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INTRODUCTION

Non-invasive Brain-Computer-Interfaces (BCIs) are 
devices that infer the intention of human subjects from 
signals  generated  by  the  central  nervous  system  and 
recorded outside the skull, e.g., by electroencephalogra-
phy (EEG). They can be used to enable basic communi-
cation for patients who are not able to communicate by 
normal means, e.g., due to neuro-degenerative diseases 
such  as  amyotrophic  lateral  sclerosis  (ALS)  (see 
[Vaughan2003] for a review).

One challenge in research on BCIs is minimizing the 
training  time  prior  to  usage  of  the  BCI.  Since  EEG 
patterns vary across subjects, it is usually necessary to 
record a number of trials in which the intention of the 
user  is  known  to  train  a  classifier.  This  classifier  is 
subsequently used to infer the intention of the BCI-user. 

In  this  paper,  we  present  the  application  of  an 
unsupervised  classification  method  to  a  binary  non-
invasive BCI based on motor  imagery.  The result  is a 
BCI  that  does  not  require  any  training,  since  the 
mapping from EEG pattern changes to the intention of 
the  user  is  learned  online  by  the  BCI  without  any 
feedback.  We  present  experimental  results  from  six 
healthy  subjects,  three  of  which  display  classification 
errors below 15%. We conclude that unsupervised BCIs 
are a viable option, but not yet as reliable as supervised 
BCIs. 

The rest of this paper is organized as follows. In the 
Methods  section,  we  first  introduce  the  experimental 
paradigm.  This  is  followed  by  a  description  of  the 
methods  used  for  spatial  filtering,  feature  extraction, 
and  unsupervised  classification.  We  then  present  the 
experimental  results,  and  conclude  the  paper  with  a 
brief discussion.

METHODS

Experimental Paradigm
Motor imagery of specific limbs is a frequently used 

paradigm for BCIs. It is well known that haptic motor 
imagery  causes  a  frequency  specific  decrease  in  the 
variance of the electric field of the brain in that part of 
the  motor  cortex  representing  the  specific  limb 
[Pfurtscheller1999]. In this study, we use motor imagery 

of the left/right hand to intentionally induce changes in 
measured EEG patterns.

Spatial Filtering
One of the main problems in non-invasive BCIs is 

the low signal-to-noise-ratio (SNR) of the recorded data. 
For  the experimental  paradigm used here,  it  is known 
that  the  EEG signals  that  carry  information  about  the 
intention of the user originate in the hand areas of the 
left and right motor cortex. If these signals are measured 
by  electrodes  placed  over  the  motor  cortex,  they  are 
heavily cloaked by EEG background activity from other 
brain  areas.  For  this  reason,  we  use  the  method  of 
Adaptive  Spatial  Filters  (ASF)  to  improve  the  SNR 
[Grosse-Wentrup2007]. The result is a two dimensional 
signal vector for each trial, containing estimates of the 
electric field of the brain originating in the left and right 
motor cortex.

Feature Extraction
Given  estimates  of  the  electric  field  of  the  brain 

originating  in  the  left  and  right  motor  cortex,  we 
compute the feature vector of each trial in the following 
way. We first extract 20 frequency bands ranging from 
0 - 40 Hz, each 2 Hz wide, from each of the two signals 
using  a  sixth-order  Butterworth  filter.  Then,  we 
compute  the  variance  in  each of  the  frequency  bands 
during  motor  imagery.  These  variances  form  the  40-
dimensional feature vector.

Unsupervised Classification
We assume that we have a set of feature vectors, but 

do not know the corresponding class labels (motor ima-
gery of left or right hand). The goal is then to determine 
the class label of each trial. 

For  each  frequency  band,  we  first  fit  a  Gaussian 
mixture model with two classes to the variances of the 
EEG  signal  originating  in  the  left  and  right  motor 
cortex.  This  is  achieved  by  maximizing  the  log-
likelihood of the data using the expectation-maximiza-
tion (EM) algorithm. This results in 20 Gaussian mix-
ture models, one for each frequency band. Fig. 2 shows 
the  resulting  (normalized)  clusters  for  one  frequency 
band  of  two  different  subjects.  For  a  feature  vector 
obtained from a new trial, these clusters can be used to



Figure 1: Classification results

assess  the likelihood  of the feature vector  conditioned 
on each cluster. In principle,  the new trial can then be 
assigned to that class label corresponding to the cluster 
with the highest likelihood.

This classification procedure is, however, not practi-
cal,  since  most  frequency  bands,  i.e.,  most  of  the  20 
Gaussian mixture models, do not provide any informa-
tion  on  the  intention  of  the  BCI-user.  It  is  thus 
necessary to identify the most discriminative frequency 
band. This is done by computing the likelihood of the 
available  features  of each frequency  band  conditioned 
on the wrong cluster. This serves as a measure for the 
separa-tion  of  the  two  clusters.  That  frequency  band 
with  the  lowest  likelihood  is  then  identified  as  the 
frequency  band  providing  the  most  discriminative 
information.  Subsequently,  only  the  Gaussian  mixture 
model  of  this  frequency  band  is  used for  assigning  a 
class label to a feature vector from a new trial.

Assigning feature vectors to one of the two clusters 
does not solve the problem of determining which cluster 
corresponds  to  which  class  label.  This  can  be  deter-
mined from the a-priori knowledge that motor imagery 
of the left hand leads to a low variance in the right and 
high variance in the left motor cortex and vice versa.

RESULTS

Experimental  data  from  six  healthy  subjects  was 
recorded with a 128-channel EEG, sampled at 500 Hz, 
with common  average  reference.  A total  of 300 trials 
(150 per condition)  were  recorded  for  each subject  in 
randomized order. Each trial started with central display 
of  a fixation  cross  for three  seconds,  which  was then 
overlaid by an arrow pointing to the left or the right for 
seven seconds. The subjects were instructed to perform 
haptic motor  imagery of the corresponding hand when 
seeing the arrow.

The classification results for all subjects are shown 
in Fig. 1, depending on the percentage of trials used for 
fitting the Gaussian mixture models. Subjects S3 and S4 
achieve classification errors below 10%, and subject S2 
shows a classification error of approximately 15%. The 
other three subjects did not achieve classification errors 
below chance. It should be pointed out that for subjects 
S2-S4 only 10% percent of the available trials suffice to 
obtain good classification results.

Figure  2:  Clusters  of  the  most  reactive  frequency 
band for subjects S1 (top) and S3 (bottom).

DISCUSSION

We have shown that unsupervised classification is a 
viable option for BCIs. The classification errors of three 
subjects  were  comparable  to  those  obtained  by 
supervised  classification  methods  [Grosse-
Wentrup2007],  while  the  other  three  subjects  did  not 
perform above chance. The reason for this is illustrated 
in Fig. 2, showing the Gaussian mixture models for the 
most  reactive  frequency  band  of  subjects  S1  and  S3. 
The features of subject S3 are clearly separated into two 
clusters,  while  this  not  the  case  for  subject  S1. 
Furthermore,  the clusters  for  subject  S1  are  not  mea-
ningful, i.e., they separate the data into two classes that 
correspond  to  small/large  total  variance.  Further 
research  is  thus  needed  to  increase  the  reliability  of 
unsupervised classification for non-invasive BCIs.
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