English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Recalibration of Audiovisual Synchrony: What is changing?

MPS-Authors
/persons/resource/persons84065

Machulla,  T
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83885

Di Luca,  M
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83906

Ernst,  M
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Machulla, T., Di Luca, M., & Ernst, M. (2008). Recalibration of Audiovisual Synchrony: What is changing? In P. Khader, K. Jost, H. Lachnit, & F. Rösler (Eds.), Beiträge zur 50. Tagung experimentell arbeitender Psychologen (pp. 56). Lengerich. Germany: Pabst.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-CA4F-5
Abstract
Both physical and physiological transmission times can differ between audition and vision. Under certain conditions, the brain reduces perceived asynchrony by adapting to this temporal discrepancy. In two experiments we investigated whether this recalibration is specific to auditory and visual stimuli, or whether other modality combinations (audiotactile, visuotactile) are affected, as well.
We presented asynchronous audiovisual signals, with either auditory leading or visual leading. Then, using temporal order judgments we measured observers’ point of subjective simultaneity for three modality combinations. Results indicate an adjustment of perceived simultaneity for the audiovisual and the visuotactile modality pairs. We conclude that audiovisual adaptation is the result of a change of processing latencies of visual events. In a second experiment, we corroborate this finding. We demonstrate that reaction times to visual signals, but not to tactile or auditory signals, change as a result of audiovisual recalibration.