipulator from its dynamical

behavior. As a result, one can solve motion control of a manipulator directly at the kinematic

(first-order) level by assuming velocities as actual inputs, while a lower-level controller is in

charge of realizing the desired velocity profiles by means of a suitable torque-level feedback.

By exploiting this separation, it is then possible to obtain a task-oriented kinematic model

for any given task that can be expressed as a function of the state of the manipulator. This

methodology, originally proposed for standard fixed-base manipulators, is here extended to

also cover the case of nonholonomic mobile manipulators. The key idea is to implicitly take

into account the nonholonomic constraints due to the presence of wheels into the resulting

kinematic model, so that a formulation formally equivalent to the fixed-base case can be

obtained. For the interested reader, Appendix A further delves into the theoretical background

of nonholonomy.

Chapter 2 builds upon the proposed task-oriented kinematic modeling to illustrate several

motion generation and redundancy resolution techniques proper to the kinematic control

approach, and at the core of any subsequent visual feedback design. The formulation is

intentionally kept at the most general level, but any relevant discrepancy between fixed-base

and nonholonomic cases is thoroughly discussed. The methods are both presented from a

theoretical point of view, and assessed by simulations.

Part of this material has been published as author’s original work in [De Luca et al. 2006,

2007a].

Outline of part II

Part II takes the reader to the heart of the Thesis, i.e., the development of suitable tools for

visual control of robot manipulators.

Chapter 3 consists in an introductory step where basic notions of rigid body kinematics and

geometry of 3D vision are recalled in a compact way. The aim is to provide the theoretical

background needed in the following Chapters.

Introduction 16

Chapter 4 introduces the Visual Servoing paradigm upon which all the proposed visual

feedback laws are based. Visual Servoing is first presented through an overview of both its

historical perspective and current state of the art. The three main existing approaches, namely

Position-based, Image-based, and Hybrid, are illustrated and compared in terms of stability,

final achievable accuracy and overall performance. A special emphasis is set on the Image-based

case because of its easiness of implementation and robustness w.r.t. uncertainties/calibration

errors. Then, the merging of Visual Servoing schemes within the framework of task-oriented

modeling proposed in the first Chapters is considered. Again, the special classes of fixed-base

and nonholonomic mobile manipulators are explicitly addressed, and the peculiarities arising

from the coupling of Visual Servoing/task-oriented modeling are thoroughly analyzed. In

the last sections, the proposed theoretical framework is validated through extensive simulations.

Chapter 5 tackles the problem of 3D structure identification from motion. As explained

before, the processing of single images does not allow to recover certain 3D information

lost during the perspective projection mapping. However, some of these quantities are

required by Visual Servoing schemes and must, then, be approximated/recovered in actual

implementations. To this end, the Chapter proposes an estimation framework based on the

theory of nonlinear observation, and in particular built upon the persistency of excitation

Lemma. The outcome of this analysis is a set of tools conceived for an online converging

estimation of the unmeasurable 3D data needed by Visual Servoing algorithms. As a byproduct,

the same estimation methodology is also tailored to the online observation of the camera focal

length. Numerical simulations are finally discussed in order to evaluate the performance of the

estimation tools presented in the Chapter.

The ideas and methods presented in these Chapters have been published as author’s original

work in [De Luca et al. 2007a,b; Robuffo Giordano et al. 2008].

Outline of part III

The last part of the Thesis is devoted to the experimental validation of the theoretical tools

and simulation results presented throughout the previous Chapters.

Chapter 6 provides an extensive experimental campaign addressing: (i) the merging of

task-oriented modeling and Visual Servoing schemes, (ii) the exploitation of redundancy to

improve the overall performance of task execution as well as the satisfaction of secondary

constraints, and (iii) the benefits, in terms of stability, of plugging the proposed 3D observation

tools into a Visual Servoing loop. The experiments are run on nonholonomic mobile robots

equipped with onboard actuated cameras, so that the overall design falls into the class of

17 Introduction

nonholonomic mobile manipulators.

Chapter 7 illustrates a potential industrial application which takes advantage of the methods

developed in this Thesis. A pick-and-assemble sequence of operations, involving small

parts with complex geometry, is executed by the 3-rd generation DLR light-weight robot,

a fixed-base manipulator equipped with a gripper and a camera attached to it. The robot

must autonomously locate the given parts on a table, pick them up, locate the corresponding

hole on a movable table, and insert them. In order to achieve the needed robustness w.r.t.

disturbances, and reactivity w.r.t. intentional displacements of the target items, motion of the

robot is governed by Visual Servoing laws when approaching parts/holes. The experimental

results reported at the end of the Chapter show the effectiveness of the adopted approach

in terms of motion performance and reliability over extended operation. Additional details

are also given in Appendix B, where the algorithm for pattern classification chosen for this

application is illustrated.

The experimental results presented in these Chapters have been submitted as author’s original

work in [De Luca et al. 2008a,b; Robuffo Giordano et al. 2008].

http://www.dlr.de/rm-neu/en/desktopdefault.aspx/tabid-3803/6175_read-8961/

Part I

Modeling of Robot Manipulators

19

1
Kinematic Modeling of Robot Manipulators

In this Chapter, we consider the derivation of suitable kinematic models for fixed-base

manipulators (FBMs) and nonholonomic mobile manipulators (NMMs). The analysis is

carried out from a general point of view with the aim of obtaining a common background of

theoretical tools for both classes of robots, so that any subsequent development can be tailored

to the specific case with minimum effort. The proposed methodology is at the core of all the

kinematic inversion, redundancy resolution, and kinematic control techniques presented and

discussed in the following Chapters.

The chapter is structured as follows: first, an overview of kinematic modeling for FBMs

and NMMs is given in Sect. 1.1. Next, Sect. 1.2 details the steps needed to obtain the

separation between kinematic and dynamic levels entailed by kinematic control approaches.

Finally, Sect. 1.3 introduces the general methodology for task-oriented kinematic model design

which is used throughout the rest of this work.

21

Chapter 1. Kinematic Modeling of Robot Manipulators 22

1.1 Introduction

1.1.1 Behind kinematic modeling

A robot manipulator, either with fixed or mobile base, consists in a mechanical structure

with actuated degrees of freedom. This implies that, from the control point of view, the

available manipulator inputs (actuator forces/torques) always act on the system behavior

at a second-order (acceleration) level. The state-space model representing the differential

link between actuator efforts and system motion is given by the dynamics of a robot

manipulator [Sciavicco & Siciliano 2000; Murray et al. 1994]. Therefore, whatever the task

assigned to the robot, any control algorithm must eventually cope with the differential structure

entailed by the robot dynamics, and yield a suitable force/torque signal to be sent to the joint

actuators. In many cases, however, it is possible to decompose the control design in two distinct

phases, one dealing with the manipulator (first-order) kinematics, and the other accounting for

the remaining dynamical issues, so that the overall design is considerably facilitated. The

core idea is that, for a fully actuated mechanical system, any differentiable velocity profile can

be realized by an appropriate force/torque controller. It is, therefore, possible to proceed as

explained: first, system velocities are assumed as inputs and a first-order control law is designed

on the basis of a suitable differential kinematic model, i.e., by neglecting the manipulator

dynamic properties. Then, realization of these reference velocities is obtained by means of

a separate controller in charge of computing the needed dynamic level inputs. Under the

assumption that the momentum of the manipulator is limited (i.e., its velocity and/or inertia

are low), this choice will typically result in reasonable actuator demands.

This design approach, commonly known as kinematic control, motivates the study of suitable

kinematic models that can fully represent the key first-order (velocity) properties of the robot.

When considering a FBM, this derivation has a trivial solution. Indeed, being fixed-base

manipulators kinematically unconstrained systems, any arbitrary joint velocity can be imposed

at each configuration, and the kinematic model reduces to a single integrator for each actuated

joint. In the mobile manipulator case, on the other hand, things can get more complicated

because of the possible motion restrictions (nonholonomy) that can affect the mobile platform

carrying the manipulator arm. Therefore, special care is required when deriving kinematic

models for these systems, and many solutions have been proposed to deal with different types

of mobile platforms. The next section gives an overview of the existing literature with a special

attention to the NMM case.

1.1.2 Mobile manipulators

A mobile manipulator consists of an articulated arm mounted on a mobile platform. Since this

mechanical arrangement combines the dexterity of the former with the workspace extension

23 1.1 Introduction

of the latter, it is clearly appealing for many applications, and in particular for service

robotics [Arai 1996; Nenchev et al. 1992]. In general, the platform may have different modes of

locomotion, e.g., wheeled bases, walking robots, free-flying space robots. Whenever the platform

kinematics falls into the class of holonomic systems, like in [Seraji 1993a,b, 1998; Khatib 1991],

kinematic modeling and control of the whole robot is conceptually equivalent to the FBM case:

the platform actuated dofs act as additional manipulator joints, and standard techniques can be

directly applied. In the NMM case, on the other hand, because of the platform nonholonomic

nature, some care is required when dealing with modeling and control issues, and most existing

techniques need a suitable and nontrivial extension.

A large class of wheeled vehicles are subject to nonholonomic constraints arising from

the rolling without slipping of the wheels on the ground [Campion et al. 1996]. These

constraints restrict the admissible generalized velocities and thus the instantaneous mobility

of the platform, but do not affect the global accessibility of its configuration space, which is still

guaranteed through suitable maneuvering with a reduced set of independent velocity commands

(the so-called pseudovelocities). Several methods have been proposed in the literature for

planning and controlling the motion of these robotic systems, see, e.g., [Li & Canny 1993;

Laumond 1998]. An NMM is obtained when the platform providing mobility to the manipulator

base is a nonholonomic vehicle. The resulting structure clearly inherits the constraint on

the admissible platform velocities – instantaneous mobility in the configuration space is still

limited. However, the number of degrees of freedom (dofs) is also increased, typically yielding

kinematic redundancy with respect to standard tasks, such as end-effector placement. This

means that in general the instantaneous mobility is not constrained at the task level, in

spite of the nonholonomic nature of the system. Moreover, the extra dofs can be used to

optimize performance criteria and/or to perform auxiliary operations in addition to the primary

task [Nakamura 1991].

Kinematic modeling and motion generation for NMMs has been addressed in the literature

following two basic approaches. Some authors add the nonholonomic constraints in the

description of the differential kinematics [Pin et al. 1996; Seraji 1998]. A more efficient

formulation, adopted also in this work, explicitly entails the differential motions that are

feasible w.r.t. the nonholonomic constraints [Gardner & Velinsky 2000; Fourquet et al. 2003].

The problem is usually tackled at a first-order kinematic level (i.e., with (pseudo-)velocities as

command inputs) since planning the motion of NMMs is essentially a kinematic problem, but

inclusion of dynamic aspects has also been considered [Yamamoto & Yun 1999]. When an NMM

is redundant for a given task (this concept requires some caution, see Sect. 2.2), redundancy

can be exploited by extending schemes already available for standard manipulators, e.g., task

space augmentation [Seraji 1998; Lamiraux et al. 2002] or pseudoinversion of the Jacobian and

use of its null-space motion [Bayle et al. 2001]. Chpater 2 illustrates in detail the exploitation

Chapter 1. Kinematic Modeling of Robot Manipulators 24

of such techniques for FBMs and NMMs.

1.2 From dynamics to kinematics

Let q = [q1 . . . qn]T ∈ Q be the vector of generalized coordinates representing the configuration

of a mechanical system, where the configuration space Q is assumed to be a n-dimensional

smooth manifold locally diffeomorphic to Rn. As an example, the configuration space of a

manipulator made of n rotating joints is the n torus Tn = S1 × · · · × S1︸ ︷︷ ︸
n

, with S1 being the unit

circle. Furthermore, let TqQ be the tangent space of Q at q. The generalized velocity of a

mechanical system at a generic point of a trajectory q(t) is a vector q̇ = [q̇1 . . . q̇n]T ∈ TqQ.

A mechanical system may be subjected to k1 scalar geometric constraints hi(q) = 0, i =

1 . . . k1, that define a suitable (n − k1)-dimensional submanifold of Q where the trajectories

of q(t) are confined. This kind of constraints is called ‘holonomic’. In addition, a set of k2

Pfaffian1 first-order constraints (linear in q̇ and time-invariant)

aTi (q)q̇ = 0, i = 1 . . . k2, (1.1)

may also exist. If constraints (1.1) are not integrable, i.e., cannot be reduced to

equivalent holonomic constraints hi(q) such that ∂hi(q)/∂q = aTi (q), they are denoted as

‘nonholonomic’ [Murray et al. 1994]. In contrast to the former case, these constraints do not

affect the possible motion of q(t), but restrict the instantaneous velocity of the system to a

suitable (n−k2)-dimensional subspace of TqQ. As a consequence, the number of system inputs

is also reduced by the same amount k2. Nonholonomic constraints arise in a variety of situations,

like floating systems in which the angular momentum is conserved, or bodies that are in rolling

contact without slipping. The latter is the case of many wheeled mobile robotic systems like,

e.g., the NMMs considered in this work. A more detailed treatment of nonholonomy, including

tools to determine when constrains (1.1) are integrable, is given in Appendix A.

Let L(q, q̇) = T (q, q̇)−U(q) be the Lagrangian of the considered mechanical system, with

T (q, q̇) and U(q) being the scalar kinetic and potential energy functions, respectively. For a

robot manipulator, the Lagrangian takes the specific form

L(q, q̇) =
1
2
q̇TB(q)q̇− U(q), (1.2)

where B(q) is the positive definite n × n manipulator inertia matrix. Assume that a set of k

1In principle, a generic constraint aT
i (q, q̇, t) = 0 is possible, but in this work only the Pfaffian case is

considered.

25 1.2 From dynamics to kinematics

nonholonomic constraints of the form (1.1) exist, and collect them in the compact form

AT (q)q̇ =


aT1 (q)

...

aTk (q)

 q̇ = 0, A(q) ∈ Rn×k. (1.3)

The Euler-Lagrange equations of the constrained systems are

d
dt

(
∂L
∂q̇

)T
−

(
∂L
∂q

)T
= A(q)λ+ S(q)τ , (1.4)

where S(q) is a n × m, m = n − k, matrix mapping the m independent inputs τ into

forces/torques performing work on the generalized coordinates q, and λ ∈ Rk is the vector

of Lagrange multipliers associated to the k constraints in (1.3). By plugging (1.2) into (1.4)

and using (1.3), we obtain the dynamic model of the manipulator subject to nonholonomic

constraints
AT (q)q̇ = 0

B(q)q̈ + n(q, q̇) = A(q)λ+ S(q)τ
(1.5)

with

n(q, q̇) = Ḃ(q)q̇− 1
2

∂

∂q
(q̇TB(q)q̇) +

∂U(q)
∂q

representing the Coriolis, centrifugal and gravity terms.

Formulation (1.5) describes the system dynamics by explicitly incorporating the

nonholonomic constraints. For control design purposes, however, it is often convenient to

rewrite (1.5) in an equivalent reduced state-space form where constraints (1.3) are implicitly

included into the system dynamics. To this end, let N(q) be a n × m matrix spanning the

null-space of AT (q), i.e.,

AT (q)N(q) = 0. (1.6)

Since the k constraints (1.3) are assumed to be independent, N(q) has full rank m for every q.

It is, then, possible to rewrite the first row of (1.5) as

q̇=N(q)v, v ∈ Rm, (1.7)

i.e., in terms of the (feasible) system velocities q̇ that meet constraint (1.3). This set of n

first-order differential equations can be considered as the kinematic model of the manipulator,

and vector v plays the role of (pseudo-)velocity input. Note that, as expected, v has dimension

m < n. By multiplying the second row of (1.5) by NT (q), the Lagrange multipliers are

eliminated and a reduced set of m differential equations is obtained

NT (q)(B(q)q̈ + n(q, q̇)) = NT (q)S(q)τ . (1.8)

Chapter 1. Kinematic Modeling of Robot Manipulators 26

Equations (1.7) and (1.8) can be rearranged as

q̇ = N(q)v

M(q)v̇ + m(q, v) = NT (q)S(q)τ ,
(1.9)

with M(q) = NT (q)B(q)N(q) > 0, and m(q, v) = NT (q)B(q)Ṅ(q)v + NT (q)n(q, N(q)v).

System (1.9), of dimension n + m = 2n − k, is the reduced state-space dynamic model

of the constrained manipulator. Note that, if no constraints are present, AT (q) = 0,

N(q) = In, and the standard 2n state-space dynamic model of an unconstrained manipulator

is recovered. Moreover, the structure of (1.9) clearly exhibits the aforementioned separation

between kinematics and dynamics upon which the kinematic control approach is built. Indeed,

the first row of (1.9) (n first-order equations) is only representative of the manipulator kinematic

properties, including nonholonomy, while all the dynamical effects are shifted to the second row

(m second-order equations). Under the hypothesis that detNT (q)S(q) 6= 0, it is possible to

completely remove any dynamic parameter from (1.9) via the nonlinear state feedback law

τ = (NT (q)S(q))−1(M(q)a + m(q, v)), where a ∈ Rm is a vector of (pseudo-)accelerations.

This choice yields the equivalent system

q̇ = N(q)v

v̇ = a,
(1.10)

consisting of the first-order manipulator kinematic model coupled with a dynamic extension on

the (pseudo)-velocity inputs. Note that, for an unconstrained manipulator, this result would be

equivalent to what is obtained with the computed torque approach [Murray et al. 1994; Sciavicco

& Siciliano 2000]. Indeed, in the absence of nonholonomic constraints, (1.10) further simplifies

to a set of n double integrators q̈ = a as in that case.

Formulation (1.10) can be fully exploited for kinematic control purposes. Assume, for

instance, that a (differentiable) reference velocity command vd(t) is able to realize a given

task at the first-order kinematic level, i.e., by only considering the first row of (1.10).

Asymptotic tracking of vd(t) can be easily obtained by means of the acceleration command

a = v̇d+K(vd−v), K > 0, with convergence rate tuned by K. If K is big enough, any transient

error between v and vd can be neglected, so that, with an arbitrary degree of approximation,

v can be considered as the ‘actual’ control input of the system as required by the kinematic

control framework.

1.3 Task-oriented kinematic modeling

Consider a robot manipulator with configuration vector q ∈ Q subjected to k nonholonomic

constraints (1.3). From (1.10), the manipulator kinematic model takes the general expression

q̇ = N(q)u, (1.11)

27 1.3 Task-oriented kinematic modeling

where2 u ∈ Rm, N(q) ∈ Rn×m, and m = n − k. If k = 0, as in the FBM case, N(q) = In
and (1.11) trivially simplifies to

q̇ = u, (1.12)

i.e., any joint velocity can be specified at each arm configuration. In the NMM case, on the

other hand, k > 0, and a more specific expression for N(q) can be obtained by exploiting the

particular robotic structure considered. To this end, reorder vector q as q = [qp qm]T , where

qp ∈ Rnp and qm ∈ Rnm are the generalized coordinates of the platform and the manipulator,

respectively, and let u = [up um]T represent the (pseudo)-velocity inputs of both components.

Since only the platform is affected by the nonholonomic constraints, (1.3) can be rearranged as

AT (q)q̇ =


aT1p(qp) 0

...
...

aTkp(qp) 0


[

q̇p
q̇m

]
= 0,

so that the feasible NMM velocities result in

q̇ =

[
q̇p
q̇m

]
=

[
G(qp) 0

0 Inm

] [
up
um

]
= N(qp)

[
up
um

]
, (1.13)

where up ∈ Rp, p = np − k, um ∈ Rnm , and the np × p matrix G(qp) spans the null-space of

[a1p(qp) . . .akp(qp)]
T . Note again that, in this case, the number of velocity inputs p + nm =

n − k = m is less than the number of generalized coordinates n because of the presence of k

nonholonomic constraints on the platform kinematics.

Assume that the task is described in terms of a vector r of s scalar variables. Possible

choices for r include the position/orientation of the manipulator end-effector in a positioning

task, or the location of image features in a visual task. The task variables r are related to the

configuration variables q of the robot by the kinematic map

r = f(q), r ∈ Rs. (1.14)

By differentiating (1.14) w.r.t. time, and using (1.11), we get

ṙ =
∂f
∂q

q̇ = Jt(q)N(q)u = J(q)u. (1.15)

Equation (1.15) is the task-oriented kinematic model of the manipulator, relating the

instantaneous mobility of whole robot to the velocity of the task variables. The s×m matrix

J in (1.15) will be simply referred as the FBM/NMM task Jacobian for the given task also

if, strictly speaking, some elements of J may not be partial derivatives, due to the possible

2Here, symbol u is used in place of v to stress that (pseudo-)velocities are regarded as control inputs.

Chapter 1. Kinematic Modeling of Robot Manipulators 28

nonholonomic constraint entailed by (1.11). By plugging (1.12) or (1.13) in (1.15), it follows

that, for a FBM, it is J(q) = Jt(q), while, for an NMM, (1.15) becomes

ṙ =
∂f
∂qp

G(qp)up +
∂f

∂qm
um = Jp(q)G(qp)up + Jm(q)um. (1.16)

Note that, with this formulation all classical problems addressed for standard redundant

manipulators (study of singularities and their avoidance, augmentation of tasks and their

priority [Chiacchio et al. 1991], optimization of performance criteria [Nakamura 1991], cyclicity

of configuration motion [Shamir & Yomdin 1988; De Luca et al. 1992], etc.) can be directly

reformulated also for NMMs in terms of the Jacobian J in (1.15) with N(q) chosen as in (1.13).

For example, a configuration q̄ is singular iff rank J(q̄) < s, and so on. The following Chapter

illustrates how kinematic inversion, redundancy resolution and kinematic control techniques

can be adapted to cope with the framework proposed in the previous sections.

2
Kinematic Control of Robot Manipulators

There are two conceptually different problems that can be formulated on the

basis of the task differential kinematics (1.15). The first is kinematic inversion, i.e.,

generating velocity commands that realize an assigned task trajectory, provided that the

initial task error is zero. If the manipulator is kinematically redundant with respect to a given

task, a redundancy resolution problem has to be addressed. Many solutions have been proposed

in the literature to deal with redundancy resolution issues for FBMs, see [Nakamura 1991] for

an overview. More recently, suitable extensions to to the NMM case have also been considered

like task space augmentation [Seraji 1998; Lamiraux et al. 2002], or local optimization of cost

functions [Bayle et al. 2001; De Luca et al. 2006, 2007a]. The second use of the task differential

kinematics is to devise kinematic control schemes. The velocity commands, actually considered

as control inputs, are designed so as to achieve trajectory tracking or set-point regulation at

the task level by combining a feedforward and a feedback action. The presence of the latter

allows to recover nonzero initial task errors as well as counteract model perturbations, including

numerical drifts [Chiacchio et al. 1991].

The rest of the Chapter is organized as follows: Sect. 2.1 and Sect. 2.2 illustrate task

realization techniques for the non-redundant and redundant case, respectively, and Sect. 2.4

presents a collection of simulation results for two case studies.

29

Chapter 2. Kinematic Control of Robot Manipulators 30

2.1 The non-redundant case

Consider first the case m = s, in which the manipulator Jacobian is square. Outside

singularities, we can realize any task velocity by setting

u = J−1(q)ṙ. (2.1)

The problem reduces then to choosing ṙ in such a way that the control problem is solved.

For a tracking problem, one simply sets in (2.1)

ṙ = ṙd + K(rd − r) = ṙd + Ke, (2.2)

where K > 0 is a (diagonal) gain matrix and e ∈ Rs is the task error. For a regulation problem,

where ṙd = 0, we let

ṙ = Ke. (2.3)

In both cases, the closed-loop system is described by

ė = −Ke, (2.4)

so that exponential convergence to zero is achieved for each component of the task error.

For regulation tasks it is also possible to use, in place of (2.1) and (2.3), the computationally

lighter expression

u = JT (q)Ke, (2.5)

which still guarantees asymptotic (but no longer exponential) convergence of the task error to

zero [Sciavicco & Siciliano 2000].

2.2 The redundant case

Assume now that m > s, so that the manipulator Jacobian matrix has more columns than

rows. Since the number of velocity commands (i.e., of dofs) exceeds the dimension of the task,

we say that the manipulator is kinematically redundant with respect to the given task. Note

that, one may also define a static redundancy property, which occurs when the number of

generalized coordinates of the manipulator exceeds the dimension of the task (n > s). The two

redundancy concepts collapse for FBMs since, in this case, n = m, but the same equivalence

does not hold for NMMs. Indeed, because of the nonholonomy of these systems, kinematic

redundancy implies static redundancy but the converse is not true. Static redundancy in NMMs

is relevant, e.g., when searching for collision-free configurations in motion planning problems

with obstacles [Oriolo & Mongillo 2005]. In this work, however, only kinematic redundancy will

be considered for both FBMs and NMMs.

31 2.2 The redundant case

In the following, several classical redundancy resolution methods are presented and

discussed, assuming a manipulator and task kinematic model of the form (1.11) and (1.15),

respectively.

2.2.1 Extended Jacobian (EJ)

Assume that an additional constraint y = h(q) of dimension k = m− s is attached to (1.14) in

order to specify some desirable aspect of the solution. Differentiation yields[
ṙ

ẏ

]
=

 Jf (q)

Jh(q)

N(q)

[
up
um

]
= Je(q)u,

being Je the square m×m extended Jacobian of the NMM. Whenever Je is nonsingular, motion

commands can be generated as

u = J−1
e (q)

[
ṙ

ẏ

]
.

In choosing h, special attention should be paid to algorithmic singularities, i.e., configurations

where Je is singular [Nakamura 1991] in spite of the fact that rankJfN = s and the last k rows

of Je are linearly independent. When an NMM is considered, another version of the EJ method

has been proposed in [Seraji 1998]. Since the solution realizing the given (square) extended

task is unique, the two formulations are equivalent.

2.2.2 Projected Gradient (PG)

In the classical Projected Gradient (PG) method, all solutions of (1.15) are expressed as

u = J†(q)ṙ + (Im − J†(q)J(q))u0 (2.6)

where J† is the unique pseudoinverse of the manipulator Jacobian, Im − J†J is the orthogonal

(and symmetric) projection operator into the null-space of J, kerJ, and u0 ∈ Rm is an

arbitrary vector usually chosen so as to optimize a given criterion H(q). In general, J†

can be computed from the Singular Value Decomposition (SVD) of J. If rank (J) = s, it

is J† = JT (JJT)−1 [Maciejewski & Klein 1989].

In (2.6), we shall use again (2.2) or, respectively, (2.3), depending on the tracking or

regulation nature of the problem. The closed-loop system will be described as before by the

task error dynamics ė = −Ke, with the additional presence of an internal dynamics which is

unobservable at the output level, i.e., in the task space.

For FBMs, q̇ and u coincide, and one can directly set u0 = ±α∇qH(q) in (2.6), where

α > 0 is a stepsize in the direction of the gradient of H. A suitable value α > 0 can be found

by line search techniques [Luenberger 1984]. Care is, however, required when devising a similar

Chapter 2. Kinematic Control of Robot Manipulators 32

scheme in the NMM case, because the available command vector u has a lower dimension than

q̇. By differentiating H(q) w.r.t. time and using (1.13)–(1.15), we have

Ḣ =
∂H(q)

∂q
q̇ = ∇T

qH(q)N(qp)u. (2.7)

Therefore, the choice of u0 that locally realizes the best improvement of H(q) is

uH(q) = ±αNT (qp)∇qH(q). (2.8)

Motion commands are then generated by setting u0 = uH(q) in (2.6). The corresponding

generalized velocity of the platform

q̇p,H = ±αG(qp)GT (qp)∇qpH(q)

represents a projection of ±α∇qpH onto the subspace of generalized velocities that are

admissible with respect to the nonholonomic constraints.

2.2.3 Reduced Gradient (RG)

Both the PG and EJ resolution schemes require a large number of operations, either due

to the computation of J† or to the inversion of the extended Jacobian Je. An alternative

strategy is to perform optimization of the objective function (or satisfaction of a secondary

task) by directly working in the reduced (m − s)-dimensional space of velocity inputs that

satisfy the s-dimensional task (1.14). The Reduced Gradient method, originally introduced for

manipulators in [De Luca & Oriolo 1991], implements this idea.

Assume that the Jacobian matrix J(q) in (1.15) has full rank at the current configuration

q. Then, it is always possible to find a permutation matrix T such that

J(q)T =
[

Ja(q) Jb(q)
]
,

with a nonsingular s× s matrix Ja. This induces a reordering of the velocity input vector since

u = T

[
ua
ub

]
=

[
Ta Tb

] [
ua
ub

]
, (2.9)

where ua ∈ Rs and ub ∈ Rm−s.The differential kinematics (1.15) becomes accordingly (dropping

dependencies)

ṙ = Ju = JT

[
ua
ub

]
=

[
Ja Jb

] [
ua
ub

]
.

The task motion constraint is automatically satisfied by letting

ua = J−1
a (ṙ− Jbub) . (2.10)

33 2.2 The redundant case

The remaining command ub is chosen so as to locally optimize an objective function H(q) as

follows. Using (2.9) and (2.10) in (2.7) leads to

Ḣ(q) = ∇T
q (H)NT

[
ua
ub

]
= ∇T

q (H)NTaJ−1
a (ṙ− Jbub) +∇T

q (H)NTbub =

= ∇T
q (H)NTaJ−1

a ṙ +∇T
q (H)NT

[
−J−1

a Jb
Im−s

]
ub.

Therefore, the command vector ub that locally realizes the maximum improvement of the

objective function H is

ub = ±α
[
−(J−1

a Jb)T Im−s
]
TTNT∇qH (2.11)

By comparing (2.11) with (2.8), we note that ub is the reduction (up to a permutation of

components) of the velocity input uH to the subspace of commands that automatically satisfy

the task constraint.

When ṙ = 0 (self-motion) and the degree of kinematic redundancy of the manipulator is 1,

the RG and PG methods generate velocity commands in the same direction, although the

former method allows longer steps to be taken and results in a faster optimization [De Luca &

Oriolo 1991]. In any other case, the two methods generate different directions in the command

space, and thus in the manipulator configuration space. Note that, although the computational

load of the RG method is typically lower, it may still be necessary to change the permutation

matrix T = T(q) in (2.9) along the motion so as to extract a (different) nonsingular matrix

Ja(q).

In the special case of an NMM with nm = s and the onboard manipulator not in a singular

configuration, one can choose Ja = Jm and Jb = JpG so that (2.10) and (2.11) simplify to

um = J−1
m (ṙ− JpGup)

up = ±αGT
[
−(J−1

a Jb)T Inp
]
∇qH.

2.2.4 Task Priority (TP)

In the neighborhood of singular points of the task Jacobian, the use of the PG method (2.6)

may result in very high velocity commands which cannot be realized by the low-level

actuator controllers. One way to deal with this problem is to use the Task Priority (TP)

technique [Chiacchio et al. 1991]. The idea is to reorder the task vector r into µ subtasks

(r1, . . . , rµ), each of dimension si (i = 1, . . . , µ, with
∑

si = s), and to consider ri as a task

with higher priority than rj if i < j. This is associated to a task-oriented partition of the task

Chapter 2. Kinematic Control of Robot Manipulators 34

Jacobian in (1.15) in the form 
ṙ1

...

ṙµ

 =


J1(q)

...

Jµ(q)

u.

The TP method is formulated in such a way that, whenever J is rank deficient, the lowest

priority tasks are relaxed while correctly executing those with highest priority.

For illustration, consider a regulation problem in which the task r is partitioned in µ = 2

subtasks: [
ṙ1

ṙ2

]
=

[
J1(q)

J2(q)

]
u. (2.12)

By solving the first set of s1 equations, we get

u = J†1ṙ1 + (Im − J†1J1)u0 (2.13)

where ṙ1 = K1(r1d − r1) = K1e1, with K1 > 0. If rank J1 = s1 throughout the motion, (2.13)

ensures that the primary task variables r1 converge exponentially to their desired values. The

auxiliary command u0 can be chosen so as to minimize the weighted norm of the secondary

task error, i.e., the scalar function

H2(q) =
1
2
eT2 K2e2 =

1
2
(r2d − r2)TK2(r2d − r2), K2 > 0. (2.14)

The time derivative of (2.14) is

Ḣ2 = −eT2 K2ṙ2 = −eT2 K2J2u = −eT2 K2J2J
†
1K1e1 − eT2 K2J2(Im − J†1J1)u0.

By using the symmetry of Im − J†1J1, we conclude that the choice

u0 = (Im − J†1J1)JT2 K2e2 (2.15)

provides the maximum reduction of H2, subject to the satisfaction of the primary task. By

plugging (2.15) into (2.13), and using the idempotency of Im − J†1J1, we can write the TP

kinematic control law as

u = J†1K1e1 + (Im − J†1J1)JT2 K2e2. (2.16)

The generalization of (2.16) to tracking problems is straightforward but computationally more

cumbersome [Nakamura 1991]. Different options for interchanging transpose and pseudoinverse

of the involved Jacobians and the convergence properties of the associated schemes have been

considered in [Chiacchio et al. 1991].

35 2.2 The redundant case

2.2.5 Task Sequencing (TS)

For regulation problems, an alternative way to drive all the task variables to their set-points

is to follow a Task Sequencing (TS) approach. The idea is to process the µ subtasks one at

a time. The s1 subtask variables r1 are regulated first, then the s2 subtask variables r2 are

driven toward their desired value without changing r1, then the s3 subtask variables r3 are

brought to their desired value without changing r1 and r2, and so on. With this approach, an

‘artificial’ redundancy is introduced in the kinematic control process: in particular, the degree

of redundancy during the execution of the sequence will be p + nm − s1 in the first phase,

p+nm− (s1 +s2) in the second phase, and so on. In the last phase, the redundancy degree will

be back to its (possibly zero) original value p+nm−s ≥ 0. This method applies to manipulators

that are either redundant or non-redundant w.r.t. the task.

Consider for simplicity the case of µ = 2 subtasks, and assume p + nm = s = s1 + s2, i.e.,

the non-redundant case for the global task. Define the two-phase task sequence
ṙI = ṙ1 = K1e1, t ∈ [0, T1]

ṙII =

[
0

ṙ2

]
=

[
0

K2e2

]
, t ∈ [T1, T2],

where Ti (i = 1, 2) denotes the time of completion of task i, i.e., such that a suitable termination

condition is reached1. This leads to the kinematic control scheme uI = J†1K1e1 + (Im − J†1J1)u0, t ∈ [0, T1]

uII = (Im − J†1J1)JT2 K2e2, t ∈ [T1, T2],
(2.17)

where u0 can be chosen as in (2.8) for optimization purposes.

In this basic version, the first task variable r1 is no longer controlled during the second

phase, so that its value may drift, e.g., due to linearization errors (recall that we are using the

Jacobian matrix which is a mapping between tangent spaces). One way to counteract this effect

is to replace the second-phase control law in (2.17) with

uII = (Im − J†1J1)JT2 K2e2 + J†1K1e1, t ∈ [T1, T2],

i.e., by adding a feedback term aimed at rejecting perturbations on e1. This second phase of

the TS approach becomes then identical to the TP method (2.16), with the notable difference

that e1 is already very small as a result of the first phase.

The extension of the above formulas to the case µ > 2 and/or p+nm > s (redundant case) is

straightforward. It is also easy to prove that the TS strategy guarantees convergence of the task
1For instance, the termination condition ‖rid−ri(Ti)‖ < ε, for a given ε > 0, will result in an arbitrarily small

final error. Finite-time convergence to the set-point can be easily obtained by using a terminal controller [Zak

1989] to define each phase of the task sequence.

Chapter 2. Kinematic Control of Robot Manipulators 36

variables to their set-point (within an arbitrarily small tolerance), provided that the Jacobian

of stacked subtasks J̄i =
[
JT1 JT2 . . .JTi

]T has full rank during the i-th phase of the sequence.

The potential advantage of the TS kinematic control strategy over the classical approach

which tries to drive all task variables simultaneously to their set-point rests on the artificial

redundancy introduced in all but the last phase of the sequence. This can be used to optimize

performance indices, and in particular to stay away from singular configurations. It is worth

citing [Mansard & Chaumette 2007] where a different TS concept is proposed to deal with

visual servoing tasks. In that work, the authors develop a layered controller architecture able

to reactively build and execute a stack of subtasks part of a given main task. During the

motion, this stack is updated according to several criteria (interaction with the environment,

avoidance of joint limits, etc.), while an higher-level controller ensures global convergence of

the whole task by avoiding local minima or dead locks with a suitable path planning phase.

Our TS method can be seen as a simplified version of that work, with a time-based switching

criterium in place of the complex reactive-based strategy developed in [Mansard & Chaumette

2007].

2.3 Case studies

In this section two modeling examples of task-oriented kinematics for NMMs are presented.

FBMs are not explicitly considered here since there already exists a vast literature covering

their case. Moreover, the following derivation also shows how the combination of nonholonomic

platform/manipulator can often reduce the set of singular points that would affect the

manipulator taken alone. Some of the following developments are also preliminary to the

use of the RG method in Sect. 2.4.

2.3.1 Unicycle platform with 2R planar manipulator

Consider a 2R manipulator in the horizontal plane, with link lengths l1 and l2, mounted on a

two-wheel differentially driven mobile platform with unicycle kinematics, as shown in Fig. 2.1.

The base of the manipulator is placed along the main axis of the platform, at a distance d

from the wheels’ axis. The configuration vector of this NMM is q = [qTp qTm]T ∈ R5, with

qp = [x y θ]T ∈ R3 and qm = [q1 q2]T ∈ R2.

The task of positioning the NMM end-effector in the plane has dimension s = 2, so that the

degree of static redundancy is 3. The associated kinematic map is[
rx

ry

]
=

[
x + dcθ + l1cθq1 + l2cθq1q2

y + dsθ + l1sθq1 + l2sθq1q2

]
, (2.18)

where cijk and sijk stand for cos(i + j + k) and sin(i + j + k). The Jacobians Jp(q) and Jm(q)

37 2.3 Case studies

x

y

θ

X0

Y0

O

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxq1

q2

d

l1

l2

Figure 2.1: A planar NMM with a 2R polar manipulator (top view).

are

Jp =

[
1 0 −dsθ − l1sθq1 − l2sθq1q2

0 1 dcθ + l1cθq1 + l2cθq1q2

]

Jm =

[
−l1sθq1 − l2sθq1q2 −l2sθq1q2

l1cθq1 + l2cθq1q2 l2cθq1q2

]
.

As for the mobile platform, the unicycle kinematics is subjected to the single nonholonomic

constraint (k = 1)

aT1 (qp)q̇p = [− sin θ cos θ 0]q̇p = 0

so that the feasible platform velocities are

q̇p =


cos θ 0

sin θ 0

0 1


[

v

ω

]
= G(qp)up, (2.19)

with input up of dimension p = np − k = 2. Being um = [q̇1 q̇2]T ∈ R2, the degree of

kinematic redundancy is 2 for this motion task. The 2 × 4 Jacobian J(q) in the differential

kinematics (1.16) is

J(q) =

[
cθ −dsθ − l1sθq1 − l2sθq1q2 −l1sθq1 − l2sθq1q2 −l2sθq1q2

sθ dcθ + l1cθq1 + l2cθq1q2 l1cθq1 + l2cθq1q2 l2cθq1q2

]
. (2.20)

Note that, in order to obtain dimensionally homogeneous velocity inputs for the NMM (all

angular quantities), the unicycle commands up = [v ω]T may be replaced by the angular

velocities [φ̇R φ̇L]T of the right and left wheel of the platform. Since this is achieved by means of

a (constant) invertible matrix M, the analysis of singularities is unaffected. However, working

with homogeneous commands is convenient when dealing with vectors of minimum norm in

Chapter 2. Kinematic Control of Robot Manipulators 38

inverse kinematics solutions, as will be shown in Sect. 4.6. To identify its singularities, consider

the 2×2 minors ∆ij obtained by selecting the i-th and j-th column from (2.20):

∆12 = d + l1cq1 + l2cq1q2 ∆23 = −d(l1sq1 + l2sq1q2)

∆13 = −l1cq1 − l2cq1q2 ∆24 = −l2(l1sq2 + dsq1q2)

∆14 = −l2cq1q2 ∆34 = l1l2sq2 .

Clearly, ∆12 and ∆13 cannot simultaneously vanish if d 6= 0. In this case, rankJ(q) = 2

everywhere and the NMM has no singular configurations (as opposed to the manipulator taken

alone). Moreover, if d > l1 + l2, ∆12 is always nonzero and the RG method of Sect. 2.2.3 can

be used with the globally defined inverse of Ja = JpG (first two columns in (2.20)) without

changing the permutation matrix T in (2.9). In general, one may need to switch between the

matrices corresponding to ∆12 and ∆13.

Suppose now that the task is to follow a given cartesian trajectory while pointing at a fixed

object with a camera mounted on the end-effector. To this end, we add the absolute orientation

δ = θ+q1+q2 of the second link to the end-effector positioning task (2.18), obtaining an extended

task of dimension s = 3. The associated 3× 4 Jacobian J(q) becomes

J(q) =


cθ −dsθ − l1sθq1 − l2sθq1q2 −l1sθq1 − l2sθq1q2 −l2sθq1q2

sθ dcθ + l1cθq1 + l2cθq1q2 l1cθq1 + l2cθq1q2 l2cθq1q2

0 1 1 1

. (2.21)

As before, by computing the minors ∆ijk

∆123 = d ∆134 = l1cq1

∆124 = d + l1cq1 ∆234 = l1dsq1 ,

we conclude that, as long as d 6= 0, ∆123 never vanishes and the Jacobian has full rank

everywhere.

2.3.2 Unicycle platform with 3R elbow-type manipulator

Consider a 3R elbow-type manipulator (with link lengths li, i = 1, 2, 3) mounted on the same

previous platform of height h, with an offset d 6= 0 with respect to its center (see Fig. 2.2). Let

qp = [x y θ]T ∈ R3 and qm = [q1 q2 q3]T ∈ R3 be the configuration vectors of the platform and

manipulator, respectively. For the task of positioning the end-effector in 3D-space (s = 3), the

kinematic map is 
rx

ry

rz

 =


x + dcθ + l2cθq1sq2 + l3cθq1sq2q3

y + dsθ + l2sθq1sq2 + l3sθq1sq2q3

h + l1 + l2cq2 + l3cq2q3

 ,

39 2.4 Simulation results

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

d
l1

l2

l3

q1

q2
q3

h

Figure 2.2: A spatial NMM with a 3R elbow-type manipulator.

and the associated Jacobian J(q) of the NMM is

J(q) =

 cθ −dsθ − l2sθq1sq2 − l3sθq1sq2q3 −l2sθq1sq2 − l3sθq1sq2q3 l2cθq1cq2 + l3cθq1cq2q3 l3cθq1cq2q3

sθ dcθ + l2cθq1sq2 + l3cθq1sq2q3 l2cθq1sq2 + l3cθq1sq2q3 l2sθq1cq2 + l3sθq1cq2q3 l3sθq1cq2q3

0 0 0 −l2sq2 − l3sq2q3 −l3sq2q3

 .

Since u = [uTp uTm]T = [v ω q̇1 q̇2 q̇3]T ∈ R5, the degree of kinematic redundancy is 2. In order to

study the rank of J(q), we compute the
(

5
3

)
= 10 possible minors:

∆123 = −l3sq2q3(Λcq1 + d) ∆145 = l2l3Λsq3

∆124 = −l3sq2q3cq1Λ ∆234 = 0

∆125 = −l2l3sq1sq3 ∆235 = −Λ(Λcq1 + d)

∆134 = −dl3sq1sq2q3Λ ∆245 = −Λ2cq1

∆135 = l2l3sq3(dcq1 + Λ) ∆345 = −dΛ2sq1 ,

where Λ = l2sq2 + l3sq2q3 = 0 corresponds to the shoulder singularity for the elbow-type

manipulator. No minor is always nonzero in this case. However, it is easy to verify that if

sq2 6= 0 or sq3 6= 0 there is always a nonzero minor. Hence, rankJ(q) = 3 for this NMM, except

when the manipulator is stretched or folded along the vertical direction.

2.4 Simulation results

We present here two simulations of kinematic control schemes for the NMM in Fig. 2.1,

and one for the NMM in Fig. 2.2. As redundancy resolution scheme, we adopt the RG

Chapter 2. Kinematic Control of Robot Manipulators 40

−3 −2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

[m]

[m
]

(a)

0 0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

H
1(q

)

RG
PG

(b)

Figure 2.3: First simulation. Left: trajectory tracking for the planar NMM with RG method.

Right: comparison between RG and PG methods in minimizing the objective function H1(q)

(zoom on the initial transient).

method, whose optimization performance is compared with the PG method. Further results

involving the use of PG, TP and TS methods are presented in Chapter 6 and Chapter 7.

The task control matrix gain K is set equal to the identity, while a constant step size

α = 10 has been used for simplicity in gradient computations. Movie clips of additional

simulations, including also the case of manipulability optimization, can be found at the website

http://www.dis.uniroma1.it/labrob/research/NMM.html.

2.4.1 Position task for the NMM with planar manipulator

Consider the robot in Fig. 2.1 with d = 0.3, l1 = 0.5, and l2 = 0.3 [m]. Since d < l1 + l2,

there is no minor guaranteed to be always nonzero. However, a simple switching strategy can

be adopted for the RG method. Let ji be the i-th column of the NMM Jacobian J(q) in (2.20):

1. If |∆13| ≥ |∆12|, start with the inversion of Ja = [j1 j3], otherwise start with Ja = [j1 j2];

2. if |∆13| < Θ (or |∆12| < Θ) switch to the other minor.

In the simulations, a fixed threshold Θ = 10−2 has been used. The end-effector should follow

the circular trajectory

rd(t) =

[
rdx(t)

rdy(t)

]
=

 2 + 3 cos(0.08πt + 5
4π)

2 + 3 sin(0.08πt + 5
4π)

 , (2.22)

for Ts = 25 s, while minimizing the objective function

H1(q) =
1
2

(
θ + q1 + q2 −

π

2

)2

+
1
2

(
q1 −

π

4

)2

,

http://www.dis.uniroma1.it/labrob/research/NMM.html

41 2.4 Simulation results

−3 −2 −1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

6

7

[m]

[m
] T

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

H
2(q

)

PG
RG

(b)

Figure 2.4: Second simulation. Left: trajectory tracking and target pointing for the spatial

NMM with RG method. Right: comparison between RG and PG methods in minimizing the

objective function H2(q) (zoom on the initial transient).

i.e., keeping the first link at q1 = π/4 with the end-effector pointing in the (absolute) upward

direction. The start configuration at t = 0 is q0 = [−1 − 1 π 0 0]T and corresponds to the

end-effector being out of the desired path.

The stroboscopic motion of the NMM in Fig. 2.3(a) shows the good tracking behavior,

despite the initial backup of the platform. The performance comparison of the RG and PG

methods in Fig. 2.3(b) indicates that RG is faster in approaching the minimum value of H1

(and also better in keeping a lower ripple during steady-state motion).

2.4.2 Position/orientation task for the NMM with planar manipulator

The former task is extended to include the absolute orientation of the second link of the

manipulator as in (2.21). In particular, this should point towards a fixed target point T located

at (xT , yT) = (6, 2) [m]. Therefore, we append to the positioning task (2.22) a third component

rdδ(t) = atan2(yT − rdy(t), xT − rdx(t)).

The single degree of kinematic redundancy left is used to minimize the objective function

H2(q) =
1
2

(
q2 +

π

2

)2

.

Figure 2.4(a) shows the stroboscopic motion of the NMM generated with the RG method.

A waving behavior around the nominal end-effector trajectory is now realized by the platform

in order to satisfy the additional task constraint. No switching strategy is needed here since

submatrix Ja = [j1 j2 j3] is always nonsingular, as shown in Sect. 2.3.1. Also in this case, the

Chapter 2. Kinematic Control of Robot Manipulators 42

0 2 4 6 8 10

−1

0

1

2

3

4

5

time [s]

ca
rt

es
ia

n
er

ro
r

[m
]

(a)

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s]

H
3(q

)

PG
RG

(b)

Figure 2.5: Third simulation. Left: cartesian trajectory tracking error for the NMM in

Fig. 2.2 with RG method (dashed lines represent the reference motion). Right: comparison

between RG and PG methods in minimizing the objective function H3(q) (zoom on the initial

transient).

optimization with the RG method is more efficient than with the PG method (see Fig. 2.4(b)),

reaching faster and firmly keeping the absolute minimum of H2.

2.4.3 Position task for the NMM with elbow-type manipulator

The geometric data of the robot in Fig. 2.2 are d = 0.3, h = 0.3, l1 = 0.4, l2 = 0.5, and

l3 = 0.4 [m]. For the 3D task of end-effector spatial positioning, the two degrees of kinematic

redundancy are used for minimizing the function

H3(q) =
1
2

q2
1 +

1
2

(
q3 +

π

2

)2

.

The end-effector should follow the circular trajectory (2.22) taking place at a constant height

rdz = 0.5 [m]. The initial configuration is q0 = [0 0 π 0 π/2 0]T , which corresponds again to

the end-effector being out of path. Since there is no minor guaranteed to be always nonzero

in this case, a switching strategy similar to the one discussed in case 1 has been implemented

for the RG method. The results in Figs. 2.5(a) and 2.5(b) show a fast recovery of the initial

cartesian error and of the optimal value for H3 with both RG and PG methods.

Part II

Visual Control:

Theory

43

3
Elements of 3D Vision

Acamera can be considered as a sensor yielding 2D outputs (the 2D camera images)

from 3D input data (the 3D external scene) through a process called image formation.

A thorough illustration of camera image formation involves topics from many different

areas: description of the camera pose in the world (rigid body kinematics), mathematical

modeling of lenses and light through them (photometry), derivation of perspective projections

models (perspective geometry), representation of the luminosity information (quantization and

digitization), are just a few. In this Thesis, only the geometric aspects of image formation are

discussed, while a detailed treatment of the photometric and optical effects, not addressed here,

can be found in [Horn 1986; Lavest et al. 1993; Born & Wolf 1999; Stroebel 1999].

Even within the reduced scope of geometric description, however, several camera models are

still possible. For instance, the nature of the imaging surface (planar, spherical, etc.), and the

approximations introduced in the 3D projection modeling give rise to different possibilities, such

as paraperspective projection [Aloimonos 1990; Basri 1996], orthographic projection [Tomasi &

Kanade 1992], affine projection [Koenderink & van Doorn 1991; Mundy & Zisserman 1992],

and catadioptric projection [Geyer & Daniilidis 2001; Mariottini & Prattichizzo 2007]. In

most cases, however, a convenient (and widely adopted) choice is to restrict the analysis

to the so-called pin-hole camera model which captures, in a simple but sufficiently accurate

45

Chapter 3. Elements of 3D Vision 46

way, the relevant perspective geometry transformations common to many real cameras with

planar imaging surfaces. Therefore, by pursuing this idea, the next sections are devoted to the

geometric and kinematic equations describing a pin-hole camera moving through the world.

Section 3.1 briefly recalls some relevant rigid body kinematics concepts at the basis of most

subsequent developments. Next, Sect. 3.2 describes the main properties of the pin-hole camera

model and Sect. 3.3 sheds some light onto the geometric constraints that bind two images of the

same 3D scene. Most of the concepts presented hereafter are borrowed from [Ma et al. 2004] for

what concerns camera modeling, and [Murray et al. 1994] for the rigid body kinematics part.

3.1 Rigid body kinematics

Let E3 represent the standard three-dimensional Euclidean space. A 3D point P ∈ E3 can be

identified with a point in R3 with coordinates1

P = [Px Py Pz]T ∈ R3.

A bound vector v ∈ R3 is determined by a pair of points P1, P2 ∈ E3 as

v = P2 − P1 ∈ R3.

One can also introduce the concept of free vector, if the vector definition does not depend on

the base point P1. In this case, every two pairs of points (P1, P2) and (P ′
1, P ′

2) such that

P2−P1 = P ′
2−P ′

1 define the same free vector v. The set of all free vector forms a linear vector

space. The inner product, or dot product, among vectors is defined as

〈u, v〉 = uTv = vTu = uxvx + uyvy + uzvz ∈ R.

Whenever 〈u, v〉 = 0, the two vectors are said to be orthogonal. The norm (or length) of a

vector u is defined as ‖u‖ =
√
〈u, u〉. Given two vectors u, v, their cross product, or outer

product, is a third vector

u× v =


uyvz − uzvy

uzvx − uxvz

uxvy − uyvx

 ∈ R3.

The cross product is linear in each of its arguments: u×(αv+βw) = αu×v+βu×w, ∀α, β ∈ R,

and satisfies

< u× v, u >=< u× v, v >= 0, u× v = −v × u. (3.1)

1Here, with a slight abuse of notation, the same symbol P is used to denote the coordinates of a point in R3

and the point itself in E3.

47 3.1 Rigid body kinematics

Therefore, the cross product of two vectors is orthogonal to both of its factors, and does not

commute with the order of multiplication. A convenient matrix expression of the cross product

is given by

u× v =


0 −uz uy

uz 0 −ux

−uy ux 0

v = [u]×v,

where [u]× ∈ so(3) is the 3 × 3 skew-symmetric matrix associated to a vector u ∈ R3. Note

that, the map [·]× : u → [u]× is a linear bijection: [αu + βv]× = α[u]× + β[v]×. Furthermore,

from (3.1), it follows uT [u]× = [u]×u = 0, and [u]×v = −[v]×u.

Consider an inertial ‘world’ reference frame FO : {O; XO, YO, ZO} and a (possibly) moving

frame FC : {OC ; XC , YC , ZC}. When needed, a leading superscript will be used to specify

the reference frame where quantities are expressed. Without loss of generality, we assume FC
to be rigidly attached to a camera that moves through the scene (see Sect. 3.2). Let

SO(3) = {R ∈ R3×3| RTR = I3, detR = 1} (3.2)

be the set of 3×3 orthogonal matrices with determinant 1. The orientation of FC w.r.t. FO can

be univocally specified in terms of an orthogonal matrix ROC ∈ SO(3). Due to definition (3.2),

the ‘inverse’ rotation matrix of FO w.r.t. FC is given by R−1
OC = RT

OC = RCO. The full rigid

body motion (rotation + translation) of FC w.r.t. FO is an element gOC of the group

SE(3) = {(ROC , OTOC)| ROC ∈ SO(3), OTOC ∈ R3},

where OTOC ∈ R3 is the vector from O to OC expressed in FO. It is worth noting that gOC

acts differently on points and vectors. Indeed, in the former case, it is

OP = gOC(CP) = ROC
CP + OTOC (3.3)

while, in the latter case,
Ov = gOC(Cv) = ROC

Cv. (3.4)

If points and vectors are represented in homogeneous coordinates, it is possible to express the

action of gOC in a compact matrix form. To this end, let

P̄ =

[
P

1

]
∈ R4, v̄ =

[
v

0

]
∈ R4

be the homogeneous representations of points and vectors, respectively. The homogeneous

matrix representation of gOC ,

ḡOC =

[
ROC

OTOC

0 1

]
∈ R4×4,

Chapter 3. Elements of 3D Vision 48

allows to express (3.3) and (3.4) as OP̄ = ḡOC
CP̄ and Ov̄ = ḡOC

Cv̄. The inverse element of

gOC , denoted as g−1
OC = gCO, takes the matrix form

ḡCO =

[
RT
OC −RT

OC
OTOC

0 1

]
=

[
RCO −RCO

OTOC

0 1

]
,

so that
CP̄ = ḡCO

OP̄ . (3.5)

In general, both point P and FC may be in motion w.r.t. the inertial frame FO. It is

then relevant, also in view of the next developments, to determine the (apparent) velocity of a

point P in FC , due to point P own motion and to the ego-motion of FC . Given a trajectory

RCO(t) : R → SO(3) that describes a smooth rotational motion, the following relationship

links the rate of change of RCO to the angular velocity CωCO ∈ R3 of FO w.r.t FC expressed

in FC :

ṘCORT
CO = [CωCO]×. (3.6)

It is easy to verify that the opposite quantity −[CωCO]× = [−CωCO]× = [CωOC]× represents

the angular velocity of FC w.r.t. FO expressed in FC . By differentiating w.r.t. time (3.5), one

gets
C ˙̄P = ˙̄gCOOP̄ + ḡCO

O ˙̄P = ˙̄gCO ḡOC
CP̄ + ḡCO

O ˙̄P = C V̄CO
CP̄ + ḡCO

O ˙̄TP . (3.7)

In this equation, O ˙̄TP ∈ R4 is the homogeneous representation of point P absolute own velocity

in FO, and CVCO = ġCOgOC , called twist, is an element of the Lie Algebra se(3) of the matrix

group SE(3). The homogeneous matrix representation of CVCO is

C V̄CO =

[
ṘCOROC −RCO

OṪOC

0 0

]
=

[
[CωCO]× −CṪOC

0 0

]
=

[
−[CωOC]× −CṪOC

0 0

]
,

where the pair
(
CṪOC , CωOC

)
stands for the linear/angular velocity of FC w.r.t. FO expressed

in FC . By expanding (3.7), one obtains the expression

C ˙̄P =

[
RCO

OṪP − CṪOC − [CωOC]×CP

0

]
=

[
CṪP − CṪOC − [CωOC]×CP

0

]
(3.8)

with all quantities expressed in FC .

This fundamental kinematic relationship, describing how 3D points move in the camera

frame as a consequence of camera and points own velocities, is at the core of many following

developments. In order to simplify the notation, from now on we drop the dependency on

FC assuming that all quantities are expressed in the camera frame, unless otherwise stated.

Hence, by letting CṪP = vP , CṪOC = vC and CωOC = ωC , (3.8) can be rearranged in a more

49 3.2 Pin-hole camera model

XC

YC

ZC

u

v
P

p

optical axis

OC

projection ray

image plane

OI

λ

Figure 3.1: Pin-hole camera model. The 2D image p of a 3D point P is at the intersection of

the ray going through the optical center OC and the image plane at a distance λ in front of the

optical center.

convenient matrix form
Ẋ

Ẏ

Ż

 =


−1 0 0 0 −Z Y

0 −1 0 Z 0 −X

0 0 −1 −Y X 0


[

vC − vP
ωC

]
. (3.9)

Note that the pair (vC , ωC) (the camera linear/angular velocity) can be seen as an input of

the first-order differential system defined by (3.9), while vP (the absolute velocity of point P)

represents an exogenous (and usually unmeasurable) quantity. Throughout the next Chapters,

we always assume that vP = 0, i.e., that point P is fixed in the scene.

3.2 Pin-hole camera model

A camera, or in general an optical system, is composed by a set of lenses used to control

direction of light towards a 2D surface sensitive to luminosity intensity like, e.g., photographic

media or CCD arrays. As stated in the introduction, a thorough treatment of lenses and optics

is far beyond the scope of this Thesis. The interested reader is therefore referred to the classical

works of [Born & Wolf 1999; Stroebel 1999] for more details.

For our goals, a reasonable approximation consists in considering the camera optical system

as a thin lens with almost zero aperture where all rays are forces to pass through. This

conceptual model, said pin-hole camera, is represented in Fig. 3.1. The camera, associated to

the moving frame FC : {OC ; XC , YC , ZC} with ZC coincident with the camera optical axis,

projects a 3D point P into a 2D point p onto the image plane. This plane, perpendicular to the

optical axis, lies at a distance λ (the focal length) from OC , and is endowed with a 2D reference

frame FI : {OI ; u, v} with axes parallel to XC and YC , respectively. According to this model,

Chapter 3. Elements of 3D Vision 50

a 3D point P = [X Y Z]T is projected at the image point

p =

[
pu

pv

]
=

λ

Z

[
X

Y

]
.

In homogeneous coordinates, this relationship can be written as

Zp̄ = Z


pu

pv

1

 =


λ 0 0 0

0 λ 0 0

0 0 1 0




X

Y

Z

1

 =


λ 0 0

0 λ 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

 P̄ = KλΠ0P̄ ,

(3.10)

where Kλ ∈ R3×3 is a nonsingular matrix, and Π0 ∈ R3×4 is often referred to as the standard

projection matrix.

The ideal model (3.10) represents a very particular choice of the camera frame FC , the

‘canonical retinal frame’, centered at the camera optical center and with one axis aligned with

the camera optical axis. In practice, the images captured with, e.g., a digital camera are

obtained in terms of pixels (i, j), with the origin of the image coordinate frame FI typically in

the upper-left corner of the image, with axis u and v not perfectly perpendicular, and so on. In

order to render model (3.10) compatible with the actual pixel measurements yielded by a real

camera, the relationship between the retinal frame coordinates and the pixel array coordinates

must be specified. It turns out that the pixel coordinates p̃ of an image point p can be obtained

through the linear transformation2

¯̃p =


ku ku/ tan δ u0

0 kv/ sin δ v0

0 0 1

 p̄ = Ksp̄, (3.11)

where [u0 v0]T are the pixel coordinates of the principal point (the intersection of Zc with the

image plane), ku and kv the magnifications in the u and v directions (in pixel/meters), and δ

the angle between these axes. Therefore, from (3.10) and (3.11), it follows

Z ¯̃p = KsKλΠ0P̄ = KCΠ0P̄ ,

with

KC =


λku λku/ tan δ u0

0 λkv/ sin δ v0

0 0 1

 .

2Actually, a more realistic image formation model should also include the nonlinear effects of radial distortion

due to camera optics. However, in the rest of this work, we assume that radial distortion has been compensated

for (see [Tsai 1987; Zhang 2000] for more details) so that (3.11) holds.

51 3.2 Pin-hole camera model

In the above equation the effect of a real camera is split into two distinct steps: first, the

standard projection matrix Π0 projects point P w.r.t. a normalized coordinate system, i.e., as

if λ = 1, ku = 1, kv = 1, (u0, v0) = (0, 0), and δ = π/2. Next, matrix KC performs an

additional transformation that depends on ‘intrinsic’ parameters of a particular camera, such

as the focal length λ. Therefore, because of this role, matrix KC is usually called the intrinsic

parameter matrix, or calibration matrix of a given camera. Note that KC is always nonsingular

and, assuming that δ = π/2 and ku = kv (as in almost all cases), its expression reduces to

KC =


λ 0 u0

0 λ v0

0 0 1

 (3.12)

where now λ represents the focal length in pixels. When the calibration matrix is known,

i.e., the camera is calibrated, the normalized coordinates p can always be recovered from their

measured pixel counterparts as

Zp̄ = ZK−1
C

¯̃p = Π0P̄ , (3.13)

thus allowing to work directly in the normalized space. Many (typically off-line) techniques

yield an estimation of KC from a sequence of images taken at different points of view w.r.t. a

given (and known) target object. The classical works of [Tsai 1987; Weng et al. 1992] and

the more recent [Sturm & Maybank 1999; Zhang 2000] provide a theoretical analysis and

solution to the problem, while in [Strobl & Paredes 2005; Sepp et al. 2005; Bouguet 2007]

actual implementations of these algorithms can be found. From now on, the calibration matrix

KC is supposed known and every subsequent development is carried out in the normalized

space. The only exception takes place in Sect. 5.3 where the focal length λ is assumed unknown

and estimated online during the camera motion via a suitable observation scheme.

The perspective pin-hole model described by (3.13) maps points P ∈ R3 to image points

p ∈ R2 up to a scale factor (the depth Z of P). Since one dimension is lost through this

mapping, one would intuitively expect that the information carried by an image cannot be fully

representative of the original 3D object. Indeed, expression of (3.13) implies that any point

P ′ = αP ∈ R3, α 6= 0, is projected onto the same image point p ∈ R2 with scale factor αZ. In

other words, p is not the image of a single point in R3, but of all the points P ′ ∈ R3 lying on

the line passing through P , i.e., it is the image of the direction of P . As a consequence, the

image of any object O is undistinguishable from the image of an object O′ with same shape

but scaled size and distance — see Fig. 3.2. Due to this scale ambiguity, it is often convenient

to rewrite (3.13) as

p̄ ∼ Π0P̄ (3.14)

where ∼ denotes equivalence up to an arbitrary scalar factor. Scale ambiguity plays a central

role in computer vision. For instance, consider the following problem: from a set of input

Chapter 3. Elements of 3D Vision 52

XC

YC
ZC

αP

p

OC

P

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

O

O'

Figure 3.2: The pin-hole camera projection loses any scale information. Therefore, any point

on the direction of P has the same image p, and any two objects O and O′ with same shape

but scaled size and depth are indistinguishable on the image plane.

images of a object O taken at different camera poses, recover the translations/rotations among

the views. In absence of additional information, any multiple view reconstruction algorithm

will yield a solution modulo the equivalence relation ∼. The actual amounts of translation

can be recovered only if some (external) scaling information is introduced in the process, such

as the size of O [Faugeras 1993]. This limitation will be also evident in Chapter 5 where the

problem of 3D structure identification is formulated in the framework of nonlinear observers.

In this context, as a consequence of scale ambiguity, 3D identification proves to be possible iff a

suitable persistency of excitation condition is met, condition that in turn will require knowledge

of some external ‘scale’ information: the magnitude of the camera linear velocity vC .

3.3 Geometry of two views

In this section we investigate how two images of the same 3D points, taken at different vantage

points, are intrinsically related to their 3D positions and to the rigid camera displacements

among the two poses. Goal of this geometric analysis is to obtain an algorithm that almost

completely reconstructs the camera pose given two views of the same object. Such information

will be then exploited by a class of visual servoing techniques in Chapter 4, and within the

estimation algorithms proposed in Chapter 5. Apart from [Ma et al. 2004], the interested

reader can refer to [Maybank 1992; Faugeras & Luong 2001] for a full theoretical treatment of

the geometry of multiple views.

53 3.3 Geometry of two views

X

Y

Z

p1

O1

P

Z

X

Y

O2

p2

g12

1T12

Figure 3.3: Two projections of a 3D point P from two camera poses with rigid displacement

g12. The two projection rays towards P and the translation vector from O1 to O2 lie on the

same plane, giving rise to the so-called epipolar constraint. Because of the equivalence (3.14),

the same constraint holds also if P is replaced by its two images p1, p2, since they retain the

same direction in space.

3.3.1 Epipolar constraint

Consider a point P in space and a camera moving through the scene. Fix two camera poses and

let g12 = (R12,
1T12) represent the rigid body transformation among them. The coordinates

of P in the two camera frames and the translation vector 1T12 form a triangle, i.e., the three

vectors (1P, 2P, 1T12) lie on the same plane (see Fig. 3.3). Such constraint, known as epipolar

constraint, holds also if the pair (1P, 2P) is replaced by its image (p1, p2), since p and P identify

the same direction in space. Hence, given enough image points of the same object, the epipolar

constraint can be used to solve for the camera relative pose g12.

An explicit expression of the epipolar constraint can be found by combining 2P̄ = g21
1P̄

and (3.13) as

Z2p̄2 = 2T21 + R21Z1p̄1.

In order to eliminate the (unknown) depths Zi, premultiply both sides by
[
2T21

]
× to obtain

Z2

[
2T21

]
× p̄2 =

[
2T21

]
×R21Z1p̄1. (3.15)

Taking the inner product of both sides with p̄2 and dividing by Z1 > 0 yields the searched

depth-free epipolar constraint

p̄T2
[
2T21

]
×R21p̄1 = p̄T2 Ep̄1 = 0. (3.16)

Matrix E =
[
2T21

]
×R21 ∈ R3×3, called the essential matrix, encodes the relative pose between

Chapter 3. Elements of 3D Vision 54

the two views and belongs to a special set of matrices in R3×3, the essential space, defined as

E =
{
[T]×R| R ∈ SO(3), T ∈ R3

}
. (3.17)

It can be shown that a nonzero matrix E is an essential matrix iff the SVD of E, E = UΣVT , has

Σ = diag{σ, σ, 0}, σ > 0 [Huang & Faugeras 1989]. Notice that the epipolar constraint (3.16)

is linear in E. Therefore, given a sufficient number of matched points, linear algebra tools

allow to solve (3.16) for E. In its original version, the eight-point algorithm [Longuet-Higgins

1981] recovers E from eight pairs of matched points, but further developments showed that

one needs only six correspondent points in general position solve the problem. A set of 3D

points is said to be in general position if it does not belong to some degenerate configurations,

called critical quadric surfaces, which prevent an unique solution for E. Many of these critical

surfaces occur rarely in practice, so that their importance is limited. However, 2D planes, which

are ubiquitous in most environments, happen to be a special subclass of critical surfaces, and

therefore their case must be dealt with separately (see next section). Once E is known, it is

possible to decompose it into the four solutions

([T]×, R) =
(
URZ

(
±π

2

)
ΣUT , URT

Z

(
±π

2

)
VT

)
, (3.18)

where RZ(θ) stands for the rotation matrix about Z axis of angle θ. By imposing the positive

depth constraint, i.e., that depths Zi in (3.15) are both positive, one can eventually select the

correct solution out of the four ones in (3.18).

It is worth noting that the epipolar constraint has also an homogeneous structure. Therefore,

if E is a solution, αE is a solution as well, with α ∈ R being an arbitrary scale factor. As a

consequence, the translation T in (3.18) is found up an arbitrary scale or, in other words, only

the direction of T can be recovered from the decomposition of E. Indeed, as stated at the

end of Sect. 3.2, this is a consequence of the scale ambiguity inherently present in perspective

systems that only allows the recovering of 3D information modulo the scale equivalence ∼
defined in (3.14).

3.3.2 Planar homography

In many applications like, e.g., man-made environments or aerial imaging, the scene is

(approximately) planar, so that the matched points selected for 3D reconstruction lie on the

same 2D plane. Being the plane a particular critical surface, the epipolar constraint may not

yield a unique solution to the reconstruction problem. However, an additional constraint besides

the epipolar one is also shared by the points on the plane. This constraint can then be used to

obtain a meaningful solution also in this specific case.

With reference to Fig. 3.4, let n ∈ S2 be the unit normal vector to plane π w.r.t. the first

55 3.3 Geometry of two views

X

Y

Z

O1

p1

P

Z

X

Y

O2

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

p2

g12

1T12

π

n

d

Figure 3.4: Two images p1, p2 of a 3D points P on a plane π. They are related by a homography

H that is induced by the plane and by the rigid transformation g12 between the two camera

poses.

camera frame, and d > 0 denote the distance of π from O1. Then it is

1
d
nT 1P = 1, ∀P ∈ π. (3.19)

By plugging (3.19) into 2P̄ = g21
1P̄ , it follows

2P = R21
1P + 2T21

1
d
nT 1P =

(
R21 +

1
d

2T21nT
)

1P = H 1P. (3.20)

Matrix H ∈ R3×3 is called (planar) homography matrix and linearly maps 3D points between

the two camera poses. From p1 ∼ 1P and p2 ∼ 2P we can express (3.20) in terms of image

points as

p2 ∼ Hp1.

The unknown scale factor can then be eliminated by multiplying both sides by matrix [p2]×,

yielding the constraint

[p2]×Hp1 = 0,

which, similarly to (3.16), is homogeneous and linear in H. Hence, again, if a sufficient number

of matched points is available, H can be recovered up to an arbitrary scalar factor. It turns

out that only four pairs are necessary in this case, provided that no three of them are collinear,

i.e., that they are in a general configuration in the plane. Knowing H, the next step consists in

decomposing it into g21 and (n, d). As one could expect, such decomposition cannot be exact

due to the scale ambiguity effect. Indeed, while R21 and n can be fully reconstructed, only

the ratio 2T21/d, i.e., the translation vector scaled by the distance to the plane, is recoverable.

Chapter 3. Elements of 3D Vision 56

Hence, as with the epipolar constraint, the actual magnitude of 2T21 is out of reach without

some external scale information. Furthermore, as with the essential matrix E, the decomposition

of H yields four possible solutions, but only two of them can be discarded thanks to the

positive depth constraint. The remaining two solutions are both physically valid and apriori

undistinguishable. As will be explained in Chapter 4, the ‘true’ solution can be isolated via

some additional hypotheses on the scene structure, such as (independent) knowledge of the

plane normal direction n in one of the two frames.

Finally, it is worth citing the recent works of [Chesi et al. 2000; Benhimane & Malis 2004]

in which the authors propose an algorithm able to estimate H directly on two input images of

a dense unstructured object, i.e., without the explicit need of extracting and matching pairs of

points. A free implementation of this method can be found at [Malis et al. 2004].

4
Visual Servoing

Visual servoing (VS) refers to the use of cameras (seen as sensors) to control the motion

and the pose of a robot, thus endowing it with the ability to perceive, actually to ‘see’,

the external world. In a wide sense, visual servoing represents more a general paradigm

than a specific set of techniques: it encompasses and combines fields ranging from image

processing, computer vision, pattern classification, and control theory. The vision data may

be acquired from a camera rigidly mounted on the robot (eye-in-hand configuration), or the

camera may be fixed in the workspace so that it can externally observe both the robot and

the scene (eye-to-hand configuration). Configurations with multiple on/offboard cameras are

also possible as in, e.g., stereovision applications. The mathematical developments of all these

possibilities are conceptually equivalent, and in the following we will consider only the case of

single eye-in-hand camera.

Among the many VS facets, the focus of this Thesis is set on the Control Theory point

of view. Therefore, a detailed analysis of all the image processing and computer vision issues

common to most applications is not considered here. As stated in the introduction, we assume

that scene interpretation is solved by means of an external module able to provide the control

part with all the needed information, and we shift the attention to the stability and convergence

properties of VS feedback laws. Note that, however, image analysis and interpretation is seldom

57

Chapter 4. Visual Servoing 58

a trivial task and considerable efforts are usually devoted to design, implementation and tuning

of suitable algorithms for the specific case. Indeed, there exists a vast literature on these topics

so that they can be considered as a stand-alone engineering area with its own methodologies

and solutions. The reader can refer to [Russ 1998; Young et al. 1998; Duda et al. 2000; Gonzalez

& Woods 2002] for a presentation of the most popular methods.

In the following, Sect. 4.1 provides a general overview of the VS control framework, while

Sects. 4.2–4.4 illustrate the state of the art of most existing VS techniques from a theoretical

point of view. Next, Sect. 4.5 discusses how VS laws can be actually implemented on a robot

manipulator within the kinematic control framework developed in Chapters 1–2, and Sect. 4.6

presents some simulation results of VS schemes implemented on NMMs carrying a camera on

the end-effector.

4.1 Overview

Roots of Visual Servoing trace back to the end of ’70s when the first seminal attempts to

close a feedback loop on visual information were investigated [Hill & Park 1979; Sanderson &

Weiss 1980]. These pioneering works were mainly affected by the slow sample rate due to poor

performance of vision hardware, so that a ‘first look, then move blindly, then look again’ result

was almost unavoidable. The increase of computing power, and thus of better computer vision

algorithms, experienced during the following decades, permitted a more ‘natural’ behavior

during camera motion. The emphasis could slowly shift from ad-hoc software/hardware

solutions to more general VS concepts [Sanderson & Weiss 1983; Weiss et al. 1987; Wijesoma

et al. 1993]. In these years, a significant contribution to the the VS mathematical modeling was

given by [Espiau et al. 1992], where the authors formulated in a rigorous way the kinematic

relationships between a moving pin-hole camera and the motion induced on image plane

quantities, such as projections of points, lines, planes, circles, spheres, etc. These ideas,

further investigated in [Corke 1994], were organically reviewed and merged with topics from

computer vision and robot control in the famous Corke’s book [Corke 1997] that represented

for many years a milestone for VS researchers. Another notable contribution was given by

the Hutchinson-Corke-Hager tutorial [Hutchinson et al. 1996] meant to present, in a compact

and didactic fashion, the basic VS modeling concepts. In the last years, VS solutions bloomed

thanks to the work of many researchers in the field. Schemes ranging smoothly from full 3D

reconstructions to pure 2D image-based feedbacks were proposed, and a big effort was devoted

to determine local (or global) stability conditions w.r.t. noise, calibration accuracy, modeling

errors, and so on. A nice picture of the current VS state of the art has been recently proposed

in [Chaumette & Hutchinson 2006a,b].

Despite the big variety of the proposed schemes, however, an analysis based on the Control

59 4.1 Overview

Theory point of view yields a unique formulation for all existing vision-based feedbacks. This

is obtained by interpreting any visual quantity as a task variable, with a form close to (1.14),

and visual control as a task regulation problem. The visual task variables may represent either

direct 2D image measurements or 3D parameters estimated online, or a combination of both.

A convenient and unified representation of all possibilities is then given by the expression

r = f(m(t), χ(t)) ∈ Rs. (4.1)

Here, m(t) stands for a set of image measurements taken from a target object (the so-called

image features) and χ(t) is a vector representing additional (and not directly measurable) 3D

information associated to the object. Note that, choice of the task variables is not trivial:

one must always guarantee that there exists an isomorphism between r and the camera pose

w.r.t. the target or, in other words, that regulation of r(t) to a desired value rd strictly implies

regulation of the camera pose to the spatial configuration associated to rd. In any case, if a

stationary target is assumed, time variation of r(t) results from the apparent motion induced

by the camera velocity (vC , ωC), and can be generically expressed as

ṙ = Jr(m(t), χ(t))

[
vC
ωC

]
(4.2)

where the s×6 matrix Jr is named the interaction matrix related to r. Once such task-oriented

formulation is adopted, any VS task can be executed by applying one of the existing task

realization algorithm as, e.g., the schemes presented in Chapter 2, with the interaction matrix

Jr playing the role of a task Jacobian. Of course, some care is required in actual implementations

since both r and Jr may depend on vector χ(t) which, in general, cannot be directly obtained

from instantaneous measurements on the image plane. Moreover, in eye-in-hand configurations,

where camera motion is generated by the supporting robotic structure, robot kinematics must

also be taken into account in the rhs of (4.2) as will be discussed in Sect. 4.5.

Most of existing VS approaches stem from formulation (4.1–4.2) by differing in the

number and kind of visual quantities included in the task vector. When r is made of

a set of 3D parameters describing the pose of the target w.r.t. the camera (the relative

translation/rotation), one speaks of Position-Based Visual Servoing (PBVS) [Wilson et al.

1996; Taylor et al. 2000]. In PBVS control, vector r is estimated from image measurements

through a pose reconstruction algorithm, and the obtained cartesian error is used to move the

camera/robot system towards its goal. Usually, PBVS methods take advantage of this cartesian

formulation by yielding nice camera trajectories in space, but, on the other hand: (i) an a priori

3D model of the target is needed in order to fully reconstruct the relative camera pose; (ii) any

uncertainty in the camera calibration parameters leads to 3D reconstruction errors and, as a

consequence, to inaccurate task execution; (iii) there is no direct control on the motion of the

features on the image plane, so that an object of interest (e.g., the target itself) may leave the

Chapter 4. Visual Servoing 60

field of view during the motion, causing the failure of the servoing task. Section 4.2 presents

an illustrative example where pros/cons of PBVS schemes are examined.

If, on the contrary, r only consists of image features, the VS scheme is said Image-Based

Visual Servoing (IBVS) [Weiss et al. 1987; Feddema & Mitchell 1989; De Luca et al. 2007a].

In IBVS methods, the task error can be directly evaluated on the image plane — a pose

reconstruction step is not needed. However, the interaction matrix Jr in (4.2) still depends on

certain 3D information χ(t) which must be known, or approximated, in real implementations.

In any case, since the error is built on image measurements, IBVS presents some advantages

compared to pure PBVS schemes: convergence is generally more robust w.r.t. disturbances and

uncertainties in the camera/robot model [Espiau 1993], and direct control of the feature motion

on the image plane allows the implementation of strategies aimed at keeping the target always

in the field of view of the camera [Corke & Hutchinson 2001]. Since in the following Chapters

most of the developments are based on this framework, a detailed analysis of IBVS schemes is

given in Sect. 4.3.

As a final case, vector r can also be a mixture of 2D/3D quantities. In this case an Hybrid

Visual Servoing (HVS) is obtained, with the end of combining the advantages of both previous

methods [Malis et al. 1999; Malis & Chaumette 2002]. Typically, HVS settings decouple rotation

control from the translation part by exploiting the partial pose estimation algorithms presented

in Sect. 3.3. Indeed, knowledge of the rotation matrix between current and desired views

allows to regulate the camera rotational error independently in cartesian space. Control of the

translation can then be achieved by considering suitable image quantities such as the coordinates

of a reference point on the target object. One of the main advantages of HVS is that, in some

cases, necessary and sufficient conditions for global stability can be found, while IBVS methods

have a local convergence. Furthermore, cartesian control of rotation typically implies ‘nicer’

(i.e., more predictable) camera trajectories in space during the servoing w.r.t. the pure IBVS

case. A brief review of basic HVS concepts is given in Sect. 4.4.

4.2 Position-based visual servoing

According to the notation introduced in (4.1), PBVS methods are characterized by a task vector

made of sole 3D quantities

r = f(χ(t)) ∈ Rs,

making it possible to control the motion directly in cartesian space. Consider the current camera

frame FC , and the desired camera frame FCd fixed w.r.t. the target object. By comparing the

current and desired views, and by exploiting the knowledge of a 3D model of the target and

of the camera calibration matrix KC , the rigid displacement gCdC = (CdTCdC , RCdC) between

the two frames can be recovered [Lowe 1987; Dementhon & Davis 1995]. In this case, one

61 4.2 Position-based visual servoing

Feature extraction

Cartesian

control law

+

-

3D reconstruction
3D reconstruction

rd

r(t) m(t)

3D model of the
target

PBVS control law
e(t)

Feature extraction

vC, ωC

χ(t)

Figure 4.1: Conceptual scheme of PBVS. The image features m(t) are used in conjunction with

a 3D model of the target χ(t) to recover the current camera pose r(t). The cartesian error

rd − r(t) is then exploited to control motion of the camera towards the desired pose.

can set r(t) ' χ(t) = gCdC(t) and drive the camera towards FCd by regulating the value

of r(t) in cartesian space, see Fig. 4.1 for a conceptual scheme. As an example, consider a

minimal parameterization of RCdC , such as the angle/axis vector θu ∈ R3. One can choose

r = (CdTCdC , θu) ∈ Rs, s = 6, thus obtaining the 6× 6 square interaction matrix Jr

Jr =

[
RCdC 0

0 Lθu

]
(4.3)

where Lθu is given by [Malis et al. 1999]

Lθu = I3 −
θ

2
[u]× +

1− sinc θ

sinc2 θ

2

 [u]2×. (4.4)

Regulation of r to rd = (0, 0) can then be easily achieved by inverting (4.2) according to the

algorithm detailed in Sect. 2.1.

This PBVS scheme guarantees decoupled and exponential convergence of translational and

rotational motions (Jr is block diagonal), in particular the camera moves along a straight line

and rotates by following a geodesic on SE(3). Moreover, matrix Jr is nonsingular as long as

θ 6= 2kπ, k 6= 0 (see (4.4)), practically ensuring global convergence since the object of interest

is always supposed to lie in front of the camera at the beginning of the servoing, i.e., with

|θ| < 2π. Note that, however, gCdC is an estimated quantity, typically an approximation of the

actual displacement because of, e.g., inaccuracies in the camera calibration or in the target 3D

model. Therefore, a coarse estimation will affect at the same time both the transient behavior

and the final pose accuracy. Indeed, since gCdC appears both in the task definition and in the

Chapter 4. Visual Servoing 62

Feature extraction
Feature extraction

Cartesian

control law

+

-

rd

r(t)

3D (unmeasurable)
information

IBVS control law
e(t) vC, ωC

χ(t)

m(t)
Feature elaboration

Figure 4.2: Conceptual scheme of IBVS. The current image features m(t) are elaborated into

the image task vector r(t) which is then compared to the desired rd in order to obtain an error

e(t) expressed on the image plane. By using e(t) and some additional 3D information χ(t), the

IBVS controller computes the motion commands driving the camera towards its desired pose.

interaction matrix, stability may be lost because of coarse computation of Jr, and a zero task

error may not guarantee complete reaching of the final pose because of coarse evaluation of r.

In addition, no direct control over the image plane motion is possible, so that a temporary loss

of the target in the camera field of view may be experienced during the servoing. As will be

explained in the next section, many of these drawbacks can be alleviated by adopting an IBVS

scheme, especially for what concerns final accuracy and control over the image plane motion.

The price to pay mainly consists in weaker (local) stability conditions, less predictable camera

motion in cartesian space, and existence of singularities and local minima for the feedback law.

4.3 Image-based visual servoing

IBVS methods represent, in some sense, the antipodal case w.r.t. PBVS approach. The idea is

to minimize as much as possible the need of 3D quantities, and to work directly on the image

plane by defining visual task (4.1) as a function of sole image features

r = f(m(t)) ∈ Rs. (4.5)

Possible choices include point coordinates, line parameters, image moments, and so on. In

principle, any image feature could be used as visual task, provided that its interaction matrix

is known in closed form1, see [Espiau et al. 1992] and [Chaumette 2004; Tahri & Chaumette

2005] for many examples involving 2D/3D geometric primitives and 2D image moments. If

1There also exist numerical techniques which yield an estimation of Jr [Lapresté et al. 2004; Piepmeier et al.

2004]. The drawbacks of these methods is that no theoretical stability and robustness analysis can be obtained.

63 4.3 Image-based visual servoing

the task is properly chosen so that there exists an isomorphism between r(t) and the current

camera pose w.r.t. the target, one can again invert (4.2) and compute the motion commands

that realize the visual task without the need of an explicit 3D pose recovering step. As depicted

in Fig. 4.2, however, some ‘external’ 3D information χ(t) is still required by the control. Indeed,

it turns out that the interaction matrix of any image feature included in r inevitably depends

also on a suitable χ(t) associated to the selected features. For instance, for an image point p

projection of a 3D point P , χ(t) becomes the (unknown) depth Z of P . All implementations of

IBVS schemes must then face this problem, and estimate/approximate χ(t) during the servoing.

However, in contrast with the PBVS case, coarse estimation of χ(t) affects Jr but not r which

is directly measured on the image plane. As a consequence, IBVS may show a poor transient

behavior (stability can be an issue) but, if the scheme converges, final accuracy is unaffected

by calibration/modeling errors. On the other hand, while matrix Jr in (4.3) is square (six dofs

cartesian task for a fully actuated system) and practically free of singularities, IBVS interaction

matrices may:

1. be more prone to ill-conditioning;

2. have more rows than columns if s > 6 features are chosen in (4.5). In such cases, the

structural existence of a nontrivial null-space gives rise to local minima configurations

that may prevent convergence of the servoing [Chaumette 1998].

The next section presents explicit expressions of the interaction matrices associated to some

relevant image features, while Sect. 4.3.2 further delves into IBVS stability issues.

4.3.1 The interaction matrix

Point features

A point feature p (projection of a 3D point P) is the simplest shape one can consider when

processing camera images with the aim of extracting structured information. Point features are

easily detectable in a large variety of situations (corners, bright spots, etc.) and considerable

efforts have been devoted for design and implementation of reliable tracking/matching softwares.

Among the vast literature on this topic, the popular Lucas–Kanade algorithm [Lucas & Kanade

1981; Lucas 1984] deserves a special mention because of its handiness and robustness. Free

implementations can be found in [Birchfield 2007; Intel 2007]. Because of their simplicity,

point features were the first items considered for visual servoing purposes, and, nowadays, still

continue to have a major role in most applications.

An explicit derivation of the point feature interaction matrix (Jp from now on) can be

found by differentiating w.r.t. time (3.13) to express motion of ṗ in terms of Ṗ, and by using

the kinematic relationship (3.9) to take into account camera velocity. These computations lead

Chapter 4. Visual Servoing 64

to the well-known expression

ṗ =

 − 1
Z

0
pu
Z

pupv −(1 + p2
u) pv

0 − 1
Z

pv
Z

1 + p2
v −pupv −pu

[
vC
ωC

]
= Jp(p, Z)

[
vC
ωC

]
. (4.6)

As expect, the 2 × 6 matrix Jp depends on 2D image quantities, the point feature itself, and

on additional 3D information, the depth Z of point P . Therefore, in this case it is m(t) = p(t)

and χ(t) = Z(t).

If a vector f = [pT1 . . . pTn]T ∈ R2n of n point features is considered, the total interaction

matrix Jf can be obtained as the stack of n matrices Jp of the form (4.6), each one accounting

for one point feature
ṗ1

...

ṗn

 = Jf (f , Z)

[
vC
ωC

]
=


Jp1(p1, Z1)

...

Jpn(pn, Zn)


[

vC
ωC

]
, (4.7)

being Z = [Z1 . . . Zn]T ∈ Rn the vector of the depths associated to the n feature points. Of

course, in this case we have m(t) = [p1(t) . . . pn(t)]T and χ(t) = [Z1(t) . . . Zn(t)]T .

The kinematic relationship (4.6) can be further exploited to obtain other closed-form

interaction matrices. Indeed, since all shapes are basically made of points, matrix Jp acts

as a building block for virtually all the possible structures one can consider as, e.g., length and

orientation of a segment, surface and mass center of a polygon, plane orientations, geometric

parameters of 2D/3D primitives (circles, ellipses, spheres, cylinders), and so on [Chaumette

1990; Espiau et al. 1992]. In all cases, however, dependence on additional 3D information

is always present. Finally, as discussed in the next section, it is also possible to consider the

interaction matrix of ‘global’ (integral) features like image moments, instead of local descriptors

like feature points.

Moments

In the computer vision community, image moments have represented for a long time a

valuable tool to solve pattern-recognition problems. Indeed, moments provide a global/integral

representation of any shape that can be segmented in the image plane, and suitable combinations

of them can be used to capture, in some sense, the fingerprint of an object of interest [Hu 1962;

Mukundan & Ramakrishane 1998]. Moreover, evaluation of moments is typically free of the

so-called correspondence problem, i.e., tracking and matching of individual structures during

the camera motion. This step may not be always easy or convenient — think to dense objects

as spheres, ellipsoids, etc. All these nice properties naturally motivated the study of possible

applications for IBVS schemes and, after several attempts, a main contribution was given by

65 4.3 Image-based visual servoing

Chaumette in [Chaumette 2004] where the analytical form of the interaction matrix related

to any 2D moment was derived. These results, valid for a single dense region on the image

plane, were also extended to the case of moments computed on a set of distinct points [Tahri

& Chaumette 2005]. Since, in this Thesis, both region-based and point-based moments are

considered for IBVS, some basic definitions and relationships relevant for the next developments

are presented hereafter.

Let R be a dense and closed image plane region resulting from the projection of a 3D

object O. The 2D region-based moments mij of order i + j are defined as

mij =
∫∫

R
xiyjdxdy

where (x, y) represent a 2D point on the image plane. The zeroth-order moment m00 is simply

the area a of the region R. The centered moments µij are moments computed w.r.t. the

barycenter (xg, yg) of R as

µij =
∫∫

R
(x− xg)i(y − yg)jdxdy

with xg = m10/a and yg = m01/a. Finally, one can also define the normalized centered moments

nij = µij/a. (4.8)

Similarly, given a discrete set of n image points, the point-based moments are defined by

mij =
n∑
l=1

xily
j
l ,

while the centered moments become

µij =
n∑
l=1

(xl − xg)i(yl − yg)j

with xg = m10/n and yg = m01/n (m00 = n in this case), and, as before nij = µij/m00 = µij/n.

In order to use moments within the IBVS framework, one needs an analytical expression of the

interaction matrix relating the rate of change of a moment to the camera velocity (vC , ωC),

similarly to what done in the point features case (4.6). If the object O can be approximated as

being planar, or as having a planar limb surface [Espiau et al. 1992], a closed-form expression

can be easily obtained. To this end, let

n · P + d = 0 (4.9)

be the limb plane equation in the camera frame, where n = [nx ny nz]T ∈ S2 is the plane unit

normal and d the plane distance to the origin of FC . The depth Z of any 3D point P lying on

this plane can be expressed in terms of its image coordinates p as

1
Z

= Apu + Bpv + C, (4.10)

Chapter 4. Visual Servoing 66

where 
A

B

C

 = −n/d. (4.11)

The interaction matrix Jmij of moment mij , either region-based or point-based, can then be

written as

ṁij = Jmij (mkl, χ)

[
vC
ωC

]
, (4.12)

where mkl stands for generic (k, l)-th moments of order up to i + j + 1, and χ = [A B C]T . In

particular, it is worth noting that (4.12) can be rearranged linearly in (A, B, C) as

ṁij =AλA(mkl, vC) + BλB(mkl, vC) + CλC(mkl, vC)+

λD(mkl, ωC),
(4.13)

where λi(·) are suitable scalar functions. From (4.12), one can also obtain the interaction matrix

of centered and normalized moments, respectively. For instance, in the region-based case, (4.8)

and the relation

µij =
i∑

k=0

j∑
l=0

(
i

k

)(
j

l

)
(−xg)i−k(−yg)j−lmkl

allow a direct computation. The same holds also for the point-based case. It is worth noting

that, when considering moments, the 3D information represented by χ always reduces to the

plane normal n scaled by the plane distance d, i.e., the ‘depth’ of the plane, despite the shape

or number of points considered. On the other hand, compared to the pure point features

case, some additional scene structure information must be known besides depth, i.e., the plane

current orientation in the camera frame.

4.3.2 Stability analysis of IBVS

As discussed in the previous section, IBVS schemes possess many practical advantages

w.r.t. PBVS in terms of final accuracy, robustness against calibration errors, and control over

image trajectories. As in all engineering solutions, however, such benefits come at a price. First

of all, the interaction matrix can become singular during the servoing, or false equilibria may

be reached due to the presence of unrealizable feature motions [Chaumette 1998]. Additionally,

the actual value of the 3D information χ(t) is commonly unknown, and some estimate must

be used (for example, the constant value at the desired pose). Thus, the convergence of such

schemes can be guaranteed only locally [Malis & Rives 2003]. Local convergence may also result

from a rough approximation of the camera intrinsic parameters. If the camera is not accurately

calibrated, or if its intrinsic parameters are changing over time, it is still possible to plan a path

67 4.3 Image-based visual servoing

for the features in a suitable invariant space [Malis 2004], but any global convergence property

for the servoing scheme is lost.

Many of these stability issues can be conveniently tackled thanks to task-oriented point of

view introduced in Chapter 2. To this end, let e(t) = rd − r(t) ∈ Rs be the task error on the

image plane, and

ė = −Jr(m(t), χ(t))

[
vC
ωC

]
the corresponding error dynamics, with Jr being the interaction matrix associated to r. As

with PBVS, any task realization algorithm can be adopted to fulfill task (4.5). For instance,

the simple feedback [
vC
ωC

]
= J†r(m(t), χ(t))Ke, K > 0, (4.14)

would guarantee a linear, decoupled, and exponentially stable closed-loop behavior

ė = −Ke, (4.15)

for task error e. Clearly, this represents just an ideal case since in practice one does not

have full knowledge of matrix Jr, typically because of poor knowledge of the camera intrinsic

parameters in (3.12), and because of uncertainties on the value of χ(t). Therefore, only an

approximation Ĵr of the real interaction matrix is commonly available when implementing IBVS

schemes. Closed-loop stability of this ‘approximated’ feedback can be assessed by considering

the Lyapunov candidate function V (e) = 1
2e
Te, whose time derivative is given by

V̇ = −eTJrĴ†re,

where, for simplicity, we set K = Is. From standard Lyapunov theory [Khalil 2002], global

asymptotic stability is ensured if the sufficient condition

JrĴ†r = P > 0 (4.16)

is met ∀ e ∈ Rs.
In order to further proceed with the analysis, consider first the case of s ≤ 6 features used

for IBVS, so that the s × 6 matrix Jr does not have more rows than columns. If Jr and

Ĵ†r have full rank s, matrix P is nonsingular and mild approximations in Ĵ†r do not usually

violate condition (4.16) in some neighborhood of the origin. This motivates the popular choice

of letting Ĵr = Jr(m(t), χd) where χd represents the constant value of χ(t) at the desired

pose. Indeed, in a neighborhood of the goal, one has χ(t) ' χd so that Jr ' Ĵr, and (4.16)

is trivially satisfied. However note that, besides the intrinsic local nature of this choice, one

must still face the problem of obtaining χd. In most applications, an off-line estimation can be

performed during the preliminary teaching of the desired image, but there also exist cases when

Chapter 4. Visual Servoing 68

such a solution is not feasible. For instance, in a navigation/exploration task, a mobile robot

could store several images of interesting locations while exploring the environment, but may

not have the possibility to recover at the same time the corresponding needed 3D information.

In this respect, Chapter 5 is fully devoted to the development of a set of general tools aimed at

obtaining an online converging observation of χ(t) to be used in place of other approximations

such as χd.

Things can also get worse if s > 6 features are selected for IBVS. In general, focusing on

many features is a sound choice since it smooths the problem of possible loss of tracking during

the camera motion. Besides that, there also exist some cases in which more than six features

are required to control the full six dofs camera pose. For instance, relying on three noncollinear

points (with s = 6) is theoretically sufficient for pose control. Unfortunately, in this case the

associated 6× 6 interaction matrix Jf can become singular, and four distinct camera poses for

which e = 0 (four undistinguishable global minima) necessarily exist [Michel & Rives 1993].

Here, a global (local) minimum represents a configuration where a nonzero error e results in

a null camera velocity command, and the system stops away from its desired pose. Because

of these limitations, four or more points are typically used, resulting in a task with dimension

s > 6. However, in all such cases, being matrix P at most of rank 6, a structural nontrivial

null-space of dimension ∆ = dim kerP ≥ s− 6 is always present. As a consequence, whenever

e ∈ kerP, additional local minima configurations arise. One can only prove that, in some

neighborhood of e = 0, no local minima can be encountered. Therefore, only local stability is

guaranteed, and, in most cases, an analytical characterization of the stability domain is hardly

possible.

Existence of local minima has also an interesting geometric interpretation in terms of

realization of image motions. Indeed feedback (4.14) and other equivalent laws can be seen

as imposing an image plane velocity ṙ = K(rd−r) = Ke to the set of selected features, velocity

that can be realized if, and only if, ṙ ∈ ImJr. When s > 6, the setM = {ṙ ∈ Rs| ṙ /∈ ImJr} has

dimension ∆ and coincides with kerP if no approximations are involved in Ĵr. Therefore, given

more than 6 features, M represents the set of s − 6 independent feature motions unrealizable

by any rigid motion of the camera. Whenever the imposed feature velocity K(rd − r) = Ke

happens to belong to M, the visual task cannot be fulfilled and the system gets stuck in a local

minimum.

The presence of unrealizable image motions can be a relevant issue for IBVS schemes.

It should, then, not be surprising that many ideas have been explored to conceive possible

solutions. Loosely speaking, the source of the problem lies in the very strength of most IBVS

schemes, i.e., the simplicity of feedback (4.14). Requiring, for instance, that all features move in

a straight line towards their final positions (as in (4.15)) can be too demanding, and possibly go

against the camera rigid motion constraint. Such considerations led to the exploration of more

69 4.4 Hybrid approaches

sophisticated techniques in which a consistent image plane motion is imposed to the features.

Among the various solutions it is worth citing [Malis 2004] where IBVS control is interpreted as

a nonlinear least squares minimization problem, and the proposed second-order minimization

scheme proves to be quite effective in improving the overall convergence. Furthermore, other

researchers focused on the possibility to plan an path r∗(t) on the image plane, joining the

initial feature value r(t0) to the desired value rd. The idea is that, if one is able to design

r∗(t) consistently with the rigid camera motion constraint, standard IBVS schemes can then

be used to track r∗(t) over time. In addition, other constraints can also be considered when

choosing r∗(t), such as ensuring visibility, avoiding joint limits of the supporting manipulator,

and, in general, minimizing any given cost function. One of the first solutions was proposed

in [Mezouar & Chaumette 2002] where a potential field approach was used in combination with

the partial pose estimation algorithm discussed in Sect. 3.3. As a result, a suitable 3D camera

motion could be planned yielding, as a byproduct, the corresponding feature trajectories on the

image plane r∗(t). This basic idea was subsequently refined with some improvements concerning

other possible cost functions, or the avoidance of the pose estimation step — see [Allotta &

Fioravanti 2005; Chesi & Hung 2007; Schramm et al. 2007] for some proposals.

4.4 Hybrid approaches

As final case, we consider the HVS approach which defines task r as a function of both on image

and 3D quantities

r = f(m(t), χ(t)) ∈ Rs.

As stated in Sect. 4.1, the goal is to combine the advantages of the two previous methods, in

particular for what concerns robustness (IBVS) and stability (PBVS). This is usually obtained

by exploiting some knowledge about the relative orientation between FC and FCd (e.g., matrix

RCdC) so that rotation control can be addressed directly in cartesian space. The remaining

translational dofs are then regulated by means of a suitable set of image quantities m(t) and,

possibly, additional 3D information χ(t). Many solutions have been proposed in the last years,

exploring different possibilities in the choice of m(t) and χ(t), see [Malis et al. 1999; Malis

& Chaumette 2000; Malis et al. 2003; Cervera et al. 2003] for some examples, and [Malis &

Chaumette 2002] for a general and thorough stability analysis of this VS class.

For the sake of illustration, consider the following case: assume a planar scene, so that the

homography matrix H can be computed from desired and current views (see Sect. 3.3.2), and

let

r =


p

log Z

θu

 ∈ R6

Chapter 4. Visual Servoing 70

be the task vector, where θu is a minimal parameterization of RCdC , p an image point belonging

to the target object, and Z its associated depth. In this case it is m(t) = p and χ(t) = [Z θu]T .

By defining

Lv =
1

ZdρZ


−1 0 pu

0 −1 pv

0 0 −1

 , ρZ =
Z

Zd
= detH,

and

Lω =


pupv −(1 + p2

u) pv

1 + p2
v −pupv −pu

−pv pu 0

 ,

the 6× 6 interaction matrix of task r takes the triangular form

Jr =

[
Lv Lω
0 Lθu

]
, (4.17)

where Lθu is given by (4.4). Hence, regulation of r to rd can be achieved though inversion

of (4.17), as in the previous cases. Note that, computation of Jr still requires knowledge of

Zd. This value can be either estimated online via adaptive techniques [Chen et al. 2005], or

directly measured during the learning stage of the desired image. As for task error e, it has the

measurable expression

e = rd − r =


pd − p

− log ρZ

−θu

 .

Being Jr an upper triangular matrix, it is easy to prove global closed-loop stability of this

scheme. Moreover, definition of task r implies that the image trajectory of p is a straight line.

Therefore, as opposite to pure PBVS cases, direct control over image plane motion is possible,

at least for what concerns the point selected for the servoing. Of course, the same considerations

of Sect. 4.2 about the achievable final accuracy hold also for this solution, i.e., any uncertainty

in the 3D components of r (Z and θu) will unavoidably affect the final pose of the camera. An

application based on the HVS approach is presented in Chapter 7 for pose control of a FBM.

4.5 Velocity-level control schemes

Throughout the previous developments we preliminarily assumed that the camera

linear/angular velocity pair (vC , ωC) can be considered as a control input for any VS scheme.

This is usually a reasonable choice for analysis purposes, since it allows to focus on the intrinsic

properties of VS algorithms without being affected by issues related to the particular kinematic

structure of the considered manipulator. Many VS works follow this approach and assume

71 4.5 Velocity-level control schemes

a camera with full mobility, so that its velocity twist may be arbitrarily specified at any

configuration (see, e.g., [Chaumette & Marchand 2001; Corke & Hutchinson 2001]). However,

in eye-in-hand settings the camera is carried by a robot manipulator, often rigidly fixed on the

end-effector, so that (vC , ωC) is actually a consequence of the manipulator velocity input u.

The differential link (4.2) must then be further expanded in order to include robot kinematics,

and yield a new mapping

ṙ = Jimgu (4.18)

equivalent to the task-oriented kinematic modeling formulation introduced in (1.15). In the

same spirit, all the feedback schemes presented so far must be revised accordingly, i.e., they

must comply with the new differential mapping (4.18) and yield as output the manipulator

velocity command u.

Note that, avoiding this step and neglecting robot kinematics is not convenient, in particular,

for two conceptually opposite cases. The first is when the dimension of the visual task

exceeds the motion dofs of the camera, e.g., when a six-dimensional task is specified for a

camera/robot system having less than six dofs. In this case, a solution that directly relates

feature velocities to the actual dofs of the robot and solves the visual servoing problem at

that level is computationally more advantageous. For instance, this is what was done for

nonholonomic mobile robots with an onboard fixed camera in [Mariottini et al. 2007]. The

second case occurs when the visual task is under-dimensioned with respect to the camera dofs,

so that there are an infinity of camera motions which achieve the task. In addition, the robot

manipulator may be itself redundant for the camera positioning task. Therefore, this distributed

redundancy is better exploited in an integrated way at the level of the robot dofs, where it can

be effectively used for optimizing configuration-dependent criteria, such as singularity indices,

distance from obstacles, or dynamic cost functions.

Being motivated by these considerations, we analyze, in the next sections, the structure of

matrix Jimg in (4.18) for the FBM and NMM cases, respectively.

4.5.1 The FBM case

Consider a FBM with configuration vector q ∈ Q ' Rn as illustrated in Chapter 1.

We assume that the camera is rigidly attached to one of the manipulator links, and let

gOC(q) = (ROC(q), BTOC(q)) represent the camera pose w.r.t. the manipulator base frame

FO coincident with the world frame. For a fixed-base manipulator arm the pair (OṪOC , OωOC)

is related to u = q̇ through the 6×n geometric (basic) Jacobian JG [Sciavicco & Siciliano 2000][
OṪOC

OωOC

]
= JG(q)u,

Chapter 4. Visual Servoing 72

from which one can easily obtain the expression of (vC , ωC) as[
vC
ωC

]
=

[
RT
OC(q) 0

0 RT
OC(q)

]
JG(q)u = JM (q)u. (4.19)

By combining (4.19) with (4.2), it follows

ṙ = Jr(m(t), χ(t))JM (q)u = Jimg(m(t), χ(t), q)u. (4.20)

The s × n matrix Jimg is the image Jacobian of visual task (4.1) and replaces the interaction

matrix Jr in all the relevant cases, e.g., whenever control action computation or closed-loop

stability analysis are involved. Note that, a correct evaluation of matrix JM requires perfect

knowledge of the so-called hand-eye transformation, i.e., the rigid displacement between the

camera frame FC and some reference frame on the link where the camera is mounted. Typically,

the camera is rigidly attached to the robot end-effector, so that the hand-eye transformation

reduces to the relative translation/rotation between FC and the end-effector (tool) frame. Note

that, poor knowledge of the camera hand-eye transformation affects the computation of Jimg to

the same extent of any uncertainty on camera calibration KC or 3D quantities χ(t). However,

since both the camera hand-eye and intrinsic parameters are unknown but constant, they can

be preliminary estimated off-line for any given camera/manipulator setting [Strobl & Hirzinger

2006].

The image Jacobian can actually lose rank when g = dim ImJr − dim(ImJM ∩ kerJr) < s.

When this condition is encountered, it is again not possible to impose an arbitrary (controlled)

motion to all features on the image plane, but only to a subset of dimension g. In turn, any

choice for this subset of g features will constrain the motion of the remaining s− g ones. This

problem cannot be avoided even if we reach a condition where kerJr = 0, e.g., by selecting

a number s > 6 of features so that ImJr = 6, while keeping n > s (redundancy w.r.t. the

visual task). Indeed, since in any case rankJimg ≤ 6, the set M = {ṙ ∈ Rs| ṙ /∈ ImJimg} will

still have dimension ∆ ≥ s − 6, and thus, as before, there will still be ∆ independent feature

motions unrealizable by any motion of the camera — see Sect. 4.3.2.

4.5.2 The NMM case

Derivation of Jimg for a NMM formally retraces the developments of the previous case with,

in addition, the presence of the ‘special’ NMM kinematic model (1.13). In particular, by

plugging (1.16) into (4.19), it is[
vC
ωC

]
=

[
RT
OC(q) 0

0 RT
OC(q)

]
JG(q)q̇ =

[
RT
OC(q) 0

0 RT
OC(q)

]
JG(q)

[
G(qp) 0

0 Inm

] [
up
um

]
=

=JM (q)u.

(4.21)

73 4.5 Velocity-level control schemes

However, for such systems it is possible to prove that[
vC
ωC

]
= JM (qm)u,

i.e., that the NMM Jacobian JM does not depend on the platform absolute position/orientation

qp, but only on the manipulator variables qm. The proof of this notable property exploits the

fact that velocity twist (vC , ωC) of the camera is expressed in the moving camera frame, and

it would not hold if other reference frames were selected (e.g., world or platform frames). As

a result, the computation of JM (qm) is independent of the mobile base absolute localization,

which is typically obtained from noisy and possibly unreliable data processing algorithms (such

as dead-reckoning). Some examples of JM are given in Sect. 4.6 and Chapter 6.

Proposition 4.1. The NMM Jacobian JM in (4.21), relating the NMM commands u to

the linear/angular camera velocity (vC , ωC) expressed in the camera frame, is structurally

independent of the platform generalized coordinates qp.

Proof. In order to show that JM is independent of qp, assume without loss of generality a

camera mounted on the end-effector, and let RZi(α) be the 3 × 3 rotation matrix of angle α

about the absolute ZO axis or about the joint axes (Z1, . . . ,Znm) of the manipulator arm, and

[x y h]T be the position of the platform reference point expressed in FO (h is the constant

platform height). We have

OTOC =


Tx

Ty

Tz

 =


x

y

h

 + RZO (θ)E(qm) (4.22)

where θ is the platform orientation and E(qm) is the vector pointing from the platform reference

point to the camera optical center. Assume that the nonholonomic mobile base is a rigid body

that can move with a linear velocity v only along the direction of its orientation θ (this is the

case of most wheeled mobile platforms, like those with unicycle or car-like kinematics).

Differentiating (4.22), we get
Ṫx

Ṫy

Ṫz

 =


cos θ

sin θ

0

 v + RZO (θ)Ė + [ZO θ̇]×RZ(θ)E.

The orientation of frame FC w.r.t. frame FO is given by the rotation matrix

ROC = RZO (θ)R0RZ1(q1) . . .RZnm (qnm)RE ,

where RZk(qk), k ∈ {1, . . . , nm} are the rotations associated to the nm joints of the manipulators

arm, R0 represents the constant orientation of the manipulator first joint axis w.r.t. the

Chapter 4. Visual Servoing 74

platform frame, and RE is the constant orientation between the camera frame FC and the frame

located at the arm end-effector, i.e., the hand-eye transformation. Therefore, the expression of

the camera linear velocity in the camera frame

vC = RT
OC

OṪOC = RT
ERT

Znm
(qnm) . . .RT

Z1
(q1)RT

0




v

0

0

 + Ė + [Zθ̇]×E


is independent from qp = [x y θ]T , where we used the property RT

ZO
(θ)[ZO θ̇]×RZO (θ) =

[ZO θ̇]×. Similar arguments can be used to prove independence of the angular velocity ωC from

qp.

4.6 Simulations

In the following, we propose some numerical examples of the velocity-level control schemes

illustrated in the previous section. To this end, we consider a NMM carrying a camera on the

end-effector, and exploit the kinematic modeling/control techniques developed in Chapters 1–2

to design the needed feedback laws. An experimental validation of these simulation results will

be provided in Chapter 6.

The task-oriented kinematic modeling of NMMs, and the proposed design of associated

IBVS kinematic control laws, are illustrated by means of two case studies in which the mobile

platform is a two-wheeled differentially-driven vehicle with unicycle kinematics. In the first

case, the platform carries a 3R spatial manipulator with an eye-in-hand camera and the NMM

is redundant for the chosen visual task. In the second case study, a simpler 2R polar manipulator

is considered and the NMM is non-redundant w.r.t. the given task. We shall see how the TP and

TS strategies are effective in avoiding singularities during visual servoing. The feature depths

needed to compute the interaction matrix are supposed known. The next Chapter will deal with

the problem of online estimation of such quantities through a suitable nonlinear observation

scheme. Numerical simulations are performed in the Webots2 environment [Cyberbotics 2007].

Video clips showing the 3D motion of the NMMs in the different cases are available at the

website www.dis.uniroma1.it/∼labrob/research/NMM Visual Servoing.html.

4.6.1 Unicycle platform with 3R elbow-type manipulator

Kinematic modeling

Consider the NMM made of a unicycle platform and a 3R elbow-type manipulator analyzed

in Sect. 2.3.2 (Fig. 2.2). We recall that, for this robot, the configuration vector is q =
2Webots is a commercial robot simulation software developed by Cyberbotics Ltd. Its simulation engine

automatically takes into account the presence of image noise as well as motion disturbances.

http://www.dis.uniroma1.it/~labrob/research/NMM_Visual_Servoing.html

75 4.6 Simulations

[qTp qTm]T ∈ R6 with qp = [x y θ]T ∈ R3 and qm = [q1 q2 q3]T ∈ R3, and the pseudo-velocity

command vector is u = [v ω q̇1 q̇2 q̇3]T = [uTp uTm]T ∈ R5. In order to obtain an

homogeneous representation for the NMM commands, it is useful to rewrite the unicycle

kinematic model (2.19) in terms of the actuated angular velocities ũp = [φ̇R φ̇L]T of the right

and left wheel of the platform. This is done by means of the invertible transformation

up = Mũp =


ρ

2
ρ

2
ρ

w
− ρ

w

 ũp,

where ρ is the wheel radius and w is the axle length, leading to

q̇p = G(qp)Mũp = G̃(qp)ũp.

With these settings, we obtain the following 6× 5 matrix JM

JM =



ρ(1
2ws1 − dc1 − l3c23 − l2c2)

w

ρ(l3c23 + 1
2ws1 + dc1 + l2c2)

w
−l2c2 − l3c23 0 0

ρ(2d c123 − 2dc123 + ws123 − ws123)

4w

ρ(ws123 − ws123 + 2dc123 − 2d c123)

4w
0 −l2c3 − l3 −l3

ρ(wc123 + wc123 + 2ds123 + 2d s123)

4w

ρ(wc123 + wc123 − 2d s123 − 2ds123)

4w
0 l2s3 0

0 0 0 1 1

−
ρc23

w

ρc23

w
−c23 0 0

ρs23

w
−
ρs23

w
s23 0 0


,

where sijk and cijk stand for sin(qi + qj + qk) and cos(qi + qj + qk), and s123, c123 stand for

sin(q1− q2− q3), cos(q1− q2− q3), respectively. Note that, as expected, JM does not depend on

qp. By following the analysis developed in Sect. 2.3, it can be shown that this Jacobian is always

full rank except when the second link is aligned with the vertical direction, i.e., q2 = ±π/2,

where the rank of JM drops to 4. Note that the presence of an offset d 6= 0 between the

platform center and the manipulator base (see Fig. 2.2) is again crucial for deleting some of

the singularities that affect the manipulator taken alone. For the NMM geometric data, we set

h = 0.13, d = 0.15, l1 = 0.1, l2 = 0.15, l3 = 0.1, ρ = 0.1 and w = 0.25 (all units are [m]).

Task description

As visual task, we consider the problem of regulating the position on the image plane of k = 2

point features f = [pT1 pT2]T ∈ R4 taken from a fixed target. The features are extracted from

two (red) markers placed on a cubic target, as shown in Fig. 4.3. The cube has sides of 0.1 [m],

and the two markers are positioned at a distance of 0.03 [m] from their nearest edges.

The cube location in the scene can be described as follows. Consider a frame attached to

the target FT , and a frame FR : {OR; XR, YR, ZR} centered on the platform and aligned with

Chapter 4. Visual Servoing 76

Figure 4.3: A view of the target with the two markers.

the platform heading, i.e., with 
OR = [x y 0]T

XR = [cos θ sin θ 0]T

YR = [− sin θ cos θ 0]T

ZR = [0 0 1]T .

The pose of the target w.r.t. the robot (RTRT ,RZO (αt)) ∈ SE(3) can be then expressed as

follows. Vector RTRT points to the center of the cube, while RZO (αt) is the rotation matrix of

an angle αt around the world ZO axis. When αt = 0, the cube face with the markers is parallel

to the plane (YR,ZR) and looks toward −XR. As initial conditions, we have chosen{
RTRT (t0) = [1.149 − 0.392 0.314]T [m]

αt(t0) = 0.2473 [rad]

for the NMM (with respect to the fixed cube target) and
q1(t0) = 0

q2(t0) = 0.57 [rad]

q3(t0) = −0.57 [rad]

for the manipulator joint angles. As a result, the initial position of the point features on the

image plane is

f(t0) = [0.5829 −0.0791 0.5162 −0.0273]T ,

while their desired reference position is

fd = [0.082 −0.2932 −0.1480 −0.1371]T .

Being s = 2k = 4, the complete 4× 5 NMM image Jacobian is computed as

ḟ =

[
Jp1(p1, Z1)

Jp2(p2, Z2)

]
JM (qm)ũ = Jimg(f , Z, qm)ũ,

with ũ = [ũTp um]T . The single degree of kinematic redundancy is used to avoid the singularities

of JM . This is obtained by minimizing the cost function

H4(q) =
1

cos2 q2
,

77 4.6 Simulations

t = 0 sec t = 5 sec

t = 14 sec t = 22 sec

Figure 4.4: Snapshots of the visual servoing task with the PG method.

which goes to infinity at the singularities q2 = ±π/2. For redundancy resolution, we adopted

the PG method (2.6) with the control gain matrix K = 0.2 I2 in (2.3) and a stepsize α = 1

in (2.8), evaluated for H = H4(q) and using the negative sign.

Simulation results

In Fig. 4.4, four snapshots taken during the execution of the visual servoing task are shown.

In each picture, the small upper-left window shows the current image acquired by the camera,

while the lower-left window shows the same image after the segmentation process. In the same

window, two (green) dots represent the desired positions of the features.

The left plot in Fig. 4.5 shows the path followed by the two feature points on the image

plane, starting from the circular markers and ending at the triangle markers. As expected,

due to the task decoupling properties of the PG method (with diagonal K), and since no

singularities were encountered during visual servoing, the features move on the straight line

connecting their initial positions to the desired ones. The time evolution of H4(q) in the right

part of Fig. 4.5 confirms that the the NMM has been kept away from singular configurations.

Finally, the velocity commands of the NMM during the servoing are shown in Fig. 4.6. For the

platform, we reported the up commands instead of the ũp, since linear and angular velocities

have a more direct interpretation. We observe that the requested task motion is executed by

distributing effort among both the platform and the manipulator.

Chapter 4. Visual Servoing 78

−20 −10 0 10 20 30 40 50 60 70
−70

−60

−50

−40

−30

−20

−10

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20 22
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

time [s]

H
4(q

)

Figure 4.5: PG method. Left: motion of point features p1 (solid blue line) and p2 (dashed red

line). Right: constrained minimization of index H4(q).

0 2 4 6 8 10 12 14 16 18 20 22
−2

−1.5

−1

−0.5

0

0.5

1

time [s]

v,
 ω

0 2 4 6 8 10 12 14 16 18 20 22

−1

−0.5

0

0.5

1

1.5

time [s]

jo
in

t c
om

m
an

ds

Figure 4.6: NMM control commands with the PG method. Left: linear velocity v (solid

blue line) and angular velocity ω (dashed red line) of the platform. Right: manipulator joint

velocities q̇1 (solid blue line), q̇2 (dashed red line) and q̇3 (dotted green line).

79 4.6 Simulations

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

d
l1

l2

q1

q2

h

Figure 4.7: Unicycle platform with a 2R polar manipulator.

4.6.2 Unicycle platform with 2R polar manipulator

Kinematic modeling

In this second case study, the NMM has the same previous platform but uses a 2R polar

manipulator on board for carrying the camera, see Fig. 4.7. Note that this arrangement may

cover the interesting situation of a wheeled mobile robot equipped with a pan-tilt camera (whose

two dofs can be modeled as manipulator joints). An experiment involving this setup is reported

in Sect. 6.1. In this case, we have qp = [x y θ]T , qm = [q1 q2]T , and thus q ∈ R5, while the

actual commands are ũ = [φ̇R φ̇L q̇1 q̇2]T ∈ R4. The geometric data of this NMM are the same

as in Sect. 4.6.1 (eliminating the third link).

The associated 6× 4 matrix JM is

JM =



−ρ(dc1 +
w

2
s1 − l2c2)

w

ρ(dc1 +
w

2
s1 + l2c2)

w
−l2c2 0

ρ(2d c12 − 2dc12 + ws12 − ws12)

4w

ρ(−2d c12 + 2dc12 + ws12 − ws12)

4w
0 −l2

ρ(ds12 + d s12 +
1

2
wc12 +

1

2
wc12)

2w

ρ(−ds12 − d s12 +
1

2
wc12 +

1

2
wc12)

2w
0 0

0 0 0 1

−ρc2

w

ρc2

w
−c2 0

ρs2

w
−ρs2

w
s2 0



,

with sij = sin(qi + qj), cij = cos(qi + qj), sij = sin(qi − qj) and cij = cos(qi − qj). It can be

shown that this matrix has always full rank.

Chapter 4. Visual Servoing 80

Figure 4.8: A situation where the NMM image Jacobian is close to a singularity.

Task description

As in the previous case study, we choose to regulate the position of k = 2 point features,

obtaining a 4× 4 NMM image Jacobian. This NMM is no longer redundant for the given task,

and visual servoing can be obtained using the scheme (2.1) with (2.3). However, inversion

of the square NMM image Jacobian does not yield in general good results, since this matrix

easily becomes ill-conditioned during the servoing task as discussed in Sect. 4.3.2. Consider for

example the situation shown in Fig. 4.8, corresponding to the following initial conditions and

desired position of the two point features:

RTRT (t0)(t0) =
[

0.3956 −0.453 0.2334
]T

[m]

αt(t0) = −0.8571 [rad]

q1(t0) = −0.7025 [rad]

q2(t0) = −0.1368 [rad]

f(t0) =
[

0.7273 −0.0939 0.5123 0.0482
]T

fd =
[

0.1274 −0.0691 −0.1354 0.1065
]T

.

Matrix Jimg is very close to a singularity and its inversion will generate very large velocity

commands for the NMM. However, the two 2× 4 blocks Jimg1
and Jimg2

in

Jimg =

[
Jimg1

Jimg2

]
=

[
Jp1JM
Jp2JM

]
,

which are associated to the positioning task of each single point feature, are well-conditioned in

this configuration; in fact, the smallest singular values are σ(Jimg) = 0.16, σ(Jimg1
) = 198.75,

and σ(Jimg2
) = 196.01, respectively. This implies that the robotic system is too constrained in

order to impose an arbitrary velocity to both features, although it is still possible to move them

individually. Therefore, it is interesting to test the performance of the TP and TS methods

81 4.6 Simulations

t = 0 sec t = 2 sec

t = 6 sec t = 22 sec

Figure 4.9: Snapshots of the visual servoing task with the TP method.

−20 0 20 40 60 80 100

−60

−40

−20

0

20

40

60

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

time [s]

||e
1||,

 ||
e 2||

Figure 4.10: TP method. Left: motion of point features p1 (solid blue line) and p2 (dashed red

line). Right: task errors norms ‖e1‖ (solid blue line) and ‖e2‖ (dashed red line) vs. time.

as they are mainly intended for cases when the (visual) task cannot be directly realized as a

whole.

Simulation results

The TP method (2.12) has been applied with K1 = 3 I2 and K2 = 0.02 I2, and choosing r1 = p1,

i.e., the primary task is the regulation of the lower-right point feature, and r2 = p2.

Chapter 4. Visual Servoing 82

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

σ(
J)

0 2 4 6 8 10 12 14 16 18 20
180

200

220

240

260

280

300

320

time [s]

σ(
J 1),

 σ
(J

2)

Figure 4.11: Singularity analysis during the visual task. Left: time evolution of the smallest

singular value σ(Jimg). Right: smallest singular values σ(Jimg1
) (solid blue line) and σ(Jimg2

)

(dashed red line).

0 2 4 6 8 10 12 14 16 18 20 22
−5

−4

−3

−2

−1

0

1

time [s]

v,
 ω

0 2 4 6 8 10 12 14 16 18 20 22
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time [s]

jo
nt

 c
om

m
an

ds

Figure 4.12: NMM control commands with the TP method. Left: linear velocity v (solid

blue line) and angular velocity ω (dashed red line) of the platform. Right: manipulator joint

velocities q̇1 (solid blue line) and q̇2 (dashed green line).

Figure 4.9 shows the motion of the NMM during visual servoing. In this case, the TP

method is able to realize the task without encountering any singularity, but the motion of p2 is

no more on a straight line, as it can be seen from Fig. 4.10. This is a direct consequence of the

fact that regulation of p2 is addressed as a secondary task, and thus combined feature motions

that would not be realizable are handled by relaxing the constraints on p2. Nonetheless, the

norm of the error on the second feature ‖e2(t)‖ = ‖p2(t)− p2d‖ is still decreasing (right plot in

Fig. 4.10), though decay is not exponential as with ‖e1(t)‖.

In Fig. 4.11, we report the evolution of the smallest singular values σ(Jimg), σ(Jimg1
) and

83 4.6 Simulations

t = 0 sec t = 2 sec

t = 4.8 sec t = 10 sec

Figure 4.13: Snapshots of the visual servoing task with the TS method.

σ(Jimg2
) during the servoing task. Note that matrix Jimg remains always close to singularity,

while Jimg1
and Jimg2

are well conditioned throughout the motion. This confirms that a direct

inversion of Jimg would not have provided satisfactory results. The velocity commands for the

platform and the manipulator are shown in Fig. 4.12.

For comparison, we have applied also the TS method (2.17) and performed the visual task

in two phases, achieving two degrees of redundancy during the first phase. In the reported

simulation, we have chosen again r1 = f1 as the subtask to be realized during the first phase,

and r2 = f2 as the completing subtask for the second phase. In order to keep the target as much

as possible in front of the NMM, redundancy in the first phase has been used for minimizing

the cost function

HTS(q) =
1
2
q2
1 .

Denoting by uHTS the expression (2.8) evaluated for H = HTS(q), the command sequence is

implemented as follows:

I. uI = J†img1
K1e1 +(I4−J†img1

Jimg1
)uHTS , until ‖e1‖ ≤ ε1 and HTS(q) ≤ ε2, where ε1 = 1

and ε2 = 0.001;

II. uII = (I4 − J†img1
Jimg1

)JTimg2
K2e2 + J†img1

K1e1, until the end of the servoing task.

In Fig. 4.13, four snapshots of the NMM motion are shown. In particular, the frame at

t = 4.8 [s] in the sequence corresponds to the end of the first phase. The NMM is able to

Chapter 4. Visual Servoing 84

−20 0 20 40 60 80 100

−60

−40

−20

0

20

40

60
Switching point

Figure 4.14: TS method. Motion of point features p1 (solid blue line) and p2 (dashed red line),

with switching point of the latter.

0 1 2 3 4 5 6 7 8 9 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time [s]

v,
 ω

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time [s]

jo
in

t c
om

m
an

ds

Figure 4.15: NMM control commands with the TS method. Left: linear velocity v (solid

blue line) and angular velocity ω (dashed red line) of the platform. Right: manipulator joint

velocities q̇1 (solid blue line) and q̇2 (dashed red line).

regulate the feature positions by keeping the target in front of the platform, thanks to the

optimization of HTS(q) during the first phase. The motion of the features in the image plane

is shown in Fig. 4.14, where the switching point between the two phases is indicated on the

motion of p2. Note that feature p1 never switches, as its desired value is reached at the end

of the first phase and then kept during the second phase. The velocity commands shown in

Fig. 4.15 have a discontinuity at the switching time (vertical dashed line), but are considerably

smaller than those produced by the TP method.

5
Estimation of Geometric and Camera Quantities

In the previous chapter, we discussed how Visual Servoing can provide a rich set of

tools to control the pose of a robot through the elaboration of visual information.

Among the different possibilities, IBVS is perhaps the best choice in terms of robustness

w.r.t. calibration errors, control over image trajectories, and easiness of implementation, but

at the expense of possible singularities/unstabilities that can be encountered in executing the

visual task. As explained in Sect. 4.3.2 and Sect. 4.5, such stability issues are due to the local

nature of most IBVS feedback laws, in particular because of the various uncertainties affecting

the computation of the image Jacobian Jimg in (4.20), such as

- poor knowledge of camera hand-eye calibration, i.e., the fixed pose of the camera w.r.t. its

mounting point on the robot body. This uncertainty obviously only affects the geometric

Jacobian JM (q);

- poor knowledge of matrix KC , i.e., of the camera intrinsic parameters. This uncertainty

only affects the interaction matrix Jr(m(t), χ(t)) in consequence of rough evaluation of

the normalized image quantities m(t) (see Sect. 3.2);

- poor knowledge of the 3D information present in the vector of 3D quantities χ(t).

85

Chapter 5. Estimation of Geometric and Camera Quantities 86

Usually, an accurate estimation of the constant hand-eye and camera calibration parameters

can be easily obtained by means of several off-line methods, so that the knowledge of these

values does not represent a relevant issue in most applications. On the other hand, χ(t) is

made of unmeasurable time-varying quantities which need to be approximated if no external

information about the 3D model of the target is present.

Estimating 3D quantities is part of the more general paradigm of motion and structure

reconstruction, whose purpose is to design an identification scheme to estimate both the camera

motion and the structure (i.e., the 3D geometry) of the scene. Several attempts have been made

in the last years to solve separately these problems, i.e., by focusing more on the camera motion

recovering or on the scene geometry reconstruction. Roughly speaking, most of the proposed

solutions stem from two different points of view, namely the Computer Vision and Control

Theory ones, so that different algorithms and methodologies have been often developed for the

same final goals. Usually, Computer Vision methods work in a discrete setting, e.g., consider

finite camera translations/rotations, and interpret the problem as a minimization task of a

given linear/nonlinear cost function. The solution is typically found in an off-line fashion after

a number of iterations, but then the obtained result is the ‘best’ one can achieve w.r.t. the

boundary conditions of the specific case. On the other hand, Control Theory methods adopt

an online or incremental approach, and are often designed in a continuous framework, i.e., by

considering infinitesimal changes of the camera pose and of the scene. This is the case, for

instance, of many solutions relying on (extended) Kalman filters [Gelb 1974; Maybeck 1979].

Therefore, as a downside, one only obtains convergence over time towards any solution that

could have been found in one discrete step with the former approach, but, as a benefit, an

estimate or approximation of the final value is continuously available online. Deciding whether

one approach is superior to the other does not have a definitive answer, and a case-to-case

analysis is typically required. However, in this Thesis only the Control Theory point of view

is considered, since it suits better for implementing any reactive (and therefore online) visual

control laws such as IBVS schemes.

As explained in Sect. 4.3.2, a common workaround for IBVS implementations is to perform

the servoing by replacing χ(t) with the constant value χd relative to the final robot pose. Indeed,

χd can be provided during the learning stage when the desired image is stored, or estimated

off-line by means of any (partial) pose estimation algorithm. However, other solutions involving

online estimations of the unknown quantities are possible, such as the methods proper to the

Control Theory class of 3D reconstruction algorithms. By pursuing such a methodology, we

propose to replace χ(t) with an estimate χ̂(t) obtained as the output of a suitable observer,

so that limt→∞ ‖χ(t) − χ̂(t)‖ = 0 for any (possibly wrong) initial guess χ̂(t0) [De Luca et al.

2007b; Robuffo Giordano et al. 2008]. The observation of χ(t) is based on the idea that, since

the motion of the feature on the image plane depends upon the current value of χ(t), it is

87 5.1 Persistency of excitation

possible to estimate this value by comparing the measured motion with the one predicted by

using the current estimate χ̂(t), under the assumption of a perfect knowledge of the camera

3D motion and of its intrinsic parameters. Therefore, by interpreting χ(t) as a continuous

unknown state with known dynamics, we build an estimator which asymptotically recovers the

actual value of χ(t) associated to the selected set of features. The problem, however, cannot

be attacked by means of classical observation schemes for linear systems [Luenberger 1971]

because of the intrinsic nonlinear nature of the pin-hole perspective projection model (3.13).

A solution must then be sought by borrowing techniques from the nonlinear observer theory

which provides suitable tools to estimate unmeasurable time-varying states of known nonlinear

dynamical systems.

To this end, Sect. 5.1 introduces the basic formulation of the persistency of excitation

Lemma, a theoretical tool upon which all the subsequent observation schemes are designed.

Next, Sect. 5.2 illustrates how the general formulation of the persistency of excitation Lemma

can be exploited in order to estimate the value of χ(t), in particular for the cases of point

features and image moments. Furthermore, as a byproduct of this analysis, Sect. 5.3 shows

that the hypothesis of a perfect calibrated camera can be partially relaxed. Indeed, the same

structure of the observer can be extended to cover also the case of online reconstruction of

the focal length which can be performed preliminary (and once for all), independently from

χ(t). Finally, simulation results validating the proposed methods are presented in Sect. 5.4.

These numerical assessments are then resumed and further validated in Chapter 6 by means of

experiments on real robots.

5.1 Persistency of excitation

As a preliminary step for the following developments, we recall the persistency of excitation

Lemma whose proof can be found in [Marino & Tomei 1995].

Lemma 5.1. Consider the linear time-varying system{
ξ̇ = Wξ + ΩT (t)z, ξ ∈ Rn

ż = −ΛΩ(t)Sξ, z ∈ Rl
(5.1)

where W is an n×n Hurwitz matrix, S is an n×n symmetric positive definite matrix such that

WTS + SW = −Q, with Q symmetric positive definite, and Λ is a l × l symmetric positive

definite matrix. If ‖Ω(t)‖, ‖Ω̇(t)‖ are uniformly bounded and the persistency of excitation

condition is satisfied, i.e., there exist two positive real numbers T and γ such that∫ t+T

t

Ω(τ)ΩT (τ)dτ ≥ γIl > 0, ∀ t ≥ t0, (5.2)

then (ξ, z) = 0 is a globally exponentially stable equilibrium point. �

Chapter 5. Estimation of Geometric and Camera Quantities 88

At first glance, this Lemma provides a stability condition for the sole class of linear dynamical

systems in the form (5.1). Note that, however, despite the apparent linearity w.r.t. the state

(ξ, z), formulation (5.1) can cover a wider range of systems thanks to the presence of the

time-varying quantity Ω(t) which can arbitrarily include additional (nonlinear) terms. As

a matter of fact, this flexibility proves to be crucial when devising observation schemes for

nonlinear systems, as in our case.

For our goals, the key idea in using this Lemma is the following: given a state vector

x = [xTm xTu]T ∈ Rn+l where only the state subset xm is directly measurable, design an update

law for the estimated state x̂ = [x̂Tm x̂Tu] ∈ Rn+l such that, by letting ξ = xm − x̂m and

z = xu− x̂u be the error sub-vectors, the associated error dynamics matches formulation (5.1).

When this manipulation is possible, Lemma 5.1 guarantees exponential convergence of the error

system, or, in other words, that values of the unmeasurable variables xu can be inferred from

knowledge of xm. In this context, condition (5.2) plays the role of an observability test, i.e.,

observation of xu is possible iff there not exists a t̄ such that ∀t > t̄, ‖Ω(t)‖ ≡ 0. We wish to

stress that convergence of the observation is not prevented if ‖Ω(t)‖ ≡ 0 for a finite period of

time, since condition (5.2) is violated if and only if ‖Ω(t)‖ definitely vanishes over time.

In the next section, we will show how Lemma 5.1 can be tailored to solve the problem of

estimating the value of χ(t) during the motion of the camera for the specific cases of point

features and image moments. Note that, obtaining an explicit or ‘physical’ interpretation

of (5.2) may be a nontrivial task in many practical situations. However, in the point feature

case a direct interpretation is possible, thus providing a closed-form characterization of all

camera motions that actually allow depth identification.

5.2 3D Observation

As stated at the beginning of the Chapter, the problem of estimating 3D quantities from camera

measurements can be split in two conceptually different classes, namely estimation of the camera

motion and estimation of the scene structure. The former problem is typically relevant when

one needs to extract the so-called egomotion while moving through the environment. Among

the many works on this topic, it is worth citing [Soatto 1994; Soatto et al. 1996; Ma et al. 2000]

where the authors propose a set of recursive solutions endowed with the remarkable property of

being independent of the structure of the target object, and therefore allowing direct estimation.

For our needs, however, the latter problem of structure identification is more relevant, since, as

stated in Sect. 3.1, the relative motion among the camera and the target is supposed known.

Indeed, the target object is assumed fixed in the world, and the camera velocity twist can be

known with high accuracy, being it mounted on the end-effector of a robot manipulator.

In the last years, several works have addressed the structure identification with known

89 5.2 3D Observation

motion. Chaumette et al. [Chaumette et al. 1996] proposed a general methodology to recover

the 3D information of several geometric primitives (points, lines, cylinders, spheres, etc.) by

measuring the current values of the features, of the image motion (the feature time derivatives)

and of the camera velocity twist. However, due to the presence of noise and discrete sampling,

the extraction of the image motion is not trivial, and some constraints on the allowed camera

motions must be considered. In [Matthies et al. 1989], two Kalman filter-based algorithms

are derived and compared, the first estimating a continuous depth map of the scene, and the

second extracting the depth of a discrete set of features. Both methods need the computation

of the current image motion, and impose several constraints on the camera motion in order

to simplify the problem. In particular, the second method assumes a camera which translates

orthogonally to the optical axis (without rotations), so that the depth of the features is kept

constant and the problem is considerably simplified. A similar approach is found in [Smith

& Papanikolopoulos 1994], where, again, only lateral camera motions are allowed. Adaptive

IBVS schemes are devised in [Conticelli et al. 1999] for a camera mounted on a nonholonomic

mobile robot via online observation of a constant unknown parameter (the height of the object

points). In fact, whenever the depth Z is kept constant during the camera motion [Matthies

et al. 1989; Smith & Papanikolopoulos 1994], or the value of Z is related to any other fixed

quantity [Conticelli et al. 1999], the problem of depth identification can be formulated in the

adaptive control context, where several tools allow, under suitable hypothesis, to estimate an

unknown constant parameter.

With respect to these works, we tackle the problem of structure identification without any

preliminary constraint on the camera motion, and without the explicit need for image motion

estimation; thus, the only information used is the current value of the features measured on

the image plane and the current camera twist. The next sections will present the explicit

derivation of suitable observer schemes for the particular cases of point features and image

moments, respectively.

5.2.1 Observer design for point features

Consider a point feature p = [pu pv]T with associated depth Z. Both p and Z can be considered

as time-varying states with dynamic equations given by the last row of (3.9), and (4.6),

respectively. Note that, since only the first three columns of Jp in (4.6) are affected by the value

of Z, a pure camera rotation does not bring any information useful for depth observation: a

camera translation must be necessarily present. This intuitive consideration, already established

(among the others) by [Inaba et al. 2000] in the context of the observability of dynamical

systems with perspective outputs, will intrinsically affect all the proposed observation schemes

in terms of satisfaction of the persistency of excitation condition. In addition, for the case of

point features, it will explicitly characterize which camera motions are useless for the depth

Chapter 5. Estimation of Geometric and Camera Quantities 90

observation.

Let x = [pT Z]T ∈ R3 be the complete state vector and u = [vTC ω
T
C]T ∈ R6 be the input

vector. Hence, the state dynamics are expressed by the driftless system

ẋ =


− 1

x3
0

x1

x3
x1x2 −

(
1 + x2

1

)
x2

0 − 1
x3

x2

x3
1 + x2

2 −x1x2 −x1

0 0 −1 −x2x3 x1x3 0

u

(5.3)

y =

[
x1

x2

]
,

where the output vector y ∈ R2 represents the measurable variables, i.e., the coordinates of the

point p on the image plane. Consider the change of coordinates

x̃ =


x1

x2

1
x3

 ,

which is globally defined since x3(t) > 1 (i.e., the point P is supposed to lie always in front of

the image plane, otherwise the camera sensor, and hence the visual servoing, would fail)1. In

the new coordinates, system (5.3) becomes

˙̃x =


−x̃3 0 x̃1x̃3 x̃1x̃2 −

(
1 + x̃2

1

)
x̃2

0 −x̃3 x̃2x̃3 1 + x̃2
2 −x̃1x̃2 −x̃1

0 0 x̃2
3 x̃2x̃3 −x̃1x̃3 0

u

y =

[
x̃1

x̃2

]
. (5.4)

Since (5.4) is driftless and the output has dimension smaller than the state, its linear

approximation at any point is unobservable. This is a consequence of the intrinsic nonlinear

nature of (5.4) in the sense that any linear time-invariant approximation will lose the

observability property. Hence, as stated before, a suitable nonlinear observer is then strictly

needed in order to correctly address the problem.

According to the notation introduced in Sect. 5.1, let xm = [x̃1 x̃2]T ∈ Rn, n = 2, represent

the measurable state components, and xu = x̃3 ∈ Rl, l = 1, the unmeasurable one. System (5.4)

takes the compact form

ẋm = Γ1(y(t), u(t))xu + Π1(y(t), u(t)) = Γ1(t)xu + Π1(t)

ẋu = u3x2
u + (y2u4 − y1u5)xu,

1We recall that, in normalized coordinates, the image plane lies at distance λ = 1 from the camera optical

center, see Sect. 3.2.

91 5.2 3D Observation

where

Γ1(t) =

[
−u1 + y1u3

−u2 + y2u3

]
, Π1(t) =

[
y1y2u4 − (1 + y2

1)u5 + y2u6

(1 + y2
2)u4 − y1y2u5 − y1u6

]

are functions of known quantities (system inputs and outputs).

Now let x̂ = [x̂Tm x̂Tu] be the estimate of the (partially) unknown state x̃. We seek an update

law which can yield an error dynamics close to formulation (5.1). To this end, the choice

˙̂xm = Γ1(t)x̂u + Π1(t) + K1(xm − x̂m), K1 > 0
˙̂xu = u3x̂2

u + (y2u4 − y1u5)x̂u + K2ΓT1 (t)(xm − x̂m), K2 > 0
(5.5)

yields the error dynamics

ξ̇ = −K1ξ + Γ1(t)z

ż = −K2ΓT1 (t)ξ + u3(x2
u − x̂2

u) + (y2u4 − y1u5)(xu − x̂u).
(5.6)

If we set

W = −K1

Ω(t) = ΓT1 (t)

Λ = −K2

S = 1,

system (5.6) is very close to the formulation in (5.1), the only difference being the last two

terms in the z dynamics.

It is worth noting that, when

u3(t) ≡ u4(t) ≡ u5(t) ≡ 0, (5.7)

the two formulations match exactly and the global exponential stability of (ξ, z) is guaranteed,

as long as the conditions of Lemma 5.1 are met. While we will thoroughly discuss such conditions

in the forthcoming analysis, we would like to emphasize that (5.7) corresponds to a camera

motion which keeps the depth Z constant. As explained before, in this case the problem

is considerably simplified and can be attacked with various techniques. The purpose of our

analysis is to show that (5.6) can converge also when (5.7) does not hold.

Proposition 5.1. Using the observer (5.5), the origin of the error system (5.6) is exponentially

stable if the conditions of Lemma 5.1 are verified.

Chapter 5. Estimation of Geometric and Camera Quantities 92

Proof. By letting e = [ξT zT]T ∈ R3, it is useful to rewrite (5.6) as ė = A(t)e + g(e, t) with

A(t) =

[
−K1 Γ1(t)

−K2ΓT1 (t) 0

]

g(e, t) =


0

0

(x2
u − x̂2

u)u3 + (y2u4 − y1u5)e3

 =


0

0

2xuu3 + (y2u4 − y1u5)e3 − u3e
2
3

 .

(5.8)

We can consider g(e, t) as a perturbation term of the nominal system ė = A(t)e which, if (5.2)

holds, is guaranteed by Lemma 5.1 to be globally exponentially stable. Note that g(e, t) is a

vanishing perturbation, i.e., g(0, t) = 0, ∀t. Several tools are available for the stability analysis

of globally exponentially stable systems with vanishing perturbations (see [Khalil 2002] for an

overview). Generally, if ‖g(e, t)‖ is sufficiently small, the exponential stability is preserved,

at least locally. Due to the boundedness of ‖Γ1(t)‖ and ‖Γ̇1(t)‖, the system ė = A(t)e is an

exponentially stable slowly varying linear system, and therefore there exists a suitable Lyapunov

function V (e, t) such that

c1eTe ≤ V ≤ c2eTe

V̇ (e, t) =
∂V

∂t
+

∂V

∂e
A(t)e ≤ −c3‖e‖2∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c4‖e‖,

with c1 . . . c4 positive constants. To derive bounds on g(e, t) note that 0 < xu(t) < 1, |y1(t)| ≤
M1 and |y2(t)| ≤ M2 where M1, M2 are the (finite) dimensions of the image plane2, and, since

‖Γ1(t)‖ is bounded, there exists a positive constant M3 such that |u3(t)| ≤ M3, |u4(t)| ≤ M3

and |u5(t)| ≤ M3. Finally, if |e3| ≤ E we have |e2
3| ≤ E|e3| ≤ E‖e‖. Hence,

‖g(e, t)‖ ≤ (2 + M1 + M2 + E)M3‖e‖ = γ‖e‖.

Using the Lyapunov candidate V (e, t) for the perturbated system (5.8), we get

V̇ (e, t) ≤ −c3‖e‖2 +
∥∥∥∥∂V

∂e

∥∥∥∥ ‖g(e, t)‖ ≤ −c3‖e‖2 + c4γ‖e‖2.

If γ is small enough to satisfy the bound γ < c3/c4, V̇ is negative definite and system (5.6) is

exponentially stable. Note that, for given camera parameters (image plane size) and motion

(u3, u4, u5) the constant γ only depends on E, i.e., the maximum value of |e3(t)|. This can

be made arbitrarily small by choosing the initial condition e3(t0) inside a suitable level set

2We are implicitly assuming a camera motion such that the object of interest is always kept in the field of

view.

93 5.2 3D Observation

Sc = {e ∈ R3|V (e, t0) ≤ c}, since we have

E ≤ ‖e(t)‖ ≤ ‖e(t0)‖ ≤
V (e, t0)

c1
≤ c

c1
.

Note that the above stability result is of a local nature, since convergence of the error to zero

is only guaranteed in a suitable neighborhood of the origin. A less conservative estimate of this

neighborhood may be obtained by considering that our observer will be obviously initialized

with the measured values of the feature, so that e1(t0) = e2(t0) = 0. This implies that |e3(t)| ≤
‖e(t0)‖ = E, so that

|e3(t0)| ≤
c3

c4M3
− (2 + M1 + M2)

guarantees exponential error convergence.

The conditions of Lemma 5.1 deserve some additional considerations. First of all the

boundedness of ‖Γ1(t)‖ and ‖Γ̇1(t)‖ requires that the input signal u(t) is bounded with bounded

derivatives. As for condition (5.2), it has a deeper meaning: it essentially states that there must

not exist a t such that ∀t > t, ‖Γ1(t)‖ ≡ 0. By direct inspection of the expression of Γ1(t), we

can conclude that the persistency of excitation condition for depth observation fails if and only

if

1. ∃ t | ∀ t > t : u1(t) ≡ 0, u2(t) ≡ 0, u3(t) ≡ 0, i.e., if no translations are involved in the

camera motion;

2. ∃ t | ∀ t > t : λu1 = y1u3, λu2 = y2u3, which is equivalent to

u1

u3
=

X

Z
,

u2

u3
=

Y

Z
.

This means that the camera is translating along the projection ray of the selected point

p, and, thus, the projection of P on the image plane is kept constant during the motion.

It is interesting to note that such persistency of excitation condition, essential for the observation

convergence, is basically due to the scale ambiguity present in every perspective system. Indeed,

as discussed in Sect. 3.2, within a perspective system it is impossible to distinguish an object

from the same object twice as big, twice as far and moving twice as fast. The condition of

nonzero (and known) camera translational velocity introduces a scale information which is

essential to disambiguate among all the equivalent states induced by the relation (3.14), and to

successfully recover the actual feature depth. Note that, in this case, such property also implies

the necessity of Lemma 5.1 requirements (which in general are only sufficient), i.e., depth can

be recover if and only if (5.2) holds.

Chapter 5. Estimation of Geometric and Camera Quantities 94

5.2.2 Observer design for image moments

In Sect. 4.3.1 we emphasized how image moments can provide a useful set of features since they

encode in a compact way the fingerprint of a given shape, and their evaluation is typically free

of the so-called correspondence problem. As with any other feature, however, the interaction

matrix of a generic moment still depends of some 3D information. In particular, for a target

object with planar limb surface,

χ(t) =


A

B

C

 = −n/d,

where n = [nx ny nz]T ∈ S2 is the plane unit normal and d the plane distance to the origin of

FC — see (4.9)–(4.11). Therefore, in the following we analyze the possibility of tailoring the

formulation of Lemma 5.1 to obtain an online observation scheme for [A B C]T . In particular,

we discuss three possible solutions for such estimation depending on the initial assumptions

made on the quantities directly measurable, and on target intrinsic geometry.

General case

Let xm = [mi1j1 . . .minjn]T ∈ Rn be a collection of n generic moments, and xu = [A B C]T ∈
Rl, l = 3. From (4.13), we can rewrite the xm dynamics in the compact form

ẋm =


λA1 λB1 λC1

...
...

...

λAn λBn λCn




A

B

C

 +


λD1

...

λDn

 =

= Γ2(t)xu + Π2(t).

(5.9)

Hence, as done in the previous case, we define the update law for x̂m as

˙̂xm = Γ2(t)x̂u + Π2(t) + K1(xm − x̂m), K1 > 0, (5.10)

and get a ξ̇ = ẋm − ˙̂xm error dynamics

ξ̇ = −K1ξ + Γ2z (5.11)

that matches exactly the first row of (5.1) with z = xu − x̂u, W = −K1 and ΩT (t) = Γ2(t).

Note that Lemma 5.1 requires the boundedness of ‖Γ2(t)‖ and ‖Γ̇2(t)‖. In our case, this is again

guaranteed as long as the camera velocity (vC , ωC) keeps bounded with bounded derivatives

and a finite image plane size is assumed, so that the measured moments are bounded.

Now it remains to design an update law for x̂u which can yield a ż dynamics as close as

possible to the second row of (5.1). To this end, we first need an explicit expression of ẋu.

95 5.2 3D Observation

From (4.11), it is

ẋu = − ṅd− nḋ

d2
(5.12)

and, since n is a free vector expressed in FC , from standard kinematics we have

ṅ = −[ωC]×n. (5.13)

Expression of ḋ can be obtained as follows: among the points belonging to (4.9) consider point

Pn = −dn, i.e. the point on the plane which lies at a distance d along the direction of n.

From (4.9), it is ḋ = −ṅ ·Pn−n · Ṗn and, since n and Pn are parallel, ṅ ·Pn = 0. By exploiting

the kinematics of Pn given by (3.9), we have

n · Ṗn = n · (−vC − [ωC]×Pn) = −n · vC ,

where, again, the fact that n and Pn are parallel is used. In conclusion, we obtain

ḋ = n · vC . (5.14)

By plugging (5.13) and (5.14) into (5.12), we get the searched relation

ẋu = [ωC]×
n
d

+
(n

d
· vC

) n
d

which, using (4.11), can be explicitly rewritten in terms of (A, B, C) as

ẋu =


A2 AB AC

AB B2 BC

AC BC C2

vC − [ωC]×xu =

= Θ(xu)vC − [ωC]×xu.

(5.15)

Hence, by choosing the update law

˙̂xu = Θ(x̂u)vC − [ωC]×x̂u + K2ΓT2 ξ, K2 > 0, (5.16)

we get a ż error dynamics

ż = (Θ(xu)−Θ(x̂u))vC − [ωC]×z−K2ΓT2 ξ (5.17)

which, by setting Λ = K2 and S = I3, results very close to the formulation in (5.1), the

only differences being the first two terms in (5.17). The last step is to prove stability of the

closed-loop error system (5.11)–(5.17) despite the presence of the unwanted terms in (5.17).

Proposition 5.2. Using the observer (5.10)–(5.16), the origin of the error

system (5.11)–(5.17) is exponentially stable as long as the conditions of Lemma 5.1 are

verified, in particular condition (5.2).

Chapter 5. Estimation of Geometric and Camera Quantities 96

Proof. Let e = [ξT zT]T be the error vector and rewrite (5.11)–(5.17) as

ė =

[
−K1 Γ2

−K2ΓT2 0

]
e +

[
0

(Θ(xu)−Θ(x̂u))vC − [ωC]×z

]
=

= A(t)e + g(e, t)

(5.18)

where we interpreted the term Θ(xu) − Θ(x̂u) as a function of e. Function g(e, t) can be

seen as a perturbation term of the nominal system ė = A(t)e which is guaranteed to be

globally exponentially stable by Lemma 5.1. Note that g(e, t) is a vanishing perturbation, i.e.,

g(0, t) = 0, ∀t. Therefore, if ‖g(e, t)‖ is sufficiently small, the exponential stability of (5.18)

is (locally) preserved. Due to the boundedness of ‖Γ2(t)‖ and ‖Γ̇2(t)‖, the nominal system

is an exponentially stable slowly varying linear system, and therefore there exists a suitable

Lyapunov function V (e, t) such that

c1eTe ≤ V ≤ c2eTe

V̇ (e, t) =
∂V

∂t
+

∂V

∂e
A(t)e ≤ −c3‖e‖2∥∥∥∥∂V

∂e

∥∥∥∥ ≤ c4‖e‖,

with c1 . . . c4 positive constants. Let Sc = {e | V (e, t) ≤ c} be a level set of function V . Since

V is radially unbounded, Sc is a compact set. Due to the assumed boundedness of (vC , ωC),

g(e, t) is (locally) Lipschitz and there exists a a positive constant M such that ‖g(e, t)‖ ≤ M‖e‖
in Sc. Using the Lyapunov candidate V for the perturbed system we get

V̇ (e, t) ≤ −c3‖e‖2 +
∥∥∥∥∂V

∂e

∥∥∥∥g(e, t)‖ ≤ −c3‖e‖2 + c4M‖e‖2.

If M is small enough to satisfy the bound M < c3/c4, V̇ is negative definite on Sc. Therefore,

if the initial error e(t0) is such that

‖e(t0)‖2 ≤
V (e(t0), t0)

c1
≤ c

c1
, (5.19)

system (5.11)–(5.17) converges exponentially to the origin. Note that a less conservative

estimation on the initial error norm can be obtained by considering that observer (5.10)–(5.16)

can be initialized with the measured states xm. In this case, (5.19) reduces to

‖e(t0)‖2 = ‖z(t0)‖2 ≤
c

c1
.

This results demonstrates the possibility to use the measured moments and the known

camera velocity to estimate vector [A B C]T without any special assumption on the shape

97 5.2 3D Observation

of the object considered. Note, however, that the persistency of excitation condition (5.2)

is supposed to hold. As explained before, this is equivalent to assume that ‖Γ2(t)‖ does not

definitely vanish over time. Structure of the n×3 matrix Γ2(t) depends on the number and kind

of moments considered for the estimation, as can be seen from (5.9). Therefore, choice of which

moments to exploit for the estimation is of crucial importance in order to meet condition (5.2),

and ongoing research is currently devoted to this topic. As a first evaluation, simulation results

are presented in Sect. 5.4.1 in order to illustrate the observer behavior when area and barycenter

are chosen as moments. This choice, for instance, can improve the overall convergence properties

of the estimation w.r.t. the case of a target point feature, since the information relative to the

area proves to be relevant to reduce the situations in which condition (5.2) is not met. In any

case, since functions λi(mkl, vC) in (5.9) are such that λi(mkl, 0) ≡ 0 [Chaumette 2004], the

persistency of excitation requires, again, that the camera must necessarily move with a nonzero

linear velocity vC in order to have a converging estimation process.

Plane orientation n known

In some cases, it is possible to obtain plane orientation n by a direct evaluation. For instance,

if the homography matrix H between the current and the desired views is available, n can

be recovered by suitably decomposing H. As explained in Sect. 3.3.2, computation of the

homography typically requires the tracking and matching of several distinct points on the

current/desired images, but there also exist techniques to obtain H from a dense unstructured

object [Chesi et al. 2000; Benhimane & Malis 2004; Malis et al. 2004].

If n is known, estimation of [A B C]T is considerably simplified since the unmeasurable

quantities only reduce to the plane distance d (see (4.11)). Indeed, in this case we can set

xm = [mi1j1 . . .minjn]T ∈ Rn, as before, and xu = 1/d ∈ Rl, l = 1. As a consequence, (4.13)

can be rearranged as

ṁij =− nxλA(mkl, vC) + nyλB(mkl, vC) + nzλC(mkl, vC)
d

+ λD(mkl, ωC) =

=
λ(n,mkl,vC)

d
+ λD(mkl, ωC),

(5.20)

and dynamics of xm becomes

ẋm =
1
d


λ1(n,mkl,vC)

...

λn(n,mkl,vC)

 +


λD1

...

λDn

 =

= Γ3xu + Π3.

(5.21)

By choosing the update law

˙̂xm = Γ3x̂u + Π3 + K1(xm − x̂m), K1 > 0, (5.22)

Chapter 5. Estimation of Geometric and Camera Quantities 98

we obtain the same ξ̇ error dynamics as in (5.11) with ΩT (t) = Γ3(t). Expression of ẋu can be

derived from (5.14) as

ẋu = −n · vC
d2

= −x2
un · vC ,

from which, by designing the update law

˙̂xu = −x̂2
un · vC + K2ΓT3 ξ, K2 > 0, (5.23)

we get the ż error dynamics

ż = −(x2
u − x̂2

u)n · vC −K2ΓT3 ξ. (5.24)

The first term in (5.24) may be again considered as a vanishing perturbation term g(e, t), so

that exponential convergence of observer (5.22)–(5.23) can be proven by following the same

arguments given for the general case (Sect. 5.2.2).

Concerning condition (5.2), the same former considerations about number and kind of

moments to be included in xm hold also in this case. There is, however, a slight difference

which may be important in practical implementations: while Γ2(t) in (5.9) is a n × 3 matrix,

Γ3(t) is always a column vector of dimension n. Hence, in this case, it is sufficient that one

component of Γ3(t) does not vanish over time for the persistency of excitation condition to

hold. In many practical situations, this can result in a milder constraint than requiring, as in

the general case, full-rankness of matrix Γ2(t) over time. Such difference is, of course, due to

the assumed knowledge of n which reduces the number of unknown parameters to be estimated.

Case of a sphere

In the previous developments, we addressed the estimation of χ(t) under the sole assumption

that object O possesses a planar limb surface, but without posing other special requirements

on its geometric structure. Of course, if some additional information about O is available, one

can exploit this knowledge in order to obtain an improved estimation scheme tailored for the

specific case. As an illustrative example, in this section we consider the design of the estimation

algorithm when object O is a sphere. This case has also a practical relevance in the mobile

robotics field when, e.g., robots are committed with visual tasks involving tracking/positiong

w.r.t. a ball, and so on.

Consider a 3D sphere, with center P0 = [X0 Y0 Z0]T and radius R, represented by the

equation

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2 −R2 = 0.

The sphere is an example of a 3D object with a planar limb surface, and, in this case, (4.10)

becomes
1
Z

=
X0

K
pu +

Y0

K
pv +

Z0

K
, (5.25)

99 5.2 3D Observation

where K = X2
0 + Y 2

0 + Z2
0 −R2 [Espiau et al. 1992]. From (5.25) and (4.10), it follows

A

B

C

 =
1
K


X0

Y0

Z0

 = −n
d

, (5.26)

implying that n lies on the ray passing through the sphere center P0. The projection of a sphere

on the image plane is the ellipse

(X0pu + Y0pv + Z0)2 −K(p2
u + p2

v + 1) = 0, (5.27)

with an equivalent expression in terms of image moments

n02p
2
u + n20p

2
v − 2n11pupv + 2(n11yg − n02xg)pu + 2(n11xg − n20yg)pv + n02x

2
g + n20y

2
g

−2n11xgyg + 4n2
11 − 4n20n02 = 0,

(5.28)

where p̄g = [xg yg 1]T is the ellipse barycenter in homogeneous coordinates, and nij are

normalized centered moments of order i + j [Chaumette 2004]. By equating (5.27) and (5.28),

it follows
xg =

X0Z0

Z2
0 −R2

yg =
Y0Z0

Z2
0 −R2

,

which, plugged into (5.25), yields

Zg =
Z2

0 −R2

Z0
(5.29)

as the barycenter depth, i.e., the depth of the point on the limb plane whose projection is p̄g.

In order to evaluate n in terms of image quantities, one could hope that the 3D barycenter

backprojection Pg = Zgp̄g and the sphere center P0 were aligned. Indeed, in this case, it would

be possible to obtain n as the direction of the measured barycenter p̄g. Unfortunately, while

xgZg = X0 and ygZg = Y0, from (5.29) it is Zg 6= Z0, so that Pg and P0 do not share the

same 3D direction (actually, Zg < Z0, i.e., Pg is always in front of P0). Note that, however, if

R � Z0, i.e., if the sphere radius is small compared to the distance of the sphere center from

the camera, (5.29) can be approximated as Zg ' Z0, and (5.26) becomes


A

B

C

 =
1
Zg



xg
x2
g + y2

g + 1
yg

x2
g + y2

g + 1
1

x2
g + y2

g + 1

 =
ng
Zg

. (5.30)

Therefore, under this approximation, the only unmeasurable quantity reduces to Zg and it is

possible to proceed similarly as in Sect. 5.2.2, by setting xm = [mi1j1 . . .minjn]T ∈ Rn and

Chapter 5. Estimation of Geometric and Camera Quantities 100

xu = 1/Zg ∈ Rl, l = 1. Dynamics of xm and ˙̂xm are given by (5.21) and (5.22), where d is

replaced by Zg, and n by ng. Furthermore, by using the last row of (3.9), we have

ẋu = − Żg
Z2
g

' −x2
uŻ0 = x2

u(u3 + Y0u4 −X0u5) =

= x2
uu3 + xu(ygu4 − xgu5).

(5.31)

The update law for x̂u is then chosen as

˙̂xu = x̂2
uu3 + x̂u(ygu4 − xgu5) + K2ΓT4 ξ (5.32)

which yields the ż error dynamics

ż = (x2
u − x̂2

u)u3 + z(ygu4 − xgu5)−K2ΓT4 ξ. (5.33)

Since the first two perturbation terms in (5.33) are, again, vanishing for z = 0, convergence of

observer (5.22)–(5.32) can be proved an in the previous sections.

It is interesting to note that, for a sphere, the design of the observer structure is conceptually

equivalent to the situation discussed in Sect. 5.2.2. Indeed, in both cases, the plane normal

direction n is directly evaluated in terms of image data, and the only unknown quantity becomes

the ‘depth’ of the target object. The only relevant difference is that the special geometric

structure of the sphere allows a direct evaluation of n, while in the previous (and more general)

case a homography decomposition between current and desired view may be needed in order

to obtain the same information.

5.3 Focal Length Estimation

As discussed in the previous section, a pure camera rotation is not useful for depth observation

since in this case the motion imposed to the features does not depend on the associated 3D

information χ(t). Anyway, this motion does still depend on the camera intrinsic parameters

KC , and in particular on the focal length λ (see (3.12)): therefore it is possible to exploit the

same observer structure as before in order to estimate the constant value of λ without being

affected by uncertainties on χ(t). In principle, any image feature could be considered for such

estimation, e.g., both point features and moments would be suitable. However, for the sake of

illustration, in the following we focus only on the case of point features. Indeed, by considering

point features, a ‘physical’ interpretation of the persistency of excitation condition (5.2) is

possible, and, in addition, any equivalent formulation involving image moments, or other image

quantities, can be tailored in straightforward way.

Since the goal of this section is the online observation of λ, the assumption of perfect

knowledge of matrix KC must be partially relaxed. In particular, we assume that only the

101 5.3 Focal Length Estimation

values of (u0, v0) are known, while considering λ as an unknown constant parameter. Therefore,

by letting pu = p̃u − u0 and pv = p̃v − v0, i.e., by centering the pixel coordinates of p̃ w.r.t. the

camera principal point, the interaction matrix of p takes the form

[
ṗu

ṗv

]
=

 − λ

Z
0

pu
Z

pupv
λ

−
(

λ +
p2
u

λ

)
pv

0 − λ

Z

pv
Z

λ +
p2
v

λ
−pupv

λ
−pu

[
vC
ωC

]
= Jp(p, Z)

[
vC
ωC

]
.

(5.34)

Now, assume that a pure angular motion is imposed to the camera, and let xm = p ∈ Rn, n = 2,

xu = [λ 1/λ]T ∈ Rl, l = 2, be the measurable/unmeasurable state vectors, and u = ωC ∈ R3

be the input vector. Hence, in this case the state dynamics are expressed by the driftless system

ẋm = Γ5(t)xu + Π5(t)

ẋu = 0 (5.35)

y = xm,

where

Γ5(t) =

[
−u2 y1y2u1 − y2

1u2

u1 y2
2u1 − y1y2u2

]
, Π5(t) =

[
y2u3

−y1u3

]
,

are functions of known quantities. Note that the introduction of the component 1/λ in xu,

which at first glance may seem unnecessary, is aimed at obtaining a linear dependence on the

unmeasurable states in (5.35).

Proceeding as in the previous section, we choose the update laws

˙̂xm = Γ5(t)x̂u + Π5(t) + K1(xm − x̂m), K1 > 0,

˙̂xu = K2ΓT5 (t)(xm − x̂m), K2 > 0,
(5.36)

which, in this case, yield an error dynamics that matches exactly formulation (5.1) with W =

−K1, Ω(t) = ΓT5 (t), Λ = K2, and S = I2. Hence, global convergence to the origin of (ξ, z) is

always guaranteed as long as conditions of Lemma 5.1 are met, in particular condition (5.2).

Since Γ5(t) is a 2 × 2 matrix, condition (5.2) implies that there must not exist a t̄ such that,

∀t > t̄ matrix Γ5(t)ΓT5 (t) is not strictly positive definite. This can happen if and only if

detΓ5(t) = y1y2u
2
2 − y2

2u1u2 − y1y2u
2
1 + y2

1u1u2 ≡ 0, ∀t > t̄. (5.37)

In order to fully understand the physical meaning of (5.37), it is useful to also look at its

expression in terms of 3D coordinates of point P , i.e.,

λ2

P 2
z

(Pyu4 − Pxu5)(Pxu4 + Pyu5) =
λ2

P 2
z

η1 η2 ≡ 0, ∀t > t̄. (5.38)

Recalling that P = [Px Py Pz]T and ωC = [u1 u2 u3]T , it is easy to see that η1 is the third

component of vector [ωC]×P , while η2 is the third component of vector [ωC]×Pπ/2, where

Chapter 5. Estimation of Geometric and Camera Quantities 102

Pπ/2 = [−Py Px Pz]T is point P rotated π/2 radians about the camera ZC axis. Therefore,

from (5.37) and (5.38) we can state that the persistency of excitation condition for focal length

observation is met if:

1. a rotation about the XC or YC camera axes is present (u1 6= 0 or u2 6= 0). Note that a

rotation about the optical axis ZC is useless for the observation;

2. the feature point does not lie fixed at the center of the optical plane, i.e., y1 6= 0 or y2 6= 0;

3. the imposed rotation ωC induces on points P and Pπ/2 a non zero linear velocity along

the ZC axis; i.e., these two points must either get closer to or further from the image

plane as a consequence of the camera rotation.

5.4 Simulations

In the following, we present some simulation results meant to illustrate the properties

of the observation techniques developed so far. The simulations are implemented in the

MATLAB [Mathworks 2007] and Webots environments, under the assumption that the camera

is carried by the end-effector of a robot system which can provide the chosen linear/angular

motion. These numerical assessments will be further validated in Chapter 6 by means of

experimental results obtained on real robots.

5.4.1 Observation of 3D quantities

Point features

In order to show the performance of the depth observer (5.5) for point features, we begin with

the simple case of a camera in sinusoidal motion along the ZC axis, a case that, e.g., could not

be addressed with the methods in [Matthies et al. 1989; Smith & Papanikolopoulos 1994] (see

Sect. 5.2). The simulation data are:[
xTm(t0) xTu (t0)

]T = [24 −5 2]T[
x̂Tm(t0) x̂Tu (t0)

]T = [24 −5 1]T

u3(t) = 0.5 cos πt

K1 = 20 I2

K2 = 0.5

.

Note that the first two components of the estimation error are initially zero because the feature

position is measured and the observer is initialized accordingly. Figure 5.1 depicts the behavior

of e(t) during the simulation and shows how the estimate of Z approaches the true value.

103 5.4 Simulations

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

e
[p

ix
el

, p
ix

el
, m

]

(a) Behavior of e1 (solid blue line), e2 (dotted green

line) and e3 (dashed red line) vs. time.

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time [s]

Z
 [m

]

(b) True (solid blue line) and estimated (dashed red

line) Z.

Figure 5.1: Observation with point features: first simulation.

0 1 2 3 4 5 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time [s]

e
[p

ix
el

, p
ix

el
, m

]

(a) Behavior of e1 (solid blue line), e2 (dotted green

line) and e3 (dashed red line) vs. time.

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time [s]

Z
 [m

]

(b) True (solid blue line) and estimated (dashed red

line) Z.

Figure 5.2: Observation with point features: second simulation.

Convergence is reached after a transient of few seconds the motion along the camera optical

axis.

Our second simulation involves a more complex camera motion consisting of a translation

Chapter 5. Estimation of Geometric and Camera Quantities 104

Figure 5.3: Observation with point features: third simulation. The camera is mounted on the

end-effector of a NMM in a typical eye-in-hand configuration. The red dot on the target cube

represents the point feature tracked during the simulation.

and a rotation about the XC and ZC axes. We set:

[
xTm(t0) xTu (t0)

]T = [10 −10 2]T[
x̂Tm(t0) x̂Tu (t0)

]T = [10 −10 1]T

u1(t) = 0.1 cos 2πt

u3(t) = 0.5 cos πt

u4(t) = 0.6 cos π/2 t

u6(t) = 1

K1 = 20 I2

K2 = 0.5

.

Results of this simulation are shown in Fig. 5.2. Practically zero error is reached after 1 [s] of

motion even if in this case the camera motion is quite complex. Note that, again, the first two

components of the observation error are initially zero because the feature position is measured.

As an additional case study, we implemented the proposed algorithm in the Webots

environment by considering a camera mounted on the end-effector of a mobile manipulator

made of a unicycle-like platform carrying a 3R spatial manipulator (see Fig. 5.3). The idea was

to test the performance of the proposed observer against the noise automatically introduced by

the Webots engine. This noise is added on the image perceived by the camera and thus directly

reflects on the feature extraction process. The objective is to estimate the depth of the target

point (the red dot on the cube in Fig. 5.3), while the first and second link of the manipulator

105 5.4 Simulations

0 2 4 6 8 10 12
−5

−4

−3

−2

−1

0

1

time [s]

e 1, e
2 [p

ix
el

]

(a) Behavior of e1 (solid blue line) and e2 (dashed

red line) vs. time.

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [s]

Z
 [m

]

(b) True (solid blue line) and estimated (dashed red

line) Z vs. time.

Figure 5.4: Observation with point features: third simulation.

move according to the velocity profiles:

q̇1 = 0.2 sin 0.4πt

q̇2 = 0.1 sin 0.8πt.

The initial value of the estimated depth is set at 1/x̂u(t0) = 0.05 and the gains were chosen as

K1 = 10 I2 and K2 = 0.8. Despite the noise, the observer is able to estimate accurately the

actual value of the depth Z, as shown in Fig. 5.4. A video clip of this simulation can be found

at www.dis.uniroma1.it/∼labrob/research/depth est.html.

Image moments

In this second set of simulations, we evaluate the performance of the observation schemes

developed for image moments (Sect. 5.2.2). In particular, we focus on the case of a sphere

(observer (5.22)–(5.32)). Indeed, as explained at the end of the previous section, this choice is

equivalently representative, from the estimation point of view, of the scheme (5.22)–(5.23) for a

known planar orientation, and ongoing research efforts are currently devoted to select a suitable

set of moments for the general case of observer (5.10)–(5.16). The algorithms are implemented

again in the Webots environment by considering a camera/NMM system as in Fig. 5.5.

In the first simulation, the moments used for the estimation are the area a and the barycenter

(xg, yg) measured from the projection of a sphere with radius R = 0.07 [m] and lying at a

distance of about 0.4 [m] from the camera. Hence, in this case, it is xm = [a xg yg]T ∈ R3,

xu = 1/Zg, and Γ4(t) ∈ R3. The robot is commanded with a periodic predefined motion

http://www.dis.uniroma1.it/~labrob/research/depth_est.html

Chapter 5. Estimation of Geometric and Camera Quantities 106

Figure 5.5: Observation with image moments. The camera is mounted on the end-effector of

a NMM in a typical eye-in-hand configuration. The red sphere represents the target object

tracked during the simulation.

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

e u [1
/m

]

(a) Behavior of eu = xu − x̂u over time.

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Z
g [m

]

(b) True (solid blue line) and estimated (dashed red

line) Zg over time.

Figure 5.6: Observation with image moments: first simulation.

according to the velocity profiles v(t) = 0.4 sin 0.4 π t and q̇1(t) = 0.2 sin 1.6 π t, where v is

the platform linear velocity and q̇1 the first link velocity, and the observer is initialized with

x̂u(t0) = 1/Ẑg(t0) = 1 [m], and gains K1 = 10 I3 and K2 = 6000. Results of the simulation

are presented in Figs. (5.6–5.7). In particular, in Fig. 5.6(a) we report the behavior of the

error vector eu = xu − x̂u, where the first term is evaluated according to (5.26), and the

second is given by (5.30) with Zg replaced by its estimate Ẑg. Hence, one can check that,

although neglecting the sphere radius R, observer (5.22)–(5.32) is able to recover the actual

value of [A B C]T in an accurate way. As a comparison, Fig. 5.6(b) shows how the estimate

Ẑg approaches the true value Zg obtained from (5.29) after about 10 [s] of motion. Finally,

107 5.4 Simulations

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time [s]

||Γ
4(t

)|
|

Figure 5.7: Observation with image moments: first simulation. Behavior of ‖Γ4(t)‖ over time.

0 5 10 15 20 25 30 35
0

50

100

150

200

250

time [s]

x g, y
g [p

ix
el

s]

(a) Behavior of (xg , yg) over time. Note that the

barycenter coordinates do not almost change during

the motion.

0 50 100 150 200 250
0

50

100

150

200

250

[pixels]

[p
ix

el
s]

(b) Image plane motion of (xg , yg). The

sphere barycenter stays almost at the

same spot.

Figure 5.8: Observation with image moments: second simulation.

Fig. 5.7 depicts the behavior of ‖Γ4(t)‖, showing that the choice of moments in xm meets the

persistency of excitation condition (‖Γ4(t)‖ does not definitely vanish over time).

In the second simulation, we considered the same situation as before but with a different

motion imposed to the robot: we discarded the first link velocity command q̇1, while keeping

the previous platform linear velocity command v. As a result, the camera moves is such a

way that the sphere barycenter stays almost fixed at the center of the image, i.e., the center

of the sphere lies on the camera optical axis during the backward/forward camera motion, see

Figs. 5.8(a–b). This choice is meant to demonstrate the potential benefits of using moments

for 3D structure estimation. Indeed, in this situation, an estimation scheme designed for a

Chapter 5. Estimation of Geometric and Camera Quantities 108

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

e u [1
/m

]

(a) Behavior of eu = xu − x̂u over time.

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Z
g [m

]

(b) True (solid blue line) and estimated (dashed red

line) Zg over time.

Figure 5.9: Observation with image moments: second simulation.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9
x 10

−3

time [s]

||Γ
4(t

)|
|

Figure 5.10: Observation with image moments: second simulation. Behavior of ‖Γ4(t)‖ over

time.

point feature (like the one proposed in [De Luca et al. 2007b]) could not correctly recover the

feature depth since the camera linear velocity vC and the point feature projection ray would

be almost coincident, thus yielding an ill-conditioned problem (see Sect. 5.2.1). On the other

hand, exploiting the area a besides barycenter (xg, yg), makes the estimation possible. This

can be verified from Figs. (5.9–5.10) which show, as before, the good convergence properties of

observer (5.22)–(5.32). In particular, despite the unfavorable arrangement of the sphere/camera

relative motion, the persistency of excitation condition is still satisfied, as can be checked from

Fig. 5.10.

109 5.4 Simulations

5.4.2 Observation of focal length

By following the outline of the previous section, we consider two numerical case studies with

the aim of assessing the focal length observer (5.36).

Data of the first MATLAB simulation are:[
xTm(t0) xTu (t0)

]T = [10 −10 128 1/128]T[
x̂Tm(t0) x̂Tu (t0)

]T = [10 −10 0 0]T

u1(t) = 0.5 cos π/2t

u2(t) = 0.3 sinπt

K1 = 50 I2

K2 =

[
5000 0

0 1

]
.

In Fig. 5.11(a–c), the evolution of the error vector e(t) is reported, from which we can check

that convergence is practically reached after 4 seconds of motion. It is worth noting that the

behavior of e3(t) appears a bit erratic, alternating fast decreases (around t = 2 [s]), with nearly

flat transients (at t = 1 [s] or t = 3 [s]). This is in close relationship with the persistency of

excitation condition. Indeed, whenever matrix Γ5(t) is far from singularity, the observation

process can converge quickly, while when Γ5(t) is close to ill-conditioning, convergence nearly

stops. By defining σ(A) as the smallest singular value of a matrix A, we reported in Fig. 5.11(d)

the evolution of η1(t), η2(t) and 20σ(Γ5(t)) vs. time (the factor 20 is introduced to obtain a

comparable scale between σ(Γ5(t)) and η1(t), η2(t)). As expected, the slow convergence phases

correspond to a small value of σ(Γ5(t)) which goes to zero when either η1(t) → 0 or η2(t) → 0.

In the second simulation, run in Webots, we modeled the camera as a fully actuated

free-flying object in order to easily impose a given angular motion, see Fig. 5.12 for a snapshot

of the system. The simulation data are[
xTm(t0) xTu (t0)

]T = [0.35 −20.32 128 1/128]T[
x̂Tm(t0) x̂Tu (t0)

]T = [0.35 −20.32 0 0]T

u4(t) = 0.2 cos 0.5πt

u5(t) = 0.2 sin 0.7πt

K1 = 20 I2

K2 =

[
600 0

0 1

]
.

The behavior of e(t), depicted in Figs. 5.13(a–c), shows that convergence is reached after 5 [s].

of motion despite the presence of noise. Fig. 5.13 (d) allows again to evaluate the influence of

σ(Γ5(t)) on the convergence rate of the algorithm.

Chapter 5. Estimation of Geometric and Camera Quantities 110

0 1 2 3 4 5 6
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

e 1, e
2 [p

ix
el

s]

(a) Evolution of e1 (solid blue line) and e2 (dashed

red line) vs. time.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

time [s]

e 3 [p
ix

el
s]

(b) Evolution of e3 = λ− λ̂ vs. time.

0 1 2 3 4 5 6
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time [s]

e 4 [p
ix

el
s−

1]

(c) Evolution of e4 = 1/λ− 1/λ̂ vs. time.

0 1 2 3 4 5 6
−25

−20

−15

−10

−5

0

5

10

15

20

25

time [s]

η 1,
 η

2,
 2

0σ
(Γ

5(t
))

(d) Evolution of η1 (solid blue line), η2 (dashed red

line) and 20σ(Γ5(t)) (dotted green line) vs. time.

Figure 5.11: Focal length observation: first simulation.

111 5.4 Simulations

Figure 5.12: Focal length observation: second simulation. The camera is modeled as a fully

actuated free-flying system. The red dot on the cube represents the feature point tracked during

the motion.

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

e 1,
 e

2 [
pi

xe
ls

]

(a) Evolution of e1 (solid blue line) and e2 (dashed

red line) vs. time.

0 5 10 15
−20

0

20

40

60

80

100

120

140

e 3 [p
ix

el
s]

time [s]

(b) Evolution of e3 vs time.

0 5 10 15
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

time [s]

e 4 [
pi

xe
ls

−
1]

(c) Evolution of e4 vs time.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

time [s]

20
σ(

Γ 5(t
))

(d) Evolution of 20σ(Γ5(t)) vs time.

Figure 5.13: Focal length observation: second simulation.

Part III

Visual Control:

Experiments and Application

113

6
Experimental Validation

This Chapter is meant to provide an experimental validation of the theoretical tools

developed in this Thesis. To this end, we propose a collection of results spanning the

various topics introduced in the previous developments, namely

- kinematic modeling and control of fixed-base/mobile robot manipulators (Chapters 1–2);

- IBVS schemes based on point features and image moments (Chapter 4);

- on-line observation of 3D structure and camera intrinsic quantities (Chapter 5).

Backbone of this evaluation is the framework of Visual Servoing and, in particular, the

subclass of IBVS methods. Indeed, as discussed in Chapter 4, IBVS implementations naturally

embrace the aforementioned topics, in particular for what concerns redundancy resolution

and structure identification. For instance, the numerical results given in Sect. 4.6 show that

suitable exploitation of redundancy can considerably improve the overall visual task execution,

by allowing realization of tasks that would be close to singularity if addressed altogether. This

fact, and the other conclusions drawn in the previous assessments, are then resumed in the

next sections, and further evaluated by means of experiments on real robots equipped with an

onboard camera. In the same spirit, we propose an experimental validation of the observation

115

Chapter 6. Experimental Validation 116

(a) MagellanPro with the onboard

pan-tilt camera.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

d

l1

l2

q
1

q
2

(b) Schematic view of the robot.

Figure 6.1: The robot used in our experiments.

schemes developed in Chapter 5, by focusing both on their convergence properties as stand-alone

systems, and on their possible inclusion into the loop of IBVS feedbacks. The aim is twofold:

to effectively show how 3D structure observation and IBVS can be integrated, and to point out

the benefits of such integration in terms of stability and overall performance.

In the following, results involving use of redundancy and 3D estimation are presented in

Sects. 6.1–6.2, while Sect. 6.3 reports an experimental validation of the focal length observation

scheme developed in Sect. 5.3.

6.1 Experiments of redundancy exploitation

The experiments considered in this section have been conducted on the MagellanPro

(Fig. 6.1(a)), a unicycle-like WMR equipped with a pan-tilt camera1 [De Luca et al. 2008a]. By

considering the pan-tilt unit equivalent to a (polar) 2R manipulator (Fig. 6.1(b)), this robotic

system falls into the class on NMMs and is conceptually equivalent to the case considered in

Sect. 4.6.2. Therefore, in the following we revisit the simulation results presented in Chapter 4

with the aim of reproducing similar boundary conditions on this experimental setup.

To this end, let the configuration vector q be partitioned as q = [qp qm]T ∈ Rn, n = 5, where

qp = [x y θ]T ∈ R3 represents the mobile platform configuration (position and orientation),

and qm = [q1 q2]T ∈ R2 the ‘manipulator’ joint variables (i.e., pan and tilt of the camera).

Furthermore, let u = [up um]T ∈ Rp, p = 4, be the induced partition of the robot velocity

commands and assume q̇m = um, i.e., that any pan/tilt velocity can be arbitrarily specified.

As for the mobile platform, it is q̇p = G(qp)up, where the 3×2 matrix G(qp) is given by (2.19).

1Videos of these results are available at www.dis.uniroma1.it/∼labrob/research/NMM Visual Servoing.html.

http://www.dis.uniroma1.it/~labrob/research/NMM_Visual_Servoing.html

117 6.1 Experiments of redundancy exploitation

Figure 6.2: The target object used in our experiments.

With these settings, we obtain

JM (qm)=



s1 −dc1 − l1 − l2c2 −l1 − l2c2 0

c1s2 ds1s2 0 −l2

c1c2 ds1c2 0 0

0 0 0 1

0 −c2 −c2 0

0 s2 s2 0


, (6.1)

where ci and si stand for cos qi and sin qi, and the geometric quantities (d = 0.135 [m], l1 = 0.011

[m], l2 = 0.0233 [m]) are defined in Fig. 6.1(b).

As visual task, we consider again the regulation of two point features p1, p2 on the image

plane, see Fig. 6.2 for a picture of the target object. Thus,

f = [pT1 pT2]T ∈ Rs, s = 4, (6.2)

and

Jf (f , χ) =

[
Jp(p1, Z1)

Jp(p2, Z2)

]
. (6.3)

The image Jacobian Jimg in (4.18) can then be evaluated from (6.1) and (6.3) where depth of the

two feature points is estimated online via the observer (5.5). Implications of the coupling IBVS

feedback/depth observation are extensively addressed in the next section. Here, we consider

the estimated depth fully representative of the ‘true’ Z, and close the IBVS loop on this value.

Note that, the dimension of the visual task defined in (6.2) matches the number of available

robot commands (s = p = 4), so that the obtained image Jacobian Jimg is a square 4×4 matrix.

6.1.1 Experiments with Task Priority

Although the task could be realized by direct inversion of Jimg as in (2.1) with (2.3), the same

issues reported in Sect. 4.6.2 affect this choice, i.e., lack of redundancy causes poor results when

Jimg is close to ill-conditioning. Consider, for example, the situation shown in Fig. 6.3(a–d)

Chapter 6. Experimental Validation 118

(a) Initial external view. (b) Final external view.

(c) Initial camera view. (d) Final desired camera view.

Figure 6.3: TP experiment. Initial and final robot views.

0 50 100 150 200 250 300

0

50

100

150

200

[pixels]

[p
ix

el
s]

(a)

0 5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

Z
1,

2 [m
]

(b)

Figure 6.4: TP experiment. Left: motion, from N to �, of the two feature points on the image

plane (p1 is the blue solid line and p2 the red dashed line). Right: Behavior of the estimated

depths Ẑ1(t) and Ẑ2(t) over time. The dashed horizontal lines represent the final ground truth

values of the depths.

119 6.1 Experiments of redundancy exploitation

0 5 10 15 20
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

time [s]

v
[m

/s
],

ω
 [r

ad
/s

]

(a)

0 5 10 15 20
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time [s]

jo
in

t c
om

m
an

ds

(b)

Figure 6.5: TP experiment. Left: platform linear velocity v (solid blue line) and angular

velocity ω (dashed red line). Right: pan velocity q̇1 (solid blue line) and tilt velocity q̇2 (dashed

red line).

corresponding to the following initial conditions:
f(t0) = [−0.4319 0.3803 0.6580 0.3893]T [m]

Z1(t0) = Z2(t0) = 0.21 [m]

q1(t0) = 0.23 [rad]

q2(t0) = −0.07 [rad].

In this configuration, matrix Jimg is very close to singularity and its inversion would generate

very large velocity commands for the robot. However, by splitting the whole task as in (2.12)

with r1 = p1 and r2 = p2, the two 2×4 sub-Jacobians Jimg1
and Jimg2

relative to the individual

feature points are well conditioned. Indeed, we have σ(Jimg) ∼ 0.15, σ(Jimg1
) ∼ 227 and

σ(Jimg2
) ∼ 246. Therefore, we proceed as in Chapter 4, and adopt the TP method for the

realization of task (6.2).

Figures 6.4(a–b), 6.5(a–b) and 6.6 show the results of the servoing realized with

the TP control law (2.12) where we set K1 = 2 I2, K2 = 0.001 I2, fd =

[−0.3889 0.0801 −0.1716 0.0915]T . We also used vmax = 0.09 [m/s], ωmax = q̇1max =

q̇2max = 0.14 [rad/s] as maximum allowed velocity commands. The task f is correctly executed

(Fig. 6.4(a)), with simultaneous motion commanded to the platform (Fig. 6.5(a)) and the

pan-tilt unit (Fig. 6.5(b)), despite the initial ill-conditioning of Jimg. Figure 6.6 reports the time

behavior of σ(Jimg), σ(Jimg1
) and σ(Jimg2

): matrix Jimg remains always close to singularity,

while Jimg1
and Jimg2

are well conditioned during the whole motion (note the different scales).

This confirms the conclusions drawn in Sect. 4.6.2, i.e., that a direct inversion of Jimg would

Chapter 6. Experimental Validation 120

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time [s]

σ(
J im

g)

0 5 10 15 20
170

180

190

200

210

220

230

240

250

260

time [s]

σ(
J im

g 1),
 σ

(J
im

g 2)
Figure 6.6: TP experiment. Singularity analysis during the visual task. Left: time evolution

of σ(Jimg). Right: time evolution of σ(Jimg1
) (solid blue line) and σ(Jimg2

) (dashed red line).

not have provided good results in terms of execution performance, while the TP strategy is able

to fulfill the given task.

Furthermore, Fig. 6.4(b) shows the behavior of the two feature depths estimated via the

observer (5.5), initialized with Ẑ1(t0) = Ẑ2(t0) = 0.3 [m]. There is a good convergence towards

the final real depth values represented by two dashed horizontal lines. Finally note that the

task is executed in about 18 [s] with a backward motion and a small clockwise rotation of

the platform. The slightly erratic commands are a consequence of the slow sampling rate of

the control architecture (30 [Hz]) and the presence of unmodeled disturbances due to the gaps

between the floor tiles.

6.1.2 Experiments with Task Sequencing

Still in the spirit of reproducing, in an experimental setting, the numerical results of Sect. 4.6.2,

we tested the TS method by decomposing the visual task (6.2) in two phases, being f1 = p1 the

variables regulated in the first phase and f2 = p2 in the second phase — see (2.17). The two

‘artificial’ degrees of redundancy were exploited so as to keep the target as much as possible in

front of the robot. This was again obtained by minimizing the cost function H(q) = 1
2q2

1 , i.e.,

the pan angle distance from the platform forward direction. The first phase switching time T1

is set according to the value of q1, so that the switch occurs when |q1(t)| < 0.1 [rad]2.

Initial and final conditions of the robot are shown in Figs. 6.7(a–d). As can be seen from

Fig. 6.7(a), the initial pan angle was intentionally set at about −90 [deg] (with the platform

counter-rotated w.r.t. the target by a similar amount) in order to fully appreciate the null-space

2A termination condition on e1 could also be added.

121 6.1 Experiments of redundancy exploitation

(a) Initial external view. (b) Final external view.

(c) Initial camera view. (d) Final desired camera view.

Figure 6.7: TS experiment. Initial and final robot views for the TS experiment.

0 50 100 150 200 250 300

0

50

100

150

200

[pixels]

[p
ix

el
s]

Switching point

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

time [s]

Z
1,

2 [m
]

(b)

Figure 6.8: TS experiment. Left: motion, from N to �, of the two feature points on the

image plane (p1 is the blue solid line and p2 the red dashed line). The black circle • indicates

the switching point between the two phases. Right: behavior of the estimated depths Ẑ1(t)

and Ẑ2(t) over time. The dashed horizontal lines represent the final ground truth values of the

depths.

Chapter 6. Experimental Validation 122

0 5 10 15 20 25 30
−0.15

−0.1

−0.05

0

0.05

0.1

time [s]

v
[m

/s
],

ω
 [r

ad
/s

]

(a)

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

q 1, q
2 [r

ad
/s

]

(b)

Figure 6.9: TS experiment. Left: platform linear velocity v (solid blue line) and angular

velocity ω (dashed red line). Right: pan velocity q̇1 (solid blue line) and tilt velocity q̇2 (dashed

red line).

0 5 10 15 20 25 30
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time [s]

q 1 [r
ad

]

Figure 6.10: TS experiment. Behavior of q1(t) over time. The vertical dashed line indicates

the switching point.

motion during the first phase. The initial conditions of the experiment are
f(t0) = [−0.1944 0.1087 − 0.0343 0.1087]T [m]

Z1(t0) = Z2(t0) = 1.7 [m]

q1(t0) = −1.68 [rad]

q2(t0) = 0 [rad],

and we set in (2.17) K1 = 1.5 I2, K2 = 0.001 I2, α = 1.5, and fd =

[−0.509 0.2631 0.1258 0.3031]T . The maximum command values were chosen as in the previous

123 6.2 Experiments of 3D structure observation

case. Results of the experiment are shown in Figs. 6.8(a–b), 6.9(a–b) and 6.10. During the first

phase, angle q1 is brought back to zero (Fig. 6.10) and feature point p1 is kept close to its desired

value, but no direct control is applied to the motion of p2 (Fig. 6.8(a)). After the switching

instant (represented in the plots by a dashed vertical line), the desired final position of feature

point p2 is recovered while keeping p1 fixed to its reached desired location. Figures 6.9(a–b)

show the velocity commands sent to the robot during the task execution. It is evident there

the discontinuity due to the switch between the two phases. In particular, during the first

phase the platform moves backwards and rotates clockwise in order to compensate for the

counterclockwise pan motion; in the second phase, the platform mainly moves forward while

slightly rotating to keep feature p1 fixed on the image plane. Finally, in Fig. 6.8(b) the behavior

of the estimated depths is reported. The observer was initialized with Ẑ1(t0) = Ẑ2(t0) = 3 [m]

with an error of about 1.3 [m] from the actual initial depths (measured independently and not

used in the experiment). Despite this rough approximation, the observer is able to recover

the true values of Z1,2 in about 3 [s] of motion (the fast initial transient on Fig. 6.8(b)), and

yields, at the end of the task, depth estimates close to the real final depth values (the dashed

horizontal lines).

6.2 Experiments of 3D structure observation

Having discussed the advantages of exploiting redundancy, in this section we focus on the

benefits that arise from the coupling of IBVS feedback and 3D observation. Indeed, as discussed

in Chapter 4, the local nature of most IBVS schemes can lead to instabilities that prevent task

fulfillment. In this respect, our proposal is to replace χ(t) with an estimate χ̂(t) obtained

from the output of observer (5.5) and its extensions. Note that, while in the linear domain

the separation principle [Friedland 1986] would guarantee global stability of the coupling

servoing/observer, when considering nonlinear systems this property is lost in general and

convergence can be proved only locally, e.g., if the observer initial conditions are close enough

to the true state values. Obtaining an analytical characterization of the actual stability region

w.r.t. initial task/observer errors/states is a difficult problem due to the high nonlinearities

present in the system dynamics and is currently object of ongoing research. Promisingly, the

experiments reported hereafter show a good tolerance of the combined servoing/observer system

w.r.t. observer initial errors, camera noise, and calibration uncertainties3 [De Luca et al. 2008b].

Note that, choice χ(t) = χ̂(t) instead of χ(t) ≡ χd has at least two general advantages:

1. if χd is available, IBVS stability domain can be enlarged by initializing the observer with

χ̂(t0) = χd, and by obtaining, in turn, a better approximation of Ĵimg thanks to the

observer convergence during the robot motion;
3Video clips of these experiments can be found at www.dis.uniroma1.it/∼labrob/research/depth IBVS.html.

http://www.dis.uniroma1.it/~labrob/research/depth_IBVS.html

Chapter 6. Experimental Validation 124

(a) (b)

Figure 6.11: Robot and target object.

2. if χd is not known, it is still possible to initialize the observer with a generic value, and

then use χ̂(t) to fulfil the task.

Last point can be particularly relevant in the case of navigation/exploration tasks for mobile

robots equipped with cameras, whenever a set of locations is specified in terms of images

acquired during the motion without the possibility to store at the same time the corresponding

3D information.

The following experiments have been realized on a unicycle-like robot equipped with a fixed

camera mounted on its top (Fig. 6.11(a))4. This design can be seen as a particular NMM

with qm = ∅, so that the modeling framework developed in Chapters 2–4 can be exploited

effortlessly. As for the target to be tracked, we chose a vertical planar object with 4 black dots

placed at the vertexes of a rectangular shape, see Fig. 6.11(b).

In order to obtain the analytic expression of matrix JM , let q = [x y θ]T ∈ R3 be the

platform configuration vector, u = [v ω]T ∈ Rp, p = 2, be the linear and angular platform

velocities, vector r = [rx ry rz]T be the relative displacement between the unicycle reference

point and OC (the camera optical center), and φ be the angle between camera ZC axis and

platform main axis (ZC lies on the horizontal plane, see Figs. 6.12(a–b)). With this notation,

4We wish to thank Prof. Prattichizzo and his team from the University of Siena for their kind support which

made us possible to run these experiments.

125 6.2 Experiments of 3D structure observation

x

y

θ

X0

Z0

O

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

φ

r

ZC

(a) Top view.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

X0

Y0

O

r

ZC

h

(b) Side view.

Figure 6.12: Definition of robot quantities.

we can obtain the following 6× 2 matrix JM

JM =



sinφ −rx cos φ− ry sinφ

0 0

cos φ rx sinφ− ry cos φ

0 0

0 −1

0 0


mapping the robot inputs [v ω]T to the camera linear/angular velocity vector [vC ωC]T

expressed in the camera frame. The geometric data of the robot are:

r = [0.07 0.02 0.13]T [m]

φ = 0 [rad].

6.2.1 Point features

In this first set of g = 4 experiments, we considered regulation of the k = 4 point features on the

target object, see Fig. 6.13(b)–(d). The same servoing task (same initial and final robot poses)

was run by considering different initial values for observer (5.5) with the aim of assessing the

robustness and reliability of the integrated approach. In the following, we will use superscript

index j = 1 . . . g to denote the j-th experiment, and subscript index i = 1 . . . k to denote the

i-th point feature.

For this visual task we have f = [pT1 . . . pTk]T ∈ Rs, s = 2k = 8, matrix Jf (f , χ(t)) ∈ R2k×6

is made of the stack of k point feature Jacobian Jpi(pi, Zi(t)) as in (4.7), and χ = [Z1 . . . Zk]T ∈
Rk. Since, in this case, no redundancy is present (s > p), we use the simple feedback law

u = Ĵ†img(f , χ̂(t))K(fd − f), K > 0, (6.4)

Chapter 6. Experimental Validation 126

(a) Initial pose (external view). (b) Initial pose (camera view).

(c) Final pose (external view). (d) Final pose (camera view).

Figure 6.13: Point feature experiment. External and camera views: the green dots represent

the desired positions of the 4 points features.

conceptually equivalent to (4.14) with inclusion of the robot kinematics JM . The initial pose

of the robot is such that for each point feature i, Zi(t0) ' 3.9 [m], while at the desired pose

Zdi ' 0.98 [m] and fd = [−0.2509 0.2123 −0.1594 0.2075 −0.1632 0.0443 −0.2585 0.0462]T .

Note that, in this case,

χ̂(t) =
[
Ẑ1 . . . Ẑk

]T
= [1/x̂u1 . . . 1/x̂uk]

T
,

i.e., it can be directly computed as output of observer (5.5).

In each j-th experiment, the observer states are always initialized as x̂jmi(t0) = pji (t0),

i.e., matching the measured initial feature positions, while, for the initial depth guesses, we

considered 4 different values, one for experiment:
Ẑ1
i (t0) = 1/x̂1

u(t0) = 1.6 [m]

Ẑ2
i (t0) = 1/x̂2

u(t0) = 3 [m]

Ẑ3
i (t0) = 1/x̂3

u(t0) = 5 [m]

Ẑ4
i (t0) = 1/x̂4

u(t0) = 8 [m].

127 6.2 Experiments of 3D structure observation

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(a) Ẑ1
i (t0) = 1.6 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(b) Ẑ2
i (t0) = 3 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(c) Ẑ3
i (t0) = 5 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(d) Ẑ4
i (t0) = 8 [m].

Figure 6.14: Point feature experiment. Feature trajectories during the four servoing

experiments. The black thick box represents image plane boundaries.

Figures 6.14(a–d) show the feature motion on the image plane for each experiment where

feedback/observer gains were chosen as K = 0.5 Is, K1 = 48 I2 and K2 = 44000. The visual

task is always completed in all the 4 cases, i.e., the feature points reach their desired positions

without crossing the image plane boundaries (the black thick box in the plots). This is a direct

consequence of the convergence properties of the observer which compensates for the initial

wrong depth guesses and approximates the true Zi(t) values during the motion.

Convergence to the true depth values can also be checked on Fig. 6.15 which depicts the

behavior of the estimated depths for each point feature i and each experiment j. Note that,

despite the different initial values used in the experiments, at the end of the motion every Ẑj
i (t)

approaches the final value Zdi ' 0.96 [m], i.e., the true depth at the desired pose (represented

in the plot by a blue dashed horizontal line).

Chapter 6. Experimental Validation 128

0 5 10 15 20 25 30 35 40

1

2

3

4

5

6

7

8

9

10

time [s]

E
st

im
at

ed
 d

ep
th

s
[m

]

Figure 6.15: Point feature experiment. Evolution of the four estimated depths during the

four servoing experiments. The blue horizontal line represents the (common) depth Zdi =

0.96 [m] at the desired pose.

0 5 10 15 20 25 30 35
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time [s]

v C
 [m

/s
]

(a)

0 5 10 15 20 25 30 35
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

time [s]

ω
C

 [r
ad

/s
]

(b)

Figure 6.16: Point feature experiment. Camera linear velocity vC (left) and camera angular

velocity ωC (right) during the fourth experiment. The main components are vCz and ωCy ,

respectively.

It is also worth noting that the initial and final robot poses are such that, in each experiment,

the camera linear motion is mainly along the ZC axis, implying a continuously time-varying

behavior for Zi(t). This can be verified in Fig. 6.16 where vC and ωC relative to the fourth

experiment are shown. Noisiness of vC and ωC is a direct consequence of the numerical

differentiation step needed to obtain the actual robot velocities from discrete sampling of wheel

encoders. Hence, as claimed in Sect. 5.2.1 and numerically tested in Sect. 5.4.1, observer (5.5)

confirms the ability to cope with a freely time-varying feature depth, and shows also good

129 6.2 Experiments of 3D structure observation

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(a) Ẑ1
i (t) ≡ 1.6 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(b) Ẑ2
i (t) ≡ 3 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(c) Ẑ3
i (t) ≡ 5 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(d) Ẑ4
i (t) ≡ 8 [m].

Figure 6.17: Point feature experiment. Feature trajectories during the four servoing

experiments without using the observer. The black thick box represents image plane boundaries.

robustness against noise.

Finally, in Figs. 6.17(a–d) we show the feature motion on the image plane when considering

a constant depth during the servoing, i.e., without using the observer but just relying on prior

knowledge of the scene. In order to make a comparison, we ran the same 4 experiments as before

with Ẑj
i (t) ≡ Ẑj

i (t0), i.e., using the previous initial depth guesses as constant values during the

motion. As a result, all the experiments failed in the sense that the servoing scheme was not

able to fulfill the task while keeping the feature points inside the image plane boundaries. This,

of course, was a consequence of the too rough approximation used in Ĵimg due to wrong depth

information.

Chapter 6. Experimental Validation 130

6.2.2 Image moments

As an additional case study, we tested the integrated approach by considering a more

sophisticated feature set, i.e., image moments instead of individual feature point coordinates —

see Sect. 4.3.1. In particular, we relied upon discrete moments defined by the 4 points present

in the target object used in the previous experiments (Fig. 6.11(b)). In order to control the

robot motion, we chose a feature set made of s = 3 moments, namely

r =
[
xg yg 1/

√
a

]T
, (6.5)

where a = µ20+µ02 is a measure of the area enclosed by the selected points [Tahri & Chaumette

2005]. As in the previous case, an approximation of χ(t) is required for the actual computation

of the moment interaction matrix, and a standard choice is χ(t) ≡ χd. However, one can

again exploit observer (5.5) to get an indirect estimate χ̂(t) during the servoing task. Indeed,

rearranging (4.10) and considering the k selected points, we obtain the linear system


pu1 pv1 1

...

puk pvk 1




A

B

C

 =


1
Z1
...
1

Zk


which can be easily solved as

A

B

C

 =


pu1 pv1 1

...

puk pvk 1


†


1
Z1
...
1

Zk

 = Φ†


1
Z1
...
1

Zk

 , (6.6)

i.e., computing the ‘best’ plane passing through the given points. Since matrix Φ is made

of quantities directly measured on the image plane, an estimate of (A, B, C) is possible

by replacing the true depths Zi in (6.6) with the estimated Ẑi obtained from the observer.

Therefore, in the following we will have

χ̂(t) =


Â

B̂

Ĉ

 = Φ†


1

Ẑ1
...
1

Ẑk

 . (6.7)

It is important to point out that the case of moments computed from a discrete set of coplanar

points allows an easy observation of (A, B, C) also thanks to the special structure considered,

i.e., the possibility to track and match the very same 3D points during the camera motion.

Whenever such ‘individual’ tracking is not feasible or even possible, (6.7) cannot be directly

used and the estimation techniques of Sect. 5.2.2 must be adopted to obtain (Â, B̂, Ĉ).

131 6.2 Experiments of 3D structure observation

(a) Initial pose (external view). (b) Initial pose (camera view).

(c) Final pose (external view). (d) Final pose (camera view).

Figure 6.18: Image moments experiment. External and camera views. The green dots

represent the desired positions of point features and relative barycenter (xg, yg).

Following the structure of the the previous section, we tested feedback (6.4) with χ(t) = χ̂(t)

in g = 5 different experiments, by keeping the same initial and final robot poses and varying

the initial observer states. Figures 6.18(a–d) show the initial and final robot poses in terms of

external and camera views. Note that in Fig. 6.18(b) and Fig. 6.18(d) the central dot is not

a physical point, but it represents the computed barycenter of the real 4 point features. The

initial pose of the robot is such that, for each point feature i, Zi(t0) ' 4.1 [m], while in the final

pose we have Zdi ' 0.9 [m], xgd = 0.1038, ygd = 0.1219, and ad = 4.6217 · 10−6.

In each j-th experiment, the first two observer states were again initialized with the current

Chapter 6. Experimental Validation 132

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(a) Ẑ1
i (t0) = 0.9 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]
y

[p
ix

el
s]

(b) Ẑ2
i (t0) = 3 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(c) Ẑ3
i (t0) = 5 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(d) Ẑ4
i (t0) = 8 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(e) Ẑ5
i (t0) = 16 [m].

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

time [s]

e a

(f) ea(t)

Figure 6.19: Image moments experiment. Feature trajectories during the 5 servoing

experiments (Figs. (a–e)). The black thick box represents image plane boundaries. Figure

(f) depicts the behavior of ea(t) = 1/
√

ad − 1/
√

a(t) over time during the first experiment.

feature values measured on the image plane, while for the last state we chose:

Ẑ1
i (t0) = 1/x1

ui(t0) = 0.9 [m]

Ẑ2
i (t0) = 1/x2

ui(t0) = 3 [m]

Ẑ3
i (t0) = 1/x3

ui(t0) = 5 [m]

Ẑ4
i (t0) = 1/x4

ui(t0) = 8 [m]

Ẑ5
i (t0) = 1/x5

ui(t0) = 16 [m]

.

Figures 6.19(a–e) show the feature trajectories during the 5 experiments. White

triangles/circles represent the initial/final positions of the k feature points, while a filled

triangle/circle is used to denote the initial/final position of the barycenter (xg, yg), i.e., the

feature over which we have ‘direct’ control (see (6.5)). In Fig. 6.19(f) we report, for experiment

1, the behavior of ea(t) = 1/
√

ad − 1/
√

a(t), the task error relative to the third feature chosen

for the servoing. The gains of feedback law and observer were set as in the previous section.

Again, we can verify that the integrated visual approach is able to fulfill the task despite the

133 6.2 Experiments of 3D structure observation

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

time [s]

E
st

im
at

ed
 d

ep
th

s
[m

]

Figure 6.20: Image moments experiment. Evolution of the four estimated depths during

the five servoing experiments. The blue horizontal line represents the common depth of the

four feature points at the desired pose.

different initial depth guesses and the indirect observation of the plane parameters (A, B, C).

Convergence to the true depth values can be checked in Fig. 6.20 where the behavior of the

estimated depths for each point feature i and experiment j is shown. The blue dashed horizontal

line in the plot represents the common depth value of the 4 feature points at the final robot

pose.

Finally, the same experiments were run by adopting a constant value for χ(t), computed

from (6.7) by setting Ẑj
i (t) ≡ Ẑj

i (t0). Results are shown in Figs. 6.21(a–e). It is interesting to

note that in the first two cases (Figs. 6.21(a) and 6.21(b)) the servoing is still completed despite

the approximation adopted in the feedback law, while in the other cases the features exit the

image plane boundaries during the motion, causing failure of the task. Convergence of case

(a), with constant depths Ẑ1
i (t) ≡ Zdi , i.e, set to the values relative to the final robot pose, is

not surprising. Indeed, as discussed in the introduction, many previous work and experiments

(e.g., [Chaumette 2004; Tahri & Chaumette 2005]) have shown that this setting allows the

servoing fulfillment whenever the relative camera/target pose is inside the basin of stability of

the servoing scheme (as it was in this case). On the other hand, convergence of case (b) shows

a good tolerance of feedback (6.4) to depth/plane structure approximations. Indeed in this

case Ẑ2
i (t) ≡ 3 [m], thus far from the true final depth values. As a comparison, in the previous

section the same approximation led to the failure of the servoing task (Fig. 6.17(b)) and even

a milder one yielded the same result (Fig. 6.17(a)). As for the remaining cases, Figs. 6.21(c–f)

show that a rougher depth approximation prevents the convergence that was achieved with the

integration of the depth observer (Figs. 6.19(c–f)).

Chapter 6. Experimental Validation 134

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(a) Ẑ1
i (t) ≡ 0.9 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]
y

[p
ix

el
s]

(b) Ẑ2
i (t) ≡ 3 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(c) Ẑ3
i (t) ≡ 5 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(d) Ẑ4
i (t) ≡ 8 [m].

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

500

x [pixels]

y
[p

ix
el

s]

(e) Ẑ5
i (t) ≡ 16 [m].

Figure 6.21: Image moments experiment. Feature trajectories during the 5 servoing

experiments without using the observer. The black thick box represents image plane boundaries.

6.3 Experiments of focal length observation

In all the previous experiments, we have supposed full knowledge of the camera intrinsic

parameters, i.e., of matrix KC in (3.12), and in particular of the camera focal length λ. As

discussed in Sect. 5.3, it is possible to design a suitable extension of the depth observer to

preliminary estimate the value of λ independently from Z. Therefore, the purpose of this

section is to provide an experimental validation to both the theoretical and simulation results

presented in Sect. 5.3 and Sect 5.4.2.

With the robot chosen for our experiments, it is easy to check that a pure angular motion

cannot be imposed to the camera. Indeed, for any platform angular velocity command ω, a

resulting camera linear velocity will be always present due to the rx and ry components of the

camera offset vector r. However, the camera is not very far from the platform center, i.e., the

values of rx and ry are small, and, as a consequence, the undesired camera linear velocity vC
can be considered negligible w.r.t. the imposed camera angular velocity ωC . Therefore, we

tested the algorithm by considering vC as an additional external disturbance besides noise and

135 6.3 Experiments of focal length observation

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

ω
d, ω

p [r
ad

/s
]

(a)

0 10 20 30 40 50 60 70
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

ca
m

er
a

lin
ea

r/
an

gu
la

r
ve

lo
ci

ty

(b)

Figure 6.22: Focal length observation experiment. Left: ωd (dashed blue line) and ωp

(solid red line) vs. time. Right: ωCy (solid blue line) and the other components of the camera

linear/angular velocity vs. time.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

time [s]

es
tim

at
ed

 fo
ca

l l
en

gt
h

Figure 6.23: Focal length observation experiment. Evolution of x̂u1(t) = λ̂(t) (solid blue

line) vs. time. The estimate of λ reaches a steady state after about 30 sec of motion (vertical

solid line).

modeling uncertainties. The feature point tracked during the experiment was the top-left black

dot of the same planar target used in the previous experiments (see Fig. 6.11(b)).

The robot was commanded with the desired velocity profiles vd = 0 [m/s], ωd =

6 cos π/4t [deg/s]. Figure 6.22(a) shows the commanded ωd and actual ωp platform velocity

during the experiment. Note that ωp was obtained by numerical differentiation of the wheels

encoder readings. In Fig. 6.22(b), the behavior of vC , ωC vs. time is reported. It is then

possible to verify that the main camera angular motion (ωCy represented by the solid blue

line) is the dominant component w.r.t. the undesired vC . The parameters of the focal length

Chapter 6. Experimental Validation 136

observation algorithm were set to:

[x̂Tm(t0) x̂Tu (t0)]T = [17.01 32.99 0 0]T

K1 = 30 I2

K2 =

[
1500 0

0 0.01

] .

In order to have a reference value to compare our observation with, we also performed a standard

off-line camera calibration by using the MATLAB calibration toolbox [Bouguet 2007]. The focal

length value obtained at this preliminary stage was λ1 = 1096 pixels.

Figure 6.23 shows the result of the observation process. The estimated focal length x̂u1(t)

(solid blue line) reaches a steady state after about t = 30 sec of motion (represented by a

vertical line), despite of noise and other sources of disturbance. The average value of x̂u1(t)

after t = 30 [s] is λ2 = 1092.32 pixels, thus very close to the value computed with the off-line

technique. In Fig. 6.23, λ1 and λ2 are represented by the (almost coincident) horizontal green

and red solid lines, respectively.

7
Application

In this Chapter, we present a potential industrial application which encompasses, among

other aspects, the topics introduced in this Thesis, i.e., task-oriented kinematic modeling

and VS feedback laws. In particular, we consider a combination of visual and force-torque

feedback for automatic assembly of complex planar parts. A fixed-base robotic arm (the DLR

light-weight robot) equipped with an onboard camera is committed with the task of looking for

given parts on a table, picking them, and inserting them inside the corresponding holes on a

target movable plate. In this context, we take advantage of VS techniques, and in particular

of the HVS class, to achieve fine positioning of the robot manipulator during the approaching

phase to the parts/holes.

Indeed, as seen in the previous Chapters, VS provides both robustness w.r.t. external

disturbances and reactivity w.r.t. environmental changes, such as, for instance, the displacement

of parts/plate during the task execution. Therefore, we chose to control the relative pose among

robot end-effector and parts/holes by means of a suitable 6-dimensional task r made of visual

and cartesian quantities, thus realizing a HVS scheme. The kinematic modeling and control

framework for FBMs proposed in Chapters 1–2 is then exploited in conjunction with HVS

formulation of Chapter 4 to design the needed feedback law. The resulting robot positioning

accuracy, however, may not be high enough to accomplish tight assembly tasks as the ones

137

Chapter 7. Application 138

(a) (b)

Figure 7.1: Left: CAD model of the 3-rd generation DLR light-weight robot. Right: detailed

view of one joint. Courtesy of the German Aerospace Center (DLR).

considered for this application (clearance between parts and holes is less than 0.1 [mm]). Hence,

force-torque sensors, which provide fast and high-resolution local information about the parts

in contact, come into play during the final insertion phase, in a controlled compliance strategy

able to successfully insert the parts despite possible positioning uncertainties of the visual loop.

The following sections are devoted to the relevant aspects of this application, namely,

description of the experimental setup (robot, parts and plate), design of the HVS algorithm

used for pose control, and relative experimental validation. Additional details on all the topics

not covered here, such as description of the robust assembly strategy, can be found in [Robuffo

Giordano et al. 2008] and references therein.

7.1 Experimental setup description

7.1.1 Robot manipulator

The FBM used for this application is the 3-rd generation DLR light-weight robot (LWR) —

see Figs. 7.1(a–b). LWRs are kinematically redundant arms with seven dofs and a load to

weight ratio of 1:1, and are designed for interaction with unstructured, everyday environments.

Figure 7.2 shows a schematic view of the frames located at each joint according to the

Denavit-Hartenberg (D-H) convention [Denavit & Hartenberg 1955]. Low weight and inherent

joint compliance limit the interaction forces, even at high contact speed with the environment.

Particularly relevant for our needs is the torque sensing integrated in each joint, allowing

accurate, vibration free positioning and velocity control in the presence of elasticity and high

performance impedance control during contact phases. The robot is able to switch within one

http://www.dlr.de/rm/en/
http://www.dlr.de/rm-neu/en/desktopdefault.aspx/tabid-3803/6175_read-8961/

139 7.1 Experimental setup description

D-H Parameter LBR-KUKA
(Craig / Yoshikawa) y7

z7

x7x6x5

x4

x3

x2

x1

x0

y6

y5

y4

y3

y2

y1

y0

z6

z5

z4

z3

z2

z0

z1

00007

00-9006

03909005

009004

0400-9003

00-9002

03109001

00000

θi [°]di [mm]αi [°]ai[mm]i

Figure 7.2: Schematic view of the seven joint frames chosen according to the Denavit-Hartenberg

(D-H) convention. Courtesy of the German Aerospace Center (DLR).

control cycle (1 [ms]) between position/velocity control (required for high motion accuracy

during the visual servoing phase) to impedance control (required for limiting the interaction

forces and compensating the alignment errors during insertion).

7.1.2 Parts and plate

The eight parts and the plate used in our experiments are shown in Fig. 7.3(a–b) and

Fig. 7.4(a–h). Each part has its shape marked with black tags useful for visual recognition, and a

clearance of less than 0.1 [mm] w.r.t. the corresponding hole on the plate. Shapes of parts/holes

range from simple geometrical primitives to more complex and nonconvex structures. Let

P = {p1, . . . , p8} and H = {o1, . . . , o8} be the sets of parts and holes, respectively. With

reference to Fig. 7.4, and starting from the upper left corner, we have the following shapes in

order:

• o1 (p1): an equilateral triangle (Fig. 7.4(a));

• o2 (p2): a regular octagon (Fig. 7.4(b));

• o3 (p3): a circle (Fig. 7.4(c));

• o4 (p4): a star shape with 15 teeth (Fig. 7.4(d));

• o5 (p5): a star shape with 16 teeth (Fig. 7.4(e));

• o6 (p6): the DLR logo (Fig. 7.4(f));

• o7 (p7): the PAPAS logo (Fig. 7.4(g));

• o8 (p8): the KUKA logo (Fig. 7.4(h)).

http://www.dlr.de/rm/en/

Chapter 7. Application 140

(a) (b)

Figure 7.3: Left: plate filled with the eight planar parts used in our experiments. Right: empty

plate with holes corresponding to the given parts.

(a) The triangular part. (b) The octagonal

part.

(c) The circular part. (d) The star-shaped

part with 15 teeth.

(e) The star-shaped

part with 16 teeth.

(f) The DLR part. (g) The PAPAS part. (h) The KUKA part.

Figure 7.4: Detailed pictures of the eight parts.

7.1.3 The overall task

As explained in the introduction, the global high-level task assigned to the manipulator is to

locate, pick and insert each part into the corresponding hole on the plate (Figs. 7.5(a)–(d)

illustrate a sample sequence). Obviously, such a complex task can hardly be tackled altogether

141 7.1 Experimental setup description

(a) Hovering over the parts. (b) Picking the selected part.

(c) Hovering over the plate. (d) Inserting the part.

Figure 7.5: A typical sequence of operations. During the hovering motion (Figs. (a) and (c))

the visual system analyzes the scene and looks for a specific part/hole. As soon as the target

shape is found, the HVS algorithm drives the robot towards the desired pose.

by a single control strategy, while a suitable subdivision can yield smaller and simpler subtasks

to be fulfilled. A possible temporal decomposition is the following: for each part pi ∈ P and

corresponding hole oi ∈ H

1. hover along a predefined trajectory until pi is identified and located;

2. move to a suitable pose in order to pick pi;

3. pick pi;

4. hover over the plate along a predefined trajectory until oi is identified and located;

5. move to a suitable pose in order to insert pi;

6. insert pi in oi.

Chapter 7. Application 142

(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Detailed pictures of the picking/insertion phases. The HVS algorithm brings the

camera over the selected part (step 2 — Fig. (a)), so that the robot can reliably pick it up (step

3 — Fig. (b)). During the insertion phase, the camera is positioned over the selected hole (step

5 — Fig. (c)) and then the assembly strategy fulfills the insertion (step 6 — Figs. (d–f)).

143 7.2 Robot pose control

Z0

X0

Y0

Z
C

X
C

Y
C

Figure 7.7: The world frame FO : {O; XO, YO, ZO} coincides with the manipulator base frame,

and has axis ZO pointing upwards. The moving frame FC : {OC ; XC , YC , ZC} is attached to

the camera, with ZC superimposed to the optical axis.

In particular, during steps 1 and 4, the vision system is committed with the on-line

recognition of a target shape among the various parts/holes present in the images. The

identification method adopted in our case relies on linear classification of affine-invariant

Fourier descriptors, a set of parameters based on the Fourier coefficients extracted from the

selected shapes. Details of this pattern classification methodology are reported in Appendix B.

Robot motion in steps 2 and 5 is governed by HVS techniques, while piece insertion in step

6 is realized through a robust force-torque controlled assembly strategy. Figures 7.6(a–f) show

detailed pictures of the picking/insertion phases.

The next section illustrates the visual task definition and HVS feedback design used in the

experiments.

7.2 Robot pose control

Goal of the pose control law is to position the manipulator close and precisely enough to the

selected part/hole such that the part can be picked or the insertion strategy can be started.

An example representative of both picking and insertion final poses is given in Fig. 7.7. The

setup is arranged such that the (parallel) planes where parts and plate lie are fixed in FO and

perpendicular to ZO. Moreover, as shown in the figure, the final pose of the manipulator is

always chosen such that ZO = −ZC , i.e., with the camera optical axis normal to the parts/plate

plane and directed towards it.

Chapter 7. Application 144

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

α

α

?

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

Figure 7.8: Main orientation α is well-defined for a generic shape (left), but is meaningless for

a shape where minor and major axes are equal (right).

7.2.1 Visual task definition

Let r ∈ Rs, s = 6, be the visual task vector used for robot pose control. As discussed in

Chapter 4, choice of which visual feature to include in r largely depends on the specific case

one has to deal with, and can range from point coordinates, line parameters, ellipse centers and

radii, etc. The complexity of the shapes considered in our experiments motivated us to adopt

image moments as visual features for the servoing instead of individual points or other geometric

primitives (see Sect. 4.3.1). In [Chaumette 2004], the use of moments for full pose control of

a camera/robot is analyzed, showing that area a, barycenter (xg, yg) and main orientation α

can be directly used to control four camera dofs, i.e., full translation and rotation about ZC .

On the other hand, control of the remaining two dofs (the direction of ZC) is more involved,

especially for symmetrical shapes, and the combined use of higher-order moments is typically

required.

In our case, the circular symmetry of most shapes (o1/p1 . . . o5/p5) poses an additional

difficulty to the control of the rotational dofs. Indeed, control of the direction of ZC becomes

even harder, and main orientation α loses its ability to discriminate among rotations about ZC .

Consider Fig. 7.8: for a generic shape, α gives the major axis orientation of the ellipse which

fits ‘best’ to the shape. Clearly, if a circular-like shape is considered, no major axis can be

extracted and α becomes meaningless.

In order to overcome these issues, we chose to rely on moments only for what concerns

the camera translational dofs (using area and barycenter), and to control the remaining three

camera rotational dofs in cartesian space as explained in the following. Hence, r results in a

mixture of 2D/3D quantities, so that the servoing scheme formally falls into the HVS class

(Sect. 4.4).

145 7.2 Robot pose control

Rotation about ZC (one dof)

One interesting possibility is to replace main orientation α with an equivalent angular

information obtained from Fourier coefficients. Indeed, Fourier coefficients are a valuable source

of information since they encode in a condensed, discrete way, the complete shape of any closed

curve C. Therefore, apart from classification issues, they can also be exploited to obtain other

shape characteristics.

Coming to our case, Fourier coefficients are used to estimate the similarity transformation

parameters between two shapes, and in particular the relative rotation ρ. Assuming a camera

optical axis almost perpendicular to the object plane, it is then possible to extract ρ up to a

rotation ambiguity of 2π/ν [rad], where ν is the degree of symmetry of the selected shape —

see Appendix B. Angle ρ can then replace main orientation α for what concerns control of the

rotation about ZC . When ZC is almost perpendicular to the object plane, i.e., almost parallel

to ZO, ρ(t) behaves analogously to the camera roll angle1 φ(t) in the sense that ρ̇ = νφ̇. Hence,

by letting φ̇ = TφωC , where 1 × 3 matrix Tφ is the standard mapping from angular velocity

ωC to Euler angle rate φ̇, we have

ρ̇ = νTφωC = JρωC , (7.1)

where matrix Jρ can be regarded as the Jacobian of ρ.

Direction of ZC (two dofs)

In our setup, parts and plate plane orientations are fixed w.r.t. the manipulator base frame

FO, hence it is possible to obtain the direction of ZC w.r.t. FO, and thus w.r.t. the plane of

parts and plate, directly through the robot forward kinematics and to control it in cartesian

space. In order to avoid the usual singularity issues with Euler angles representations, we chose

to control direction of ZC directly on SO(3). By letting RCO be the rotation matrix of FO
w.r.t. FC , from (3.6) we have

ṘCO = −[ωC]×RCO. (7.2)

Recalling that ZC in FO is the last row of RCO, by rearranging (7.2) we obtain

ŻC =


ṙ31

ṙ32

ṙ33

 =


−r21 r11 0

−r22 r12 0

−r23 r13 0

ωC = ΩωC , (7.3)

where rij stands for the (i, j)-th element of RCO. Note that matrix Ω in (7.3) has always rank

two reflecting the unit vector constraint of ZC ∈ S2. However, control over the direction of ZC
1Given a ZYX Euler angles representation of the orientation of FC w.r.t. FO, roll angle φ is defined as the

rotation about Z axis.

Chapter 7. Application 146

can be achieved by regulating only two of its components, yielding a well-posed problem. In

our case, the robot final poses are designed with the camera optical axis perpendicular to the

parts/plate plane, i.e., with ZC = −ZO = [0 0 − 1]T in FO (see Fig. 3.1). Hence, a convenient

choice is to regulate to zero the first two components (r31, r32) of ZC through the differential

mapping [
ṙ31

ṙ32

]
=

[
−r21 r11 0

−r22 r12 0

]
ωC = JZCωC , (7.4)

where JZC is the Jacobian of (r31, r32). Note that regulation of [r31 r32]T to [0 0]T through

inversion of (7.4) admits the two stable equilibria [0 0 1]T and [0 0 − 1]T for ZC , depending on

the initial vertical pointing direction of the optical axis. In our case, this ambiguity is avoided

because the initial camera pose is always such that ZC points downwards (the camera looks

towards the parts/plate).

Having defined all the needed quantities, we let

r = [xg yg a ρ r31 r32]T ∈ R6 (7.5)

be the task vector used for robot pose control, and proceed to illustrate the control algorithm

designed for regulation of r(t). Note that, as in any HVS scheme, r includes both image

measurements m(t) = [a xg yg ρ]T and 3D cartesian quantities χ(t) = [r31 r32]T . In our case,

however, we do not obtain χ(t) from a partial pose reconstruction step as supposed in the

illustrative example of Sect. 4.4, but its value is computed as a function of the sole current

manipulator joint state. As a result, while a parallel displacement of parts/plate can be fully

recovered by using this visual task vector, an intentional tilting of plate would lead to failure of

the positioning task because of the wrong value of χ(t). Ongoing research efforts are currently

devoted to obtain a task formulation fully dependent on visual quantities.

7.2.2 Control algorithm

Regulation of task (7.5) to a desired value rd is addressed within the kinematic control

framework, i.e., by inverting the velocity-level differential mapping ṙ = Jr(m(t), χ(t))JM (q)u

as in (4.20), with q ∈ R7 being the manipulator joint configuration vector. Note that our

robot is redundant w.r.t. task r, with degree of redundancy one. Among the various techniques

presented in Chapter 2, we chose the (PG) method (2.6), so that

u = J†r ṙ + ς(I7 − J†rJr)u0, ς > 0. (7.6)

Expression of the interaction matrix Jr can be obtained from

ṙ =


Jm

0 Jρ
0 JZC


[

vC
ωC

]
= Jr

[
vC
ωC

]
. (7.7)

147 7.3 Experimental results

Here, Jρ and JZC are defined in (7.1) and (7.4), and the 3 × 6 matrix Jm is the area a and

barycenter (xg, yg) interaction matrix


ȧ

ẋg

ẏg

 = Jm(mkl, A, B, C)

[
vC
ωC

]

introduced in Sect. 4.3.1. Note that, in our case, (A, B, C) can be directly evaluated. Indeed, as

pointed out before, orientation and distance of parts/plate plane w.r.t. FO is fixed and known,

and the relative expression in FC can be obtained via the manipulator forward kinematics.

In regulation tasks, one sets ṙ = K(rd − r) = Ke, K > 0, as in (2.3), so that global

exponential convergence of e(t) is guaranteed as long as the assumptions behind kinematic

control hold — see end of Sect. 1.2. In our case, however, the specific constraints of the

considered application required a fast overall execution time, which, in turn, implied fast

transients for the robot motion. As a result, the aforementioned assumptions could not be

met, and the neglected dynamics of the lower-level control loop, together with the limited

actuator capabilities, modeling errors, and noise, proved to be a major limiting factor when

imposing fast transients. In such cases, a large initial error coupled with a big K may lead to

instability or, in the VS case, to the loss of visual features during the motion, causing failure of

the task. Apart from reducing K, such effects can be attenuated by avoiding large values for

e(t), and in particular for e(t0). To this end, we added a planning stage to the control law by

defining an artificial signal r∗(t) which linearly interpolates the initial task value r(t0) with the

final desired value rd, thus obtaining e(t0) = r∗(t0) − r(t0) = 0. With these settings, vector ṙ

becomes

ṙ = K(r∗(t)− r(t)), (7.8)

yielding a linear exponentially stable closed-loop error system driven by ṙ∗

ė = −Ke + ṙ∗.

Finally, the optimization function H(q), from which u0 = ∇qH(q) is derived and used in (7.6),

is designed for joint limit avoidance as

H(q) =
7∑
i=1

(
qi − q̄i

qiM − qim

)2

,

with q̄i, qiM and qim being joint i mean, max., and min. range value, respectively.

Chapter 7. Application 148

(a) Initial pose: raw camera image. (b) Final pose: raw camera image.

(c) Initial pose: segmented camera

image.

(d) Final pose: segmented camera

image.

(e) Initial pose: robot configuration. (f) Final pose: robot configuration.

Figure 7.9: Picking of octagon part. Camera images and external views of the initial and

final phases during the servoing. The overall motion lasts less than 2 [s].

7.3 Experimental results

In this section we present a selection of experimental data collected during the execution of a

complete picking/insertion sequence2.

Camera intrinsic (focal length, principal point, radial distortion) and extrinsic (hand-eye)

2Video clips of these experiments can be found at

www.dlr.de/rm-neu/desktopdefault.aspx/tabid-3985//6199 read-8953.

http://www.dlr.de/rm-neu/desktopdefault.aspx/tabid-3985//6199_read-8953/

149 7.3 Experimental results

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

e

(a) Behavior of e(t) vs. time.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

[pixels]

[p
ix

el
s]

(b) Motion of barycenter (xg , yg) on the

image plane from •–start to N–end.

0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time [s]

v C
 [m

/s
]

(c) Camera linear velocity vC .

0 0.5 1 1.5 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

ω
C

 [r
ad

/s
]

(d) Camera angular velocity ωC .

Figure 7.10: Picking of octagon part. Experimental data. Thanks to the planning of r∗(t),

the task error is initially 0 (Fig. (a)). As a consequence, no velocity jumps are commanded

during the motion (Figs. (c–d)). The barycenter of the selected part moves along a straight

line on the image plane (Fig. (b)), thanks to the decoupling properties of feedback (7.6)–(7.8).

parameters were calibrated off-line using the CalDe and CalLab free softwares [Sepp et al. 2005;

Strobl & Paredes 2005].

We consider first the approaching task to part p2 (the octagon), see Figs. 7.9(a–f) for

screenshots taken at the beginning and at the end of the HVS motion. As explained in

Sect. 7.2.1, the circular symmetry of this part poses a challenge for visual control, since main

orientation α cannot be used to control camera rotation about ZC . On the other hand, by

using angle ρ from Fourier coefficients, we get ρ(t0) = 2.16 [rad] and ρd = 0.02 [rad] as initial

Chapter 7. Application 150

and final values (Figs. 7.9(c–d)). Recall that ρ measures shapes rotation up to their degree of

symmetry ν, i.e., for an octagon with ν = 8 a physical rotation of 2π/ν [rad] results in a 2π

[rad] rotation for ρ.

Figures 7.10(a–d) show some relevant quantities collected during the experiment. As can be

seen from the plots, the overall motion is quite fast, lasting less than 2 [s] with a peak value of

‖vC‖ ' 0.4 [m/s] and ‖ωC‖ ' 0.5 [rad/s]. In Fig. 7.10(a) the behavior of e(t) = r∗(t)− r(t) is

reported. Note that, as expected, e(t0) = 0 because of the definition of reference signal r∗(t).

As a consequence, no initial jump is present in the commanded camera velocity (vC , ωC)

(Figs. 7.10(c), 7.10(d)). Finally, Fig. 7.10(b) shows the image plane motion of the octagon

barycenter (xg, yg) during the servoing, which results in a straight line as a consequence of the

decoupling properties of control (7.6)–(7.8).

Avoiding velocity jumps during fast transients, as in this experiment, has a major relevance

for meeting the assumptions behind kinematic control. Indeed, a too high acceleration request,

coupled with an high speed profile, could most likely violate such assumptions because of

limited actuator capabilities, unmodeled dynamics of lower level feedbacks, and uncertainties

in the robot dynamic model. As a result, close tracking of the ‘ideal’ velocity command u(t)

would be prevented, potentially leading to failure of the visual task. It is, then, evident the

benefit of having closed the loop on the artificial signal r∗(t) in terms of smoothness of the

velocity commands.

As an additional case, we present the approaching phase to hole o8 (Figs. 7.11(a–f)). This

shape is nonsymmetric (ν = 1), and angle ρ matches the physical rotation about ZC . At the

initial pose (Fig. 7.11(b)) ρ(t0) = 1.32 [rad], and at the final pose (Fig. 7.11(e)) ρd = 0.05 [rad].

The overall motion lasts about 3 [s] with a peak value of ‖vC ' 0.45‖ [m/s] and ‖ωC‖ ' 1.16

[rad/s] (Figs. 7.12(c) and 7.12(d)).

151 7.3 Experimental results

(a) Initial pose: raw camera view. (b) Final pose: raw camera view.

(c) Initial pose: segmented camera

view.

(d) Final pose: segmented camera

view.

(e) Initial pose: robot configuration. (f) Final pose: robot configuration.

Figure 7.11: Insertion of KUKA part. Camera images and external views of the initial and

final phases during the servoing. The overall motion lasts about 3 [s].

Chapter 7. Application 152

0 0.5 1 1.5 2 2.5 3 3.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time [s]

e

(a) Behavior of e(t) vs. time.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

[pixels]

[p
ix

el
s]

(b) Motion of barycenter (xg , yg) on the

image plane from •–start to N–end.

0 0.5 1 1.5 2 2.5 3 3.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time [s]

v C
 [m

/s
]

(c) Camera linear velocity vC .

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time [s]

ω
C

 [r
ad

/s
]

(d) Camera angular velocity ωC .

Figure 7.12: Insertion of KUKA part. Experimental data. Thanks to the planning of r∗(t),

the task error is initially 0 (Fig. (a)). As a consequence, no velocity jumps are commanded

during the motion (Figs. (c–d)). The barycenter of the selected part moves along a straight

line on the image plane (Fig. (b)), thanks to the decoupling properties of feedback (7.6)–(7.8).

Figures 7.12(a–d) show again some relevant quantities collected during the experiment.

In particular, Fig. 7.12(a) depicts the behavior of e(t) over time, from which we can check

that e(t0) = 0 yielding, as in the previous case, a camera velocity command without jumps.

Furthermore, in Fig. 7.12(b) image motion of the barycenter of hole o8 is shown, resulting as

before in a straight line.

153 7.3 Experimental results

Figure 7.13: Placement of the parts and the plate on the table for the statistical evaluation of

the automated assembly.

Statistics for the complete sequence of operations (picking and insertion of all parts) were

collected over 20 cycles, i.e., for a total of 160 assemblies. Altogether, the robot was able to

insert 154 parts successfully with a success rate of 96.25%. In four cases the assembly failed

because the vision system was not able to detect the part or hole reliably (lost tracking during

motion three times, once the part was not found at all). In the remaining two cases, the

servoing was completed successfully, but the insertion failed because of the assembly strategy.

No error recovery was implemented for these experiments: in case of errors (like lost tracking)

the current part was dropped and the sequence continued with the next part. Figure 7.13 shows

a collective picture that summarizes the distribution of parts and plate for the 20 sequences,

while experimental results of the insertion strategy can be found in [Stemmer et al. 2007].

Finally, we discuss the results of an intentional displacement of the plate during the insertion

of piece p7. Figures 7.14(a–l) show a sequence of screenshots taken during this experiment.

Thanks to the HVS feedback, the robot is able to reject external disturbances such as unexpected

displacements of parts/plate, and to eventually fulfill the insertion as soon as the plate stops

moving. Indeed, it is easy to prove that any constant ‘visual’ disturbance d is attenuated at

steady state by a factor K−1. Hence, the value of K can be exploited to tune the amount of

tracking error of the HVS algorithm, so that the chosen features are kept within the boundaries

of the image plane. Several relevant quantities of this experiment are reported in Figs. 7.15(a–d).

Chapter 7. Application 154

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.14: Insertion of PAPAS part. Despite the intentional displacement of the

plate, seen as an external disturbance, the HVS algorithm does not lose track of the hole,

and eventually reaches the correct final pose (Figs. (a–j)). The assembly strategy can then

successfully fulfil the insertion of the part (Figs. (k–l)).

155 7.3 Experimental results

0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

e

(a)

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

[pixels]

[p
ix

el
s]

(b)

0 2 4 6 8 10 12 14
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

v C
 [m

/s
]

(c)

0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time [s]

ω
C

 [r
ad

/s
]

(d)

Figure 7.15: Insertion of PAPAS part. Experimental data. Note how the barycenter is kept

inside the image plane (the boundaries of Fig. (b)) despite the external disturbance. A dashed

vertical line represents the beginning of the displacement of the plate.

In particular, it is possible to check that the barycenter always lies inside the image plane

boundaries (Fig. 7.15(b)). In the above plots, a dashed vertical line represents the beginning

of the intentional displacement of the plate.

Conclusions

This final Chapter summarizes the main theoretical and applied achievements of the

Thesis, and indicates a number of open points and possible future extensions of the work

presented so far.

Summary

In this Thesis, we studied the problem of visual control for robot manipulators. The basic idea

was to consider a camera as a sensor yielding a (nonlinear) output function of the scene, i.e.,

of 3D states subject to the Euclidean rigid body kinematics. Therefore, by interpreting image

quantities as standard task variables, we addressed visual control from different points of view

within the scope of Control Theory, namely:

(i) task-oriented kinematic modeling of robot manipulators, either with fixed or

nonholonomic mobile base;

(ii) kinematic control of robot manipulators, with a special emphasis on redundancy

exploitation;

(iii) merging of Visual Servoing schemes with the aforementioned task-oriented modeling;

(iv) suitable exploitation of the proposed kinematic control techniques aimed at improving

the overall execution performance of a visual task;

(v) development of a nonlinear observation framework able to estimate online the

unmeasurable 3D quantities needed by Visual Servoing implementations;

(vi) analysis of the benefits, in terms of improved stability and performance, arising from

plugging the observation schemes into Visual Servoing loops.

All the theoretical claims were validated through extensive simulations and experiments on

real robots equipped with cameras. In particular, the reported experiments showed a strong

157

Conclusions 158

adherence with the corresponding simulation results, thus fully supporting the theory behind the

proposed methodology. Such methodology was further exploited within a potential industrial

application developed at the Institute of Robotics and Mechatronics of the German Aerospace

Center (DLR). In this context, kinematic control and Visual Servoing algorithms were combined

in order to regulate the pose of a manipulator committed with pick-and-assemble tasks of

complex planar parts on a movable target plate. The results demonstrated the effectiveness

of the approach in terms of robustness and reactivity w.r.t. external ‘disturbances’, such

as unexpected displacements of parts/plate. Additionally, evaluation of the performance in

continuous operation mode contributed to positively assess the overall reliability.

In conclusion, we believe that the proposed integration of kinematic modeling/control

techniques, Visual Servoing schemes, and nonlinear estimation tools can substantially improve

the behavior or robots guided by vision. The long-term objective of this research is to build

artificial systems capable of autonomous interaction with the environment like the humans are.

For instance, a robot should be able to reach a location, pick an item, or assemble two objects

without the need of simplifying assumptions on the world, or any additional ‘help’ besides

the information collected from its own sensors. Of course, a full exploitation of vision is a

necessary (but not sufficient) condition in reaching such a goal. Indeed, besides vision, other

important facets must be addressed: elaboration of additional cues, like tactile information, and

their fusion with other sensory data is mandatory. Furthermore, the ability to infer high-level

properties of the world from raw information, or, in other words, the amount of environmental

awareness possessed by a robot, is even more crucial.

While these fundamental steps are yet to be fully achieved, our integrated approach may

be seen as an improvement in the right direction within the scope of visual control. Indeed,

thanks to the proposed estimation tools, one can conceive a servoing scheme totally independent

from any prior 3D knowledge, like depth or additional structure relative to the target or to the

robot final pose. This possibility would be particularly relevant, for instance, in the case of

environmental navigation/exploration tasks for mobile manipulators. In this scenario, a robot

could store several images of interesting locations while exploring the environment, regardless

of the extraction of corresponding 3D information — a step possibly difficult or even impossible

without special assumptions/devices. Hence, when asked to reach again the stored locations,

the robot could recover online the missing information through the proposed observation tools,

thus greatly enhancing its capability to fulfill the visual task in full autonomy. The generality

of our methodology allows to devise similar strategies also when addressing other tasks besides

navigation, such as grasping or manipulation. Suitable exploitation of these possibilities will

be the leading theme of our future research.

http://www.dlr.de/rm/en/
http://www.dlr.de/rm/en/

159 Conclusions

Open points

Like any research activity, the work presented in this Thesis is not free of open points yet to be

resolved. For instance, no formal proof is given for the closed-loop stability of the integration

VS feedback/observation schemes. The experiments reported in Chapter 6 are quite promising

in this direction, but a rigorous analysis is anyway required. Indeed, the nonlinearities of both

VS/observers exclude a trivial satisfaction of the separation principle proper to linear systems.

Therefore, we most likely expect the overall closed-loop stability to have a local nature, and we

are currently seeking an analytic characterization of the corresponding stability domain.

Still about the observation framework, additional effort must be devoted to the use of

image moments. In Sect. 5.2.2 we derived a formal solution for the general case, i.e., without

any assumption on the geometry of the target object. However, choice of which moments one

should exploit so as to meet the persistency of excitation condition does not yet have a definitive

answer. Our feeling is that, in many practical situations, the amount of noise and uncertainties

will play a central role in deciding what moments can provide the most significant information.

Current research activities are then aimed at shedding light on this topic.

A last point that, in our opinion, still deserves some attention is the problem of full state

regulation of NMMs. Within our approach, NMMs are controlled at the output (task) level by

taking into account the nonholonomy inside the task Jacobian. While this control design proves

to be a sound choice for task execution, it does not allow to specify an arbitrary configuration

qp to be reached by the mobile platform. The resulting pose will be just a consequence of

the overall motion. Note that no time-invariant and continuous feedback can achieve full state

stabilization of nonholonomic systems such as NMMs, because of the topological limitations

of Brockett’s theorem [Brockett 1983]. Therefore different solutions must be sought, such as

time-varying or discontinuous laws3. Some possibilities have already been explored in the last

years [Conticelli et al. 1999; Fang et al. 2005]. Hence, our intention is to take advantage of

these ideas in order to generalize our approach, so as to cover the case of full-pose stabilization

of NMMs as well.

Future directions

A major challenge posed to the forthcoming research consists in the unification of vision and

force information to obtain an hybrid visual/force control. Such a possibility would represent a

relevant step in mimicking the human’s way of manipulating objects in the world, i.e., by relying

on both visual and tactile senses at the same time. Some attempts have already been made

in the last years, see [Morel et al. 1998; Prats et al. 2005; Lippiello et al. 2007] and references

3An overview of these topics, involving nonholonomic planning and control, can be found in [Laumond 1998].

Conclusions 160

therein. In our case, we envisage the enhancing of the application proposed in Chapter 7 along

these directions. The exploitation of force and vision feedback during the insertion phase, for

instance, could significantly increase the robustness and performance of the assembly task —

the robot could actually ‘see’ and ‘feel’ parts and holes. In order to achieve such a result, a

suitable extension of our methods to the torque-level control is obviously required. To this end,

the robot dynamical model must be explicitly taken into account in the feedback design, thus

going beyond the kinematic control approach here adopted. An oversampling of the visual data

seems also necessary for a sound merging of vision and force sensors. Indeed, common cameras

provide images with frame rates up to about 50 [Hz], while a force control loop usually runs at

1 [KHz] or more. The use of predictive systems, like (Extended) Kalman Filters, could solve

this issue while simultaneously smoothing the effect of noise present in any image stream.

Another interesting research topic arises from the problem of planning suitable image

trajectories for the features included in the visual task. This issue, already introduced in

Sect. 4.3.2, has a major relevance when, e.g., relying on many (≥ 4) feature points for pose

control. In general, consistency with the constraint of rigid camera motion is not met, and

unrealizable image velocities are fed to the control law. Some authors have tackled this

problem from different points of view, see [Basri et al. 1998; Mezouar & Chaumette 2002;

Allotta & Fioravanti 2005; Chesi & Hung 2007]. In this context, our goal is to find a theoretical

solution which can automatically guarantee consistency with the constraints of rigid motion

and perspective mapping. The ideas developed by [Soatto et al. 1996; Ma et al. 2000], based

on exploitation of the Essential space formulation (3.17), seem to perfectly fit in this picture.

Of course, some work is needed to tailor such approach to the case of visual control, so as to

include, for instance, visibility or mechanical constraints in the overall formulation.

Finally, we believe that the 3D observation framework proposed in the Thesis could answer

to other needs besides the ones considered in the previous Chapters. For instance, the growing

number of Visual SLAM solutions [Lemaire et al. 2007; Silveira et al. 2007; Davison et al. 2007]

could greatly benefit of online tools for 3D estimation free from constraints on the particular

scene, a problem that can be tackled by the moment-based observation techniques of Chapter 5.

The same considerations also hold for what concerns visual-based navigation tasks, like the

recent proposals in [Remazeilles et al. 2004; Remazeilles & Chaumette 2007] where navigation

is achieved by relying on an internal database of images stored off-line. Again, the possibility

to obtain a continuous and convergent estimate of relevant 3D data can contribute to improve

both the performance of the visual feedback and the understanding of surrounding environment.

Appendixes

161

A
Nonholonomic Constraints

This appendix presents, in a compact way, the basic differential geometry tools needed

to deal with nonholonomic constraints. Many of the concept introduced hereafter are

taken from [Murray et al. 1994; Isidori 1995].

A.1 Tools from differential geometry

A smooth vector field f on a smooth manifold M local diffeomorphic to Rn is defined as a

smooth map f : M → TqM that associates to each point q ∈ M a vector f(q) ∈ TqM . Vector

fields can define the right hand side (rhs) of a differential equation

q̇ = f(q). (A.1)

In this case, associated to the vector field, we define the flow φf
t(q) of f(q) as the map which

yields the solution of (A.1) at time t starting from q at time t0. Formally, the flow is a function

φf
t(q) : M → M that satisfies

d

dt
φf
t(q) = f(φf

t(q)),

and meets the group property

φf
t ◦ φ

f
s = φf

t+s

163

Appendix A. Nonholonomic Constraints 164

for all t and s, where ◦ stands for the composition of the two flows, namely φf
t(φ

f
s(q)). The

time derivative of a smooth function V : M → R along the flow of f is given by

V̇ =
∂V

∂q
f(q) =

n∑
i=1

∂V

∂qi
fi,

and is referred to as the Lie derivative of V along f :

LfV =
∂V

∂q
f(q).

Given two vector fields g1 and g2, the map φg1
t ◦φg2

s represents the composition of the flow

of g2 for s seconds with the flow of g1 for t seconds. In general, it is φg1
t ◦φg2

s 6= φg2
s ◦φg1

t , i.e.,

the operation of flow composition is not commutative. Indeed, starting at q0 and following g1

for ε seconds, g2 for ε seconds, −g1 for ε seconds and −g2 for ε seconds yields

q(4ε) = q0 + ε2(
∂g2

∂q
g1(q0)−

∂g1

∂q
g2(q0)) + O(ε3). (A.2)

The ε2 term in (A.2) is defined as the Lie bracket of the two vector fields g1 and g2

[g1, g2] =
∂g2

∂q
g1(q0)−

∂g1

∂q
g2(q0)

and represents the infinitesimal motion (of order ε2) that results from flowing around a square

defined by g1 and g2. If [g1, g2] = 0 it can be shown that (A.2) becomes q(4ε) = q0 and g1

and g2 are said to commute. Some properties of the Lie brackets are:

(i) skew-symmetry: [g1, g2] = −[g2, g1],

(ii) Jacobi identity: [g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0,

(iii) chain rule: [αg1, βg2] = αβ[g1, g2] + α(Lg1β)g2 − β(Lg2α)g1.

A distribution ∆ assigns to each q a subspace of the tangent space in q TqM . A distribution

can be defined by a set of m smooth vector fields g1 . . .gm as

∆ = Im{g1, . . . ,gm}.

Evaluated at any point q ∈ M , the distribution defines a linear subspace of the tangent space

∆q = Im{g1(q), . . . ,gm(q)} ⊂ TqM.

A distribution is said to be regular if the dimension of ∆q does not vary with q, and involutive

if it is closed under the Lie bracket, i.e.,

∆ involutive ⇔ ∀gi, gj ∈ ∆, [gi, gj] ∈ ∆.

The involutive closure of a distribution, denoted ∆, is the closure of ∆ under the Lie bracket

operation, i.e., ∆ is the smallest distribution containing ∆ such that ∀gi, gj ∈ ∆, [gi, gj] ∈ ∆.

165 A.2 Integrability of nonholonomic constraints

A.2 Integrability of nonholonomic constraints

A distribution ∆ of constant dimension k is said to be integrable if for every point q ∈ M , there

exists a set of n− k smooth functions hi : M → R such that, ∀gj ∈ ∆

Lgjhi = 0, i = 1, . . . , n− k. (A.3)

The hypersurfaces defined by the level sets

{q : h1(q) = c1, . . . , hn−k(q) = cn−k} (A.4)

are called integral manifolds of ∆. Condition (A.3) can be interpreted as requiring the

distribution to be equal to the tangent space of hi at the point q. The following theorem

gives a mean to check whether a distribution is integrable.

Theorem A.1 (Frobenius). A regular distribution is integrable if and only if is involutive.

Thus, if ∆ is an k-dimensional involutive distribution, then locally there exist n − k

functions hi : M → R such that integral manifolds of ∆ are given by the level surfaces of

h = (h1, . . . , hn−k). These level surfaces form a foliation of M , and a single level surface is

called a leaf of the foliation.

A smooth one-form is a mapping aT : M → T ∗qM , where T ∗qM is the dual space of linear

forms on TqM . One-forms are regarded as covectors and in local coordinates are represented

as row vectors. The differential of a smooth function h is an example of one-forms

dh =
[

∂h

∂q1
· · · ∂h

∂qn

]
.

Not all one-forms, however, are necessarily differentials of smooth functions, and when this is

the case the one-form is said to be exact. A codistribution AT assigns a subspace of T ∗qM

smoothly to each q ∈ M . A codistribution can be defined by a set of k one-forms

AT = Im{aT1 . . .aTk }.

As before, the dimension of a codistribution is the dimension of AT
q , and a codistribution is

said to be regular if its dimension is constant for every q. Given a set of k smooth independent

one-forms aTi (q) which defined a regular codistribution AT , there exist n − k smooth vector

fields gj(q) such that

aTi (q)gj(q) = 0 ∀i, j.

These vectors define a distribution ∆ = (AT)⊥ called the annihilating distribution of

codistribution AT , i.e.,

AT∆ = 0.

The following proposition shows how to to check whether a codistribution is exact, i.e., is made

of exact one-forms, in terms of its annihilating distribution.

Appendix A. Nonholonomic Constraints 166

Proposition A.1. A codistribution AT is exact if and only if its annihilating codistribution

(AT)⊥ is involutive.

This result can then be used to determine the nonholonomy of a given set of k Pfaffian

constraints as in (1.3). Indeed, the Pfaffian constraints are holonomic, i.e., can be integrated

to a set of k smooth functions hi(q), iff the vector fields defined by columns of N(q) in (1.6)

are involutive. In this case, it is

aTi (q)q̇ = dhi q̇ = ḣi(q) = 0,

implying that the system trajectories are confined to the submainfold of Q

{q : h1(q) = c1, . . . , hk(q) = ck}.

B
Pattern Recognition

Pattern recognition is a very classical problem in computer vision and many different

solutions have been proposed in the literature — see Chapter 4 for some references. This

Appendix details one pattern recognition algorithm without any pretension of providing,

at the same time, an exhaustive coverage of this multifaceted topic. Indeed, no general

methodology exists, and a case-to-case analysis is always needed when devising strategies

for specific situations. Therefore, we only focus on the experimental application presented

in Chapter 7, and illustrate the chosen approach.

Usually, given a reference shape to be found in the image, the problem of pattern recognition

can be split into three conceptually distinct steps:

(i) a first preprocessing stage is applied to the raw camera image in order to extract the

contours of several regions (blobs) which match the searched shape. This step typically

involves image binarization and contour tracing, or edge detection and grouping. Use of

color information may support this process substantially;

(ii) subsequently, specific ‘features’1 are computed from each segmented blobs with the aim

1Note that these features must not be confused with the ones used for VS purposes, even though they can

coincide in specific cases.

167

Appendix B. Pattern Recognition 168

of obtaining a discrete set of parameters sufficiently representative of every shape, and as

much as possible invariant w.r.t. changes of the camera point of view;

(iii) finally, these features are fed to a classifier, i.e., an algorithm able to decide the class

corresponding to an input feature vector, or, in other words, to discriminate whether the

searched shape is present or not in the input set of candidate blobs.

According to this subdivision, our algorithm consists of a preliminary image preprocessing

step based on standard color binarization where pixels are marked as belonging or not to a

hole/part. Holes are segmented by looking for their red background color, while, for parts, the

black outer tags glued on each of them are considered (see Fig. 7.3(a)–(d)). The subsequent

feature extraction and shape classification phases are based on the Affine-invariant Fourier

descriptors and linear MSE classification theories and are explained in the following sections.

B.1 Affine-invariant Fourier descriptors

Consider two closed curves in the image plane C0 and C representing the boundary of a planar

object under two different camera views. Under affine projection2, C0 and C would be equivalent

with respect to the affine transformation group: C0 ./ C. Affine-invariant Fourier descriptors

(AIFD) [Arbter 1989, 1990] provide a solution to the problem of finding a discrete, minimal, and

complete set of parameters able to univocally encode the common shape information shared by

C and C0 despite the different camera points of view. Hence, AIFD yield a suitable choice for

shape classification issues and, thanks to their ordered discrete nature, can be easily compared

in contrast to the initial contour representation with its inherent correspondence problem. In

the following, a brief overview of AIFD is given.

Let x0 = u0 + jv0 ∈ C and x = u + jv ∈ C be two corresponding points on C0 and C,
respectively. The affine transformation among them may be written as

x = ax0 + bx0∗ + c, aa∗ − bb∗ 6= 0 (B.1)

where a, b, c ∈ C and (∗) stands for the complex conjugation operation. Let x(t) be a parametric

representation of C with a suitable parameter t ∈ R. Since C is closed, the curve can be traced

an indefinite number of times, i.e., there exists a T ∈ R such that x(t) = x(t + T), ∀t. Hence,

x(t) may be considered to be a periodic function with period T and admits a Fourier series

expansion x(t) =
∑+∞
k=−∞ Cke

j2πkt/T , with

Ck =
1
T

∮
C

x(t)e−j2πkt/T

2Affine projection model, sometimes called weak perspective model, is the best linear approximation of the

standard pin-hole camera projection model (see Chapter. 3). The approximation is very close if the mean

distance along the optical axis between the camera and the object is large compared to the distance variation.

169 B.1 Affine-invariant Fourier descriptors

being the Fourier coefficients. Let x0(t0) be a parametric representation of C0 (the reference

curve). In general, parameters t and t0 do not coincide and (B.1) may be formally written as

x(t(t0)) = ax0(t0) + bx0∗(t0) + c, aa∗ − bb∗ 6= 0, (B.2)

where t(t0) represents a generic mapping among the two parameters. If the parameterizing

function is chosen such that it is linearly transformed under affine transformations, then t(t0) =

µ(t0 + τ) where µ is a scale factor and shift τ is a consequence of the different starting point

in the two parameterizations. While the ‘natural parameter’ arc length does not meet this

condition, a valid parameter can be obtained by integrating over area differentials along the

curve, as:

t =
1
2

∫
C

det (u′(ξ)vξ(ξ)− v′(ξ)uξ(ξ))dξ

where ξ is any initial parameter (e.g., arc length), uξ = du/dξ, vξ = dv/dξ, u′ = u − uC ,

v′ = v − vC , and

uC + jvC =
2
3

∮
C x(ξ)(u(ξ)vξ(ξ)− v(ξ)uξ(ξ))dξ∮

C u(ξ)vξ(ξ)− v(ξ)uξ(ξ)dξ

is the area center of gravity of the region enclosed by curve C.
Choosing this parameterization, and owing to the linearity of (B.2), it is possible to show

that the Fourier coefficients of C and C0 are related by

C0 = aC0
0 + bC0∗

0 + c (B.3)

Ck = zk(aC0
k + bC0∗

−k), k 6= 0, (B.4)

where z(τ) = e−j2πτ/T
0
. Note that (B.4) is independent of the translation parameter c. In order

to obtain a quantity completely free of all the affine parameters (a, b, c), i.e., an affine-invariant

Fourier descriptor, we set

Qk =
CkC

∗
p − C∗

−kCp

CpC∗
p − C∗

−pC−p
= zk−pQ0

k (B.5)

with p 6= 0 fixed, Cp 6= 0, and k = ±1, ±2, Descriptors Qk, which can be computed

directly from the parametric representation x(t) of C, are affine-invariant and complete. They

do not lose any ‘intrinsic’ shape information w.r.t. the class represented by C0. Anyway, they

depend on the starting point shift τ between parameterizations t and t0. While there exist

techniques to safely remove from (B.5) the dependence on z, a simpler choice is to just consider

the magnitude of Qk, i.e.,

|Qk| = |Q0
k|. (B.6)

Descriptors |Qk| are affine and starting point shift invariant, but are not complete (phase

information is lost), implying that boundaries belonging to different objects may share the same

descriptors. However, in practice, their high selectivity guarantees a low ambiguity risk and high

Appendix B. Pattern Recognition 170

robustness against noise [Fenske 1993]. Therefore, also because of their easy implementation,

we chose them as features for our shape classification problem.

Apart from pattern recognition issues, Fourier coefficients can also be used to estimate the

similarity transformation parameters between two shapes, and in particular the relative rotation

ρ. Assuming a camera optical axis almost perpendicular to the object plane, the affine mapping

between C and C0 reduces to a similarity transformation

x(t) = |a|ejρx0(t0) + c.

From (B.4), we have

Ck = zk|a|ejρC0
k , k = ±1, ±2, . . . ,

which, by letting φk denote the phase term of Ck = |Ck|φk, implies

φk = zkejρφ0
k.

Rotation ρ can then be determined from two Fourier coefficients Cq and Cr as

ej(r−q)ρ =
(

φq
φ0
q

)r (
φ0
r

φr

)q
up to an ambiguity of (r − q), i.e., a rotation ambiguity of 2π/(r − q) rad. It is worth noting

that, if the selected shape has a degree of symmetry ν (with ν = 1 for nonsymmetric cases),

r = q + ν is a valid choice, and thus a ‘de facto’ unique solution for angle ρ can be found by

using this method. As explained in Sect. 7.2.1, we use angle ρ in place of other rotation-related

quantities, such as main orientation α, for what concerns rotation control about the camera

optical axis ZC .

B.2 Shape classification

With the sole exception of part p8 (KUKA logo), the tags on the parts have exactly the same

shape of the corresponding holes (Figs. 7.4(a–h)). Therefore, we can collect all the shapes to

be recognized in a set of 9 classes

S = {tri, oct, cir, s15, s16, dlr, pap, kk1, kk2}, (B.7)

where the last two classes describe the distinct KUKA part/hole. The goal of the classifier

algorithm is to decide for one of these classes given as input a feature vector ψ describing a

candidate shape. We chose to consider nψ = 33 different descriptors |Qk| for the classification

task, and to define vector ψ as

ψ = [|Q−18| . . . |Q−2| |Q2| . . . |Q17|]T ∈ Rnψ .

171 B.2 Shape classification

0 10 20 30
0

0.1

0.2

0.3

0.4
dlr

0 10 20 30
0

0.05

0.1

0.15

0.2
kk1

0 10 20 30
0

0.05

0.1
kk2

0 10 20 30
0

0.05

0.1

0.15

0.2
pap

0 10 20 30
0

0.1

0.2

0.3

0.4 tri

0 10 20 30
0

0.01

0.02

0.03
oct

0 10 20 30
0

0.02

0.04

0.06
s15

0 10 20 30
0

0.02

0.04

0.06
s16

0 10 20 30
0

0.005

0.01

0.015

0.02
cir

Figure B.1: Superimposed values of vector ψ for each shape and for each sample i = 1 . . . Ni.

Despite the different camera points of view, low variation is experienced, and specific patterns

arise from class to class. Therefore, the features included in ψ are suitable for being used in a

classification step.

Now assume that, for a class i ∈ S, Ni distinct observations are taken from different camera

views, resulting in Ni feature vectors ψi. Let the nψ ×Ni matrix ψ[Ni] = [ψ1 . . .ψNi] be the

collection of such feature vectors. Because of the invariant properties of Fourier descriptors |Qk|,
we expect the columns of ψ[Ni] to match almost completely, with the only discrepancies due

to noise or lack of validity of the affine projection model. Figure B.1 shows the superimposed

values of the columns of ψ[Ni], with Ni = 80, for all the classes in S. From these plots, we

can verify the low variation of individual feature elements within each class despite noise and

different viewing angles (robustness), and the presence of specific patterns from class to class

(selectivity). These preliminary considerations motivated us to use a set of linear discriminant

functions, obtained by the so-called MSE (minimum squared error) approach [Duda et al. 2000],

in order to solve the classification problem. This method is optimal in a least-square sense and

requires less computational effort than more sophisticated techniques.

The idea behind the MSE approach is the following: for each class i ∈ S, look for a weight

vector θi and a weight scalar βi which are least-square solution of the linear system θTi ψi + βi = 1

θTi ψj + βi = 0, j 6= i,
(B.8)

Appendix B. Pattern Recognition 172

40 80 120 160 200 240 280 320 360
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

samples

re
sp

o
n

se dlr kk1 kk2 pap tri oct s15 s16 cir

Figure B.2: MSE approach. The response to a set of 360 testing samples shows that the chosen

classification algorithm is able to robustly discriminate among the shapes in S.

or, in other words, try to divide the set of all feature vectors ψ in two subsets: those belonging

to class i, and those belonging to any other class. Assume, as before, that, for every class i, Ni

observations are available for a total of N =
∑9
i=1 Ni samples. By changing to homogeneous

coordinates, we define the (nψ + 1)×N ‘feature matrix’

Ψ =

[
ψ[N1] · · · ψ[N9]

1 · · · 1

]

and the 9×N ‘class matrix’

Ξ =
[
γ[N1] · · · γ[N9]

]
,

where γ[Ni] = [γi · · ·γi]︸ ︷︷ ︸
Ni

, and γi ∈ R9 being a vector representing class i with a 1 in position

i and zeros in all the other components. Hence, when considering all the N observation,

system (B.8) can be rearranged in a compact form as

ΥΨ = Ξ (B.9)

173 B.2 Shape classification

where the 9× (nλ + 1) matrix Υ, defined as

Υ =


θT1 β1

...
...

θT9 β9

 ,

is called weight matrix. Least square solution of (B.9) can be found as Υ = ΞΨ† where the

pseudoinverse of Ψ is used. After this step, done preliminarily on a set of suitable samples,

any subsequent observation ψ can be directly tested through the weight matrix as Υψ = γ̂. If

feature vector ψ belongs to class i, the output vector γ̂ will (most likely) have its i-th component

close to 1 and the others close to zero. Therefore, class i can be decided through inspection of

γ̂.

In order to assess the performance of the linear MSE approach, we tested it against Ni =

40 independent feature sets for every class i, for a total of 360 samples collected by varying

continuously the camera pose.

By a suitable discriminant analysis, a subset of 10 significant features was identified among

the components of vector ψ. Figure B.2 shows the responses of the 9 linear discriminant

functions (the components of γ̂) to the set of 9 × Ni test samples, each consisting of the

selected 10 features. As expected, for each class there is only one component close to 1 with

the others close to zero, so that class membership decision can be unambiguously taken.

References

Allotta, B. & Fioravanti, D. (2005). 3D motion planning for image-based visual

servoing tasks. In: Proc. 2005 IEEE Int. Conf. on Robotics and Automation. 69, 160

Aloimonos, J. Y. (1990). Perspective approximations. Image and Vision Computing

8(3), 179–192. 45

Arai, T. (1996). Robots with integrated locomotion and manipulation and their future.

In: Proc. 1996 IEEE/RSJ Int. Conf. on Robots and Intelligent Systems. 23

Arbter, K. (1989). Affine-invariant Fourier descriptors. In: From Pixels to Feature

(Simon, J. C., ed.). Elsevier Science Publishers B.V. 168

Arbter, K. (1990). Affininvariante Fourierdeskriptoren ebener Kurven. Dissertation,

Techn. Univ. Hamburg-Harburg. 168

Basri, R. (1996). Paraperspective ≡ affine. Int. J. of Computer Vision 19(2), 169–179.

45

Basri, R., Rivlin, E. & Shimshoni, I. (1998). Visual homing: Surfing on the epipoles.

In: Proc. 1998 Int. Conf. on Computer Vision. 160

Bayle, B., Fourquet, J.-Y. & Renaud, M. (2001). Génération des mouvements

des manipulateurs mobiles: Etat de l’art et perspectives. J. Européen des Systémes

Automatisés 35(6), 809–845. 23, 29

Benhimane, S. & Malis, E. (2004). Real-time image-based tracking of planes using

efficient second-order minimization. In: Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent

Robots Systems. 56, 97

Birchfield, S. (2007). KLT: An implementation of the kanade-lucas-tomasi feature

tracker. URL http://www.ces.clemson.edu/~stb/klt. 63

Born, M. & Wolf, E. (1999). Electromagnetic Theory of Propagation, Interference

and Diffraction of Light. Cambridge University Press. 45, 49

175

http://www.ces.clemson.edu/~stb/klt

References 176

Bouguet, J.-Y. (2007). Camera calibration toolbox for matlab. URL http://www.

vision.caltech.edu/bouguetj/calib_doc. 51, 136

Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In:

Differential Geometric Control Theory (Brockett, R. W., Millman, R. S. &

Sussmann, H. J., eds.). Birkhauser, pp. 181–191. 159

Campion, G., Bastin, G. & D’Andrea-Novel, B. (1996). Structural properties and

classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans.

on Robotics and Automation 12(1), 47–62. 23

Cervera, E., Pobil, A. D., Berry, F. & Martinet, P. (2003). Improved

image-based visual servoing with three-dimensional features. Int. J. of Robotics Research

22, 821–839. 69

Chaumette, F. (1990). La relation vision-commande: Théorie et application à des

tâches robotiques. Ph.D. thesis, University of Rennes I. 64

Chaumette, F. (1998). Potential problems of stability and convergence in image-based

and position-based visual servoing. In: The Confluence of Vision and Control

(Kriegman, D., Hager, G. & Morse, A., eds.), vol. 237 of LNCIS. Springer Verlag.

63, 66

Chaumette, F. (2004). Image moments: A general and useful set of features for visual

servoing. IEEE Trans. on Robotics and Automation 20(4), 713–723. 62, 65, 97, 99, 133,

144

Chaumette, F., Boukir, S., Bouthemy, P. & Juvin, D. (1996). Structure from

controlled motion. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(5),

492–504. 89

Chaumette, F. & Hutchinson, S. (2006a). Visual servo control. I. Basic approaches.

IEEE Robotics & Automation Mag. 13(4), 82–90. 58

Chaumette, F. & Hutchinson, S. (2006b). Visual servo control. II. Advanced

approaches. IEEE Robotics & Automation Mag. 14(1), 109–118. 58

Chaumette, F. & Marchand, E. (2001). A redundancy-based iterative approach

for avoiding joint limits: Application to visual servoing. IEEE Trans. on Robotics and

Automation 17(5), 719–730. 71

Chen, J., Dawson, D. M., Dixon, W. E. & Behal, A. (2005). Adaptive

homography-based visual servo tracking for a fixed camera configuration with a

http://www.vision.caltech.edu/bouguetj/calib_doc
http://www.vision.caltech.edu/bouguetj/calib_doc

177 References

camera-in-hand extension. IEEE Trans. on Control Systems Technology 13(5), 814–825.

70

Chesi, G. & Hung, Y. S. (2007). Visual servoing: a global path-planning approach.

In: Proc. 2007 IEEE Int. Conf. on Robotics and Automation. 69, 160

Chesi, G., Malis, E. & Cipolla, R. (2000). Automatic segmentation and matching

of planar contours for visual servoing. In: Proc. 2000 IEEE Int. Conf. on Robotics and

Automation. 56, 97

Chiacchio, P., Chiaverini, S., Sciavicco, L. & Siciliano, B. (1991). Closed-loop

inverse kinematics schemes for constrained redundant manipulators with task space

augmentation and task priority strategy. Int. J. of Robotics Research 10, 410–425. 28,

29, 33, 34

Conticelli, F., Allotta, B. & Khosla, P. K. (1999). Image-based visual servoing

of nonholonomic mobile robots. In: Proc. of the 38th Conf. on Decision and Control. 89,

159

Corke, P. I. (1994). Visual control of robot manipulators - a review. Visual Servoing

(K.Hashimoto, Ed.) , 1–31. 58

Corke, P. I. (1997). Visual Control of Robots: High-Performance Visual Servoing. John

Wiley & Sons. 58

Corke, P. I. & Hutchinson, S. A. (2001). A new partitioned approach to image-based

visual servo control. IEEE Trans. on Robotics and Automation 17(4), 507–515. 60, 71

Cyberbotics (2007). Webots. URL http://www.cyberbotics.com. 74

Davison, A. J., Reid, I. D., Molton, N. D. & Stasse, O. (2007). Monoslam:

Real-time single camera slam. IEEE Trans. on Pattern Analysis and Machine Intelligence

29(6), 1052–1067. 160

De Luca, A., Ferri, M., Oriolo, G. & Robuffo Giordano, P. (2008a). Visual

servoing with exploitation of redundancy: An experimental study. Submitted to the 2008

IEEE Int. Conf. on Robotics and Automation . 17, 116

De Luca, A., Lanari, L. & Oriolo, G. (1992). Control of redundant robots on cyclic

trajectories. In: Proc. 1992 IEEE Int. Conf. on Robotics and Automation. 28

De Luca, A. & Oriolo, G. (1991). The reduced gradient method for solving

redundancy in robot arms. Robotersysteme 7(2), 117–122. 32, 33

http://www.cyberbotics.com

References 178

De Luca, A., Oriolo, G. & Robuffo Giordano, P. (2006). Kinematic modeling

and redundancy resolution for nonholonomic mobile robots. In: Proc. 2006 IEEE Int.

Conf. on Robotics and Automation. 15, 29

De Luca, A., Oriolo, G. & Robuffo Giordano, P. (2007a). Image-based visual

servoing schemes for nonholonomic mobile manipulators. Robotica 25(2), 131–145. 15,

16, 29, 60

De Luca, A., Oriolo, G. & Robuffo Giordano, P. (2007b). On-line estimation of

feature depth for image-based visual servoing schemes. In: Proc. 2007 IEEE Int. Conf.

on Robotics and Automation. 16, 86, 108

De Luca, A., Oriolo, G. & Robuffo Giordano, P. (2008b). Feature depth

observation for image-based visual servoing: Theory and experiments. Submitted to the

Int. J. of Robotics Research . 17, 123

Dementhon, D. & Davis, L. (1995). Model-based object pose in 25 lines of code. Int.

J. of Computer Vision 15(1–2), 123–141. 60

Denavit, J. & Hartenberg, R. S. (1955). A kinematic notation for lower-pair

mechanisms based on matrices. ASME J. of Applied Mechanisms 22(2), 215–221. 138

Duda, R. O., Hart, P. E. & Stork, D. G. (2000). Pattern Classification.

Wiley-Interscience. 58, 171

Espiau, B. (1993). Effect of camera calibration errors on visual servoing in robotics. In:

Proc. 3rd Int. Symp. on Experimental Robotics. 60

Espiau, B., Chaumette, F. & Rives, P. (1992). A new approach to visual servoing

in robotics. IEEE Trans. on Robotics and Automation 8(3), 313–326. 58, 62, 64, 65, 99

Fang, Y., Dixon, W. E., Dawson, D. M. & Chawda, P. (2005). Homography-based

visual servo regulation of mobile robots. IEEE Trans. on Systems, Man, and Cybernetics,

Part B 35(5), 1041–1050. 159

Faugeras, O. (1993). Three-Dimensional Computer Vision. MIT Press. 11, 52

Faugeras, O. & Luong, Q.-T. (2001). The Geometry of Multiple Images. MIT Press.

52

Feddema, J. T. & Mitchell, O. R. (1989). Vision-guided servoing with feature-based

trajectory generation. IEEE Trans. on Robotics and Automation 5(6), 691–700. 60

179 References

Felleman, D. J. & Essen, D. C. V. (1991). Distributed hierarchical processing in the

primate cerebral cortex. Cerebral Cortex 1(1), 1–47. 11

Fenske, A. (1993). Affin-invariante Fourierdeskriptoren für Grauwertmuster. Ph.D.

thesis, Technische Universität Hamburg-Harburg. 170

Fourquet, J.-Y., Bayle, B. & Renaud, M. (2003). Manipulability of wheeled mobile

manipulators: Application to motion generation. Int. J. of Robotics Research 22(7-8),

565–581. 23

Friedland, B. (1986). Control System Design: An Introduction to State-Space Methods.

McGraw-Hill. 123

Gardner, J. F. & Velinsky, S. A. (2000). Kinematics of mobile manipulators and

implications for design. J. of Robotic Systems 17(6), 309–320. 23

Gelb, A. (1974). Applied Optimal Estimation. MIT Press. 86

Geyer, C. & Daniilidis, K. (2001). Catadioptric projective geometry. Int. J. of

Computer Vision 45(3), 223–243. 45

Gonzalez, R. & Woods, R. (2002). Digital Image Processing. Prentice Hall. 58

Hill, J. & Park, T. (1979). Real time control of a robot with a mobile camera. In:

Proc. 1979 9th ISIR. 58

Horn, B. (1986). Robot Vision. MIT Press. 45

Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IEEE Trans. on

Information Theory 8(2), 179–187. 64

Huang, T. & Faugeras, O. (1989). Some properties of the E matrix in two-view

motion estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(12),

1310–1312. 54

Hutchinson, S., Hager, G. D. & Corke, P. I. (1996). A tutorial on visual servo

control. IEEE Trans. on Robotics and Automation 12(5), 651–670. 58

Inaba, H., Yoshida, A., Abdursul, R. & Ghosh, B. K. (2000). Observability of

perspective dynamical systems. In: Proc. of the 39th IEEE Conf. on Decision and Control.

89

Intel (2007). Open source computer vision library (OpenCV). URL http://www.intel.

com/technology/computing/opencv/index.htm. 63

http://www.intel.com/technology/computing/opencv/index.htm
http://www.intel.com/technology/computing/opencv/index.htm

References 180

Isidori, A. (1995). Nonlinear Control Systems. Springer-Verlag New York, Inc. 163

Khalil, H. K. (2002). Nonlinear Systems. Prentice-Hall, 3rd ed. 67, 92

Khatib, O. (1991). Cooperative manipulation in mobile robotic systems. In: Proc. 1991

IEEE Int. Conf. on Robotics and Automation. 23

Koenderink, J. J. & van Doorn, A. J. (1991). Affine structure from motion. J. of

Optical Society of America 8(2), 337–385. 45

Lamiraux, F., Bayle, B., Fourquet, J.-Y. & Renaud, M. (2002). Kinematic control

of wheeled mobile manipulators. In: Proc. 2002 IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems. 23, 29

Lapresté, J. T., Jurie, F., Dhome, M. & Chaumette, F. (2004). An efficient

method to compute the inverse jacobian matrix in visual servoing. In: Proc. 2004 IEEE

Int. Conf. on Robotics and Automation. 62

Laumond, J. P. (1998). Robot Motion Planning and Control. Springer-Verlag New York,

Inc. 23, 159

Lavest, J., Rives, G. & Dhome, M. (1993). Three-dimensional reconstruction by

zooming. IEEE Trans. on Robotics and Automation 9(2), 196–207. 45

Lemaire, T., Berger, C., Jung, I.-K. & Lacroix, S. (2007). Vision-based slam:

Stereo and monocular approaches. Int. J. of Computer Vision 74(3), 343–364. 160

Li, Z. & Canny, J. F. (1993). Nonholonomic Motion Planning. Kluwer Academic. 23

Lippiello, V., Siciliano, B. & Villani, L. (2007). Position-based visual servoing in

industrial multirobot cells using a hybrid camera configuration. IEEE Trans. on Robotics

23(1), 73–86. 159

Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from

two projections. Nature 293, 133–135. 54

Lowe, D. (1987). Three-dimensional object recognition from single two-dimensional

images. Artificial Intelligence 31(3), 355–395. 60

Lucas, B. D. (1984). Generalized Image Matching by the Method of Differences. Ph.D.

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 63

Lucas, B. D. & Kanade, T. (1981). An iterative image registration technique with an

application to stereo vision. In: Proc. 7th Int. Joint Conference on Artificial Intelligence.

63

181 References

Luenberger, D. G. (1971). An introduction to observers. IEEE Trans. on Automatic

Control 16(6), 596–602. 87

Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison-Wesley. 31

Ma, Y., Kosecka, J. & Sastry, S. S. (2000). Linear differential algorithm for motion

recovery: A geometric approach. Int. J. of Computer Vision 36(1), 71–89. 88, 160

Ma, Y., Soatto, S., Košecká, J. & Sastry, S. S. (2004). An Invitation to 3-D

Vision. Springer–Verlag New York. 46, 52

Maciejewski, A. A. & Klein, C. A. (1989). The singular value decomposition:

Computation and applications to robotics. Int. J. of Robotics Research 8(6), 63–79.

31

Malis, E. (2004). Improving vision-based control using efficient secondorder

minimization techniques. In: Proc. 2004 IEEE Int. Conf. on Robotics and Automation.

67, 69

Malis, E., Benhimane, S., Mei, C., Silveira, G., Comport, A. & Vertut, B.

(2004). ESM Visual Tracking. http://esm.gforge.inria.fr/ESM.html. URL http://esm.

gforge.inria.fr/ESM.html. 56, 97

Malis, E. & Chaumette, F. (2000). 2-1/2-D visual servoing with respect to unknown

objects through a new estimation scheme of camera displacement. Int. J. of Computer

Vision 37(1), 79–97. 69

Malis, E. & Chaumette, F. (2002). Theoretical improvements in the stability analysis

of a new class of model-free visual servoing methods. IEEE Trans. on Robotics and

Automation 18(2), 176–186. 60, 69

Malis, E., Chaumette, F. & Boudet, S. (1999). 2-1/2-D visual servoing. IEEE

Trans. on Robotics and Automation 15(2), 238–250. 60, 61, 69

Malis, E., Chesi, G. & Cipolla, R. (2003). 2-1/2-D visual servoing with respect

to planar contours having complex and unknown shapes. Int. J. of Robotics Research

22(10–11), 841–854. 69

Malis, E. & Rives, P. (2003). Robustness of image-based visual servoing with respect

to depth distribution errors. In: Proc. 2003 IEEE Int. Conf. on Robotics and Automation.

66

Mansard, N. & Chaumette, F. (2007). Task sequencing for high-level sensor-based

control. IEEE Trans. on Robotics 23(1), 60–72. 36

http://esm.gforge.inria.fr/ESM.html
http://esm.gforge.inria.fr/ESM.html

References 182

Marino, R. & Tomei, P. (1995). Nonlinear Control Design: Geometric, Adaptive and

Robust. Prentice Hall, London. 87

Mariottini, G. & Prattichizzo, D. (2007). Image-based visual servoing with central

catadioptric camera. Int. J. of Robotics Research In press. 45

Mariottini, G. L., Oriolo, G. & Prattichizzo, D. (2007). Epipole-based visual

servoing for nonholonomic mobile robots. To appear in IEEE Trans. on Robotics . 71

Mathworks, T. (2007). Matlab. URL http://www.mathworks.com. 102

Matthies, L., Szelinski, R. & Kanade, T. (1989). Kalman filter-based algorithms

for estimating depth from image sequences. Int. J. of Computer Vision 3(3), 209–236.

89, 102

Maybank, S. (1992). Theory of Reconstruction from Image Motion. Springer-Verlag. 52

Maybeck, P. S. (1979). Stochastic models, estimation, and control. Academic press. 86

Mezouar, Y. & Chaumette, F. (2002). Path planning for robust image-based control.

IEEE Trans. on Robotics and Automation 18(4), 534–549. 69, 160

Michel, H. & Rives, P. (1993). Singularities in the determination of the situation of a

robot effector from the perspective view of 3 points. Tech. Rep. RR-1850, INRIA. 68

Morel, G., Malis, E. & Boudet, S. (1998). Impedance based coimbination of visual

and force control. In: Proc. 1998 IEEE Int. Conf. on Robotics and Automation. 159

Mukundan, R. & Ramakrishane, K. R. (1998). Moment Functions in Image Analysis:

Theory and Applications. World Scientific. 64

Mundy, J. L. & Zisserman, A. (1992). Geometric Invariance in Computer Vision.

MIT Press. 45

Murray, R. M., Li, Z. & Sastry, S. S. (1994). A Mathematical Introduction to

Robotic Manipulation. CRC Press. 22, 24, 26, 46, 163

Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization.

Addison-Wesley. 23, 28, 29, 31, 34

Nenchev, D. N., Umetani, Y. & Yoshida, K. (1992). Analysis of a redundant

free-flying spacecraft/manipulator system. IEEE Trans. on Robotics and Automation

8(1), 1–6. 23

http://www.mathworks.com

183 References

Oriolo, G. & Mongillo, C. (2005). Motion planning for mobile manipulators along

given end-effector paths. In: Proc. 2005 IEEE Int. Conf. on Robotics and Automation.

30

Piepmeier, J. A., McMurray, G. V., & Lipkin, H. (2004). Uncalibrated dynamic

visual servoing. IEEE Trans. on Robotics and Automation 20(1), 143–147. 62

Pin, F. G., Morgansen, K. A., Tulloch, F. A., Hacker, C. J. & Gower, K. B.

(1996). Motion planning for mobile manipulators with a non-holonomic constraint using

the FSP method. J. of Robotic Systems 13(11), 723–736. 23

Prats, M., Sanz, P. J. & del Pobil, A. R. (2005). Model-based tracking and hybrid

force/vision control for the uji librarian robot. In: Proc. 2005 IEEE/RSJ Int. Conf. on

Robots and Intelligent Systems. 159

Remazeilles, A. & Chaumette, F. (2007). Image-based robot navigation from an

image memory. Robotics and Autonomous Systems 55(4), 345–356. 160

Remazeilles, A., Chaumette, F. & Gros, P. (2004). Robot motion control from a

visual memory. In: Proc. 2004 IEEE Int. Conf. on Robotics and Automation. 160

Robuffo Giordano, P., De Luca, A. & Oriolo, G. (2008). 3D structure

identification from image moments. Submitted to the 2008 IEEE Int. Conf. on Robotics

and Automation . 16, 86

Robuffo Giordano, P., Stemmer, A., Arbter, K. & Albu-Schäffer, A. (2008).

Visual and force-torque controlled assembly of complex planar parts. Submitted to the

2008 IEEE Int. Conf. on Robotics and Automation . 17, 138

Russ, J. C. (1998). The Image Processing Handbook. CRC Press. 58

Sanderson, A. C. & Weiss, L. (1983). Adaptive visual servo control of robots. Robot

Vision , 107–116. 58

Sanderson, A. C. & Weiss, L. E. (1980). Image based visual servo control using

relational graph error signal. In: Proc 1980 Int. Conf. on Cybernetics and Society. 58

Schramm, F., Geffard, F., Morel, G. & Micaelli, A. (2007). Calibration free

image point path planning simultaneously ensuring visibility and controlling camera

paths. In: Proc. 2007 IEEE Int. Conf. on Robotics and Automation. 69

Sciavicco, L. & Siciliano, B. (2000). Modelling and Control of Robot Manipulators.

Springer. 22, 26, 30, 71

References 184

Sepp, W., Fuchs, S. & Arbter, K. (2005). DLR Calibration Detection Toolbox

(CalDe 0.99.0). URL http://www.dlr.de/rm/callab. 51, 149

Seraji, H. (1993a). Motion control of mobile manipulators. In: Proc. 1993 IEEE/RSJ

Int. Conf. on Robots and Intelligent Systems. 23

Seraji, H. (1993b). An on-line approach to coordinated mobility and manipulation. In:

Proc. 1993 IEEE Int. Conf. on Robotics and Automation, vol. 1. 23

Seraji, H. (1998). A unified approach to motion control of mobile manipulators. Int. J.

of Robotics Research 17(2), 107–118. 23, 29, 31

Shamir, T. & Yomdin, Y. (1988). Repeatability of redundant manipulators:

Mathematical solution of the problem. IEEE Trans. on Automatic Control 33(11),

1004–1009. 28

Silveira, G., Malis, E. & Rives, P. (2007). An efficient direct method for improving

visual slam. In: Proc. 2007 IEEE Int. Conf. on Robotics and Automation. 160

Smith, C. E. & Papanikolopoulos, N. P. (1994). Computation of shape through

controlled active exploration. In: Proc. 1994 IEEE Int. Conf. on Robotics and

Automation. 89, 102

Soatto, S. (1994). Observability/identifiability of rigid motion under perspective

projection. In: Proc. of the 33th IEEE Conf. on Decision and Control. 88

Soatto, S., Frezza, R. & Perona, P. (1996). Motion estimation via dynamic vision.

IEEE Transaction on Automatic Control 41(3), 393–413. 88, 160

Stemmer, A., Albu-Schäffer, A. & Hirzinger, G. (2007). An analytical method

for the planning of robust assembly tasks of complex shaped planar parts. Proc. 2007

IEEE Int. Conf. of Robotics and Automation , 317–323. 153

Strobl, K. H. & Hirzinger, G. (2006). Optimal Hand-Eye Calibration. In: Proc.

IEEE/RSJ Int. Conf. on Robots and Intelligent Systems. Beijing, China. 72

Strobl, K. H. & Paredes, C. (2005). DLR Calibration Laboratory (CalLab 0.99.5).

URL http://www.dlr.de/rm/callab. 51, 149

Stroebel, L. (1999). View Camera Technique. Focal Press. 45, 49

Sturm, P. F. & Maybank, S. J. (1999). On plane-based camera calibration: A general

algorithm, singularities, applications. In: Proc. 1999 IEEE Conf. on Computer Vision

and Pattern Recognition. 51

http://www.dlr.de/rm/callab
http://www.dlr.de/rm/callab

185 References

Tahri, O. & Chaumette, F. (2005). Point-based and region-based image moments for

visual servoing of planar objects. IEEE Trans. on Robotics 21(6), 1116–1127. 62, 65,

130, 133

Taylor, C., Ostrowski, J. & Jung, S. (2000). Robust vision-based pose control. In:

Proc. 2000 IEEE Int. Conf. on Robotics and Automation. 59

Tomasi, C. & Kanade, T. (1992). Shape and motion from image streams under

orthography: a factorization method. Int. J. of Computer Vision 9(2), 137–154. 45

Tsai, R. Y. (1987). A versatile camera calibration technique for high-accuracy 3D

machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. of Robotics

and Automation 3(4), 323–344. 50, 51

Weiss, L., Sanderson, A. C. & Neuman, C. P. (1987). Dynamic sensor-based control

of robots with visual feedback. IEEE J. on Robotics and Automation 3(5), 404–417. 58,

60

Weng, J., Cohen, P. & Herniou, M. (1992). Camera calibration with distortion

models and accuracy evaluation. IEEE Trans. on Pattern Analysis and Machine

Intelligence 14(10), 965–980. 51

Wijesoma, S. W., Wolfe, D. F. H. & Richards, R. J. (1993). Eye-to-hand

coordination for vision-guided robot control applications. Int. J. of Robotics Research

12(1), 65–78. 58

Wilson, W. J., Hulls, C. C. W. & Bell, G. S. (1996). Relative end-effector control

using cartesian position based visual servoing. IEEE Trans. on Robotics and Automation

12(5), 684–696. 59

Yamamoto, Y. & Yun, X. (1999). Unified analysis on mobility and manipulability of

mobile manipulators. In: Proc. 1999 IEEE Int. Conf. on Robotics and Automation. 23

Young, I. T., Gerbrands, J. J. & van Vliet, L. J. (1998). Fundamentals of Image

Processing. Delft PH. 58

Zak, M. (1989). Terminal attractors in neural networks. Neural Networks 2, 259–274.

35

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans. on

Pattern Analysis and Machine Intelligence 22(11). 50, 51

	Abstract
	Acknowledgments
	Contents
	Notations
	Introduction
	Organization of the Thesis
	Outline of part I
	Outline of part II
	Outline of part III

	1 Kinematic Modeling of Robot Manipulators
	1.1 Introduction
	1.1.1 Behind kinematic modeling
	1.1.2 Mobile manipulators

	1.2 From dynamics to kinematics
	1.3 Task-oriented kinematic modeling

	2 Kinematic Control of Robot Manipulators
	2.1 The non-redundant case
	2.2 The redundant case
	2.2.1 Extended Jacobian (EJ)
	2.2.2 Projected Gradient (PG)
	2.2.3 Reduced Gradient (RG)
	2.2.4 Task Priority (TP)
	2.2.5 Task Sequencing (TS)

	2.3 Case studies
	2.3.1 Unicycle platform with 2R planar manipulator
	2.3.2 Unicycle platform with 3R elbow-type manipulator

	2.4 Simulation results
	2.4.1 Position task for the NMM with planar manipulator
	2.4.2 Position/orientation task for the NMM with planar manipulator
	2.4.3 Position task for the NMM with elbow-type manipulator

	3 Elements of 3D Vision
	3.1 Rigid body kinematics
	3.2 Pin-hole camera model
	3.3 Geometry of two views
	3.3.1 Epipolar constraint
	3.3.2 Planar homography

	4 Visual Servoing
	4.1 Overview
	4.2 Position-based visual servoing
	4.3 Image-based visual servoing
	4.3.1 The interaction matrix
	4.3.2 Stability analysis of IBVS

	4.4 Hybrid approaches
	4.5 Velocity-level control schemes
	4.5.1 The FBM case
	4.5.2 The NMM case

	4.6 Simulations
	4.6.1 Unicycle platform with 3R elbow-type manipulator
	4.6.2 Unicycle platform with 2R polar manipulator

	5 Estimation of Geometric and Camera Quantities
	5.1 Persistency of excitation
	5.2 3D Observation
	5.2.1 Observer design for point features
	5.2.2 Observer design for image moments

	5.3 Focal Length Estimation
	5.4 Simulations
	5.4.1 Observation of 3D quantities
	5.4.2 Observation of focal length

	6 Experimental Validation
	6.1 Experiments of redundancy exploitation
	6.1.1 Experiments with Task Priority
	6.1.2 Experiments with Task Sequencing

	6.2 Experiments of 3D structure observation
	6.2.1 Point features
	6.2.2 Image moments

	6.3 Experiments of focal length observation

	7 Application
	7.1 Experimental setup description
	7.1.1 Robot manipulator
	7.1.2 Parts and plate
	7.1.3 The overall task

	7.2 Robot pose control
	7.2.1 Visual task definition
	7.2.2 Control algorithm

	7.3 Experimental results

	Conclusions
	Summary
	Open points
	Future directions

	A Nonholonomic Constraints
	A.1 Tools from differential geometry
	A.2 Integrability of nonholonomic constraints

	B Pattern Recognition
	B.1 Affine-invariant Fourier descriptors
	B.2 Shape classification

	References

