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Abstract : Bayesian or likelihood-based approaches to data analysis became very popular in the field
of Machine Learning. However, there exist theoretical results which question the general applicability
of such approaches; among those a result by Robins and Ritov which introduce a specific example for
which they prove that a likelihood-based estimator will fail (i.e. it does for certain cases not converge
to a true parameter estimate, even given infinite data). In this paper we consider various approaches to
formulate likelihood-based estimators in this example, basically by considering various extensions of the
presumed generative model of the data. We can derive estimators which are very similar to the classical
Horvitz-Thompson and which also account for a priori knowledge of an observation probability function.
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1 Introduction

Robins and Ritov [1997] begin their paper as follows:

“In the analysis of data obtained by stratified random sampling, ’likelihoodist’ and
Bayesian statisticians often claim that inference concerning the population mean should
be the same regardless of whether the stratum-specific randomization (selection) prob-
abilities are or are not known to the data analyst.”

In this paper we explore some ‘likelihoodist’ approaches to derive estimators for such kinds of
problems and also investigate them empirically. We do not at all intent to prove the theorems
on the problems with Bayesian and likelihood-based (LB) approaches wrong—on the contrary we
support them empirically in a special case. However, there are alternative approaches to formulate
LB estimators, basically by considering alternative latent generative processes for the data at hand.
In fact, for a certain assumed generative process we can derive an LB estimator that is very similar
to the classical Horvitz-Thompson (HT) estimator. From a Bayesian point of view one might then
inversely argue that the HT estimator is “as if implicitly assuming such a generative process”.

The outline of this paper is as follows. In the next section we investigate a simplified version
of the problem without hidden observations. In this scenario one can already conclude that
in the LB approach any estimator that tries to avoid ignoring the data completely, must assume
dependencies between certain variables. This is realized by including an additional hyperparameter
in the assumed generative process. This discussion solves the “weaknesses” of Bayesian inference
brought forward in Wasserman [2005] in the context of Robins-Ritov’s problem. Section 3 then
considers the case in which some of the data can not be observed. A straight-forward LB estimator
performs well in cases in which the observation probability £ is not correlated to the mean 6 of
the observation. Here, however, we get to the core of the actual discussion of Robins and Ritov
[1997]: The straight-forward LB estimator ignores the observation probabilities and is biased if in
fact & and 6 are correlated. Robins-Ritov correctly point out that the HT estimator still works
even in this correlated case if £ is known—and they proof that, in their framework, a likelihood
based estimator will fail to converge correctly by constructing such a correlated case. In section
4 we reason about the case that £ and # might be dependent, and conclude that we need a non-
factorized joint prior, and we show that this dependency does not drop out of the likelihood in the
framework with the hyperparameter p. The LB estimator we derive for a certain joint prior P(¢, 6)
is very similar to the HT estimator, except for an empirically grounded normalization instead of
normalizing by the number of data points. Experiments show that the LB estimator converges
considerably faster (the variance decreases faster). Finally, in section 5, we consider a continuous
domain and Gaussian Processes as a prior over #’s. Interestingly, the prior smoothness of 6 as
given by the kernel function has a very intuitive effect on the estimator, which is analogous to
observing multiple observations for one X in the discrete case.

2 No transfer without hyperparameters

Let us first consider a preliminary problem in which all data is observed, but which pinpoints
already one crucial aspect, namely whether one can generalize from observed sites to unobserved
sites. The next section will address the problem as presented in Robins and Ritov [1997] with
similar notations as in Wasserman [2005].

Problem 1 (discrete X, no missing data) The observed data D consists of n pairs (X;,Y:)
with 1 <1 < n which are sampled i.i.d. as follows:

X, ~ uniform on{l,...,C} (1)
Yi ~ N(0x;,1) (2)



with C > n, and with the unknown vector 6 = (61,0s,...,0c). The task is to find an estimator
for

0; . (3)

Mo

j=1

Let us introduce some notations. We interpret X = j as randomly choosing a site j from
which we obtain an observation Y ~ N (6;,1). The data set D of size n will include samples from
only J different sites, some of which might be sampled repeatedly. W.l.o.g. we assume that the
domain of X is sorted such that {1,...,J} are the sites we actually have observations for, while
{J +1,...,C} have not been sampled. Let n; := #{i : X; = j} be the number of observations
we have for site j. Then we use the notation Y; for the n;-dimensional vector containing all the
observations we received form site j.

A simple unbiased estimator to solve this problem is

U
'l/):ﬁ ;Yi (4)

In constrast, a naive likelihood-based approach is to compute the MLE estimates é;VILE for

all 1 < j < C and then simply propose ¢ = 1/C Z 9 as an estimator for v. However, as
Wasserman [2005] pointed out, this approach has a severe problem: after examining the likelihood,

P(DI6) :H vi(0x,,1) (5)

(where N (u,0%) denotes the (possibly multivariate) probability density of z of the Gaussian
distribution with mean p and variance o?), we see that we can not compute an MLE estimate
H;WLE for unobserved sites j because ¢; does not appear in the likelihood. The fact that we only
observed a small fraction of the domaln (n <« C) corrupts the approach. Also retreating to
MAP estimates 8 does not help, because for unobserved j the posterior is equal to the prior,
i.e. P(6;|D) = P(6;). Thus for very large C, the estimate via Y =1/C > OA;IAP converges against
the mean of the prior P(f;), which means that the data is ignored.
For this naive MAP approach we have to conclude [in agreement with Wasserman, 2005]:

1. Most posteriors of §; given the data are equal to the prior.

2. The posterior of 6 given the data completely factorizes. Even given some data, every 0; is
unrelated to every other 6/ for j' # j. Thus what we learn from the data about ; at site j
does not transfer to 6;, at a non-observed site j' # j.

3. It seems that the estimator in Eq. (4) presumes that samples are not produced by completely
independent sites, but rather, that these sites share some latent property — only on the basis
of this presumption it is possible to transfer what one has learned about one site to another.
This is a significantly different view on the generative process in Problem 1.

This last point suggests the following approach: from a Bayesian point of view, when we think
that transfer from observed sites to unobserved sites is possible, then this must explicitly be ac-
counted for in terms of the presumed generative process. In our case, we include a hyperparameter
u in the generative model (Fig. 1(b)) that explicitly reflects our belief that we can learn about
unobserved sites from the data:

0; ~N(u,1) . (6)
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Figure 1: (a) Generative model when 6 are considered completely independent. (b) Generative
model when a hyperparameter y is assumed. The indexing of the X-domain is chosen such that
for j < J we observe n; data samples Yjj, which are combined in the n;-dimensional vector Y ;.
(Unobserved sites are not displayed. (c) Generative model in the case of non-uniform observation
probabilities £. (d) The case when £ and 6 are assumed dependent.

2.1 Bayesian and MLE-based estimators
We will consider two possible approaches to derive estimators, both of which are likelihood-based

in the sense that P(D|u) plays the crucial role:

1. In Empirical Bayesian Analysis we first use the data to learn an MLE estimate [LMLE =

argmax#P(D| u) of the hyperparameter. Then we derive the desired estimator from the

generative model given the MLE parameter ﬂMLE by integrating over 6,

~ 1 c MLE. 1 c c
¢=/529JP(9/1 )dezgz/ejnp(%
j=1 j=1 Jj=1

C
]. AMLE Al\/ILE
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=1

MLE

fi ) do (7)

2. In Fully Bayesian Analysis, we presume a prior over the hyperparameter, e.g. P(u) =

N,.(0,0) , and use the data to compute a posterior P(u|D) =N, (2™, 0") x P(D|p) P(u).
Then we can derive an estimator by integrating over 8 and u,

C
= [ [ & 320, POl PID) a0 dy

C
1
=& 2 [ [ Mo 1) NG )ty
j=1
1 < vy
Jj=1

which is the posterior mean of u.

We conclude this section by deriving these two estimators for Problem 1.

Theorem 1 Given data as generated in Problem 1 and the generative model (6) for the 0;, the
MLE estimate of the hyperparameter p is

_MLE ZT'L:I K/(nx + 1) C—oo 1 «— .
o =5 : — = Y; in prob. 10
Sy, + ) w2 ¥ (nprob) 1o

and converges for C — oo against the estimator in Eq. (4).



Proof Remember that Y ; denotes a vector whose entries are those Y; for which X; = j. Let us
calculate the likelihood of the data:

P = [ PO POl a Cn/HPYIH P(0,lu) d
1 J
~Cn H/NYJ(W.;‘J) Ny, (1, 1) db;
j=1

1 J
xon H / Ny, (0,1) No, (Y 5),1/m3) N, (. 1) db

C,LHNYJLOI J X0 (o s ) ) ) N e+ )

J

1 1

- = [T, 0.0 Niv (w1 + n—j) (1)
j=1

In the third line we used the orthogonal decomposition of a Gaussian into a component parallel

to the nj-dimensional vector 1 = (1,1,..,1)7 and orthogonal to it. With (y) = 17y/n; define

y, =y — 1{y) with the property y71 = 0. Note that

(y—10)* = (. +1({y) = 0)" (y1 +1({y) = 0) =y +n;((y) - 0) (12)
allows us to decompose the Gaussian in the second line of Eq. (11):
Ny ;(16;,1) o< Ny, (0, 1) No,((Y ), 1/n;) (13)

In the fourth line we used the product rule for Gaussians which is
Nz(a, A) Ny (b, B) = N,(c,C) N,(b, A+ B) (14)

with C = (A7'+ B~ Y"1 and ¢ = C(A~'a+ B~1b). The terms in the log-likelihood which contain
 are:

log P(D|p) = ngj\/ (14 — = ) -+i {f EM} (15)
= (Y ;)\ = 2 1+ 1/”]
(Y
log P(D 1
0,108 P(Dlp) o 3 AL —o (16)
j=1
which implies
ﬂMLE_ Zj 1<Y'>/(1+1/nj) _ Z?:l K/(W‘Xz +1) (17)
Yo 1/(1+1/ny) > 1/ (nx, +1)
For C — 00, every site is visited at most once, i.e. n; = 1 for all j = 1,...,J and thus
MLE
Zz IY u

Theorem 2 Given data according to Problem 1, the generative model (6) for the 0;, and a hy-
perparameter prior P(p) = N,(0,0), the posterior mean is

_BAY Z:Y; n i-i—l C—o0 1 "
oS i, + 1) Sy

T 1o+> Uy, +1)  2/o+n 2 (in prob.) (18)



Proof Given the likelihood P(D|u) as derived in the last line of equation (11), we have

J

P(u|D) o P(Dl) P(1) o 3 | f[Nmo,I)} [X,.(0,0) ﬁNu(<Yj>, 1+ )]

j=1

- C}n{leYu(O’])} Nu((p), o) {ﬁ/\/’(yﬁ(indep. of,u)} ,

j=1
11 & 1 &1
ith — = — -
W o a+jz::11+1/nj U+;nxi+1
and (u) = o’ I = . (19)
:11—|—1/nj 7’LX1—|—1

J =1

In the second line, we used again the product rule for Gaussians,
1 1 a;
HNx(ajaAj):Nx(C7C) HNaj("')7 GZZE7 C:CZZJJ_a (20)
J J J J
where the dots are some terms independent of x. The normalization constraint of P(u|D) then
leads to P(u|D) = N, ({n),0") and 2 = (). |

3 Randomly missing data and independent ¢ and ¢

The following problem is formulated as in Wasserman [2005] with the exception that we define Y;
to be Gaussian rather than Bernoulli variables. Robins and Ritov [1997] also considered Y; to be
Gaussian, but furthermore a continuous domain for X, which we address in section 5.

Problem 2 The observed data D consists of n tuples (X;, R;,Y;) with 1 < i < n which are
sampled i.i.d. as follows:

X; ~ uniform on{l,...,C} (21)
R; ~ Bernoulli({x,) (22)
N(bx,,1) iR =1
Y~ { 0 otherwise (23)
with the unknown vector 0 = (61,02, ...,0c), but with known vector § bounded away from 0 and 1,

(t.e. 0 <0 <& <1—08<1 for some small §), and with C > n. The task is to find an estimator
for

1

b= rol 0 . (24)

j=1

One classical approach is the Horvitz-Thompson (HT) estimator which is

pur _ Lo Y
¥ —n;&i. (25)

The idea of the HT estimator is to compensate for the probability of observing data at site X = j
by dividing with £;. With other words, it amplifies observed data, if it was unlikely to observe it.

In order to derive a likelihood-based estimator we again assume 6; ~ N (u, 1) with the hyper-
parameter p (Fig. 1(c)). Notationwise, we again assume that the indices j =1,...,J,J+1,...,C
are properly sorted as before. However, now we define n; := #{i : X; = j and R; = 1}.



Theorem 3 Given data from Problem 2 and presuming the generative model with hyperparameter
w as in Fig. 1(c), the MLE estimator for u is the same as for Problem 1, i.e., it ignores the
observation probabilities &:

MLE Z?:l R; Yi/(nx, +1) C—oo ; iR Y; (26)
Yoo Rif(nx, +1) Yo B

with exactly the same estimator as in Theorem 1. Note that for clarity we included a factor R;
in the enumerator, which is redundant given the convention R; = 0 = Y; = 0. Given the prior
P(u) = N(0,0), also the posterior P(u|D) is the same as before, with posterior mean

A BAY 27‘11 R; }/z/(nX + 1) C—o0 1 -
= = : . _—— R, Y, . 27
B ey Rinn D Yery R X (27

i=1

Proof Instead of equation (11), we now have

P(Dl) = / P(D|6) P(0)) d6 = / [T 5 €50 - &)™ PG00 POO]) do

= A [ITka -eon] [_ﬁ [ P16 P61 a0 (28)

In the first line, the terms P(Y; ’Xi, )T drop out for non-observed data, i.e. for R; = 0. Hence, in
the second line we can rearrange the data indexing, again grouping data from one site to a joint
Gaussian vector Y ;. As a result, the likelihood perfectly factorizes, the first factor is independent

of u, and ,&MLE is the same as in theorem 1 when considering only observed data. |

That is, the likelihood-based estimators ignore the a priori knowledge of the observation prob-
abilities £&. However, it does implement a “reweighting of the data” in the estimator depending on
the multiplicities n; of observing the same site.

We performed simple experiments to compare the Horvitz-Thompson estimator and our likelihood-
based estimator from Theorem 3:

Experiment 1 (unrelated 6 and §) To simulate the limit C — oo we assume that all visited
data sites X; are different. We generate a data set by first sampling 0; ~ N(u,1) and further
& ~U([.1,.9]) for each observed site i. Note that 6 and & are completely unrelated. After that we
sample R; andY; according to the model in Problem 2. We compute the values of both estimators
(25) and (26) for 1 < n < 10° data points. We repeat this for 20 data sets. Fig. 2 displays the
results.

The experiment suggests that both, the LB estimator (26) as well as the Horvitz-Thompson
(25) work fine. However, as can be seen from the logarithmic plots of the variance, the variance of
the LB estimator is much smaller than that of the HT estimator. Furthermore, the experiments
suggest that the variance for the HT estimator increases with larger pu # 0.

4 Likelihood-based estimators for Robins Ritov’s proof case:
¢ and 6 dependent

Let us now get to the core of Robins and Ritov [1997]. The authors consider uniform unbiasedness
of an estimator. This means that the estimator has to be unbiased for every possible choice of 6
and £. In the experiment we performed above, though, we chose £ and 6 independently and thus
it was very unlikely that we ended up with an accidentally correlated £ and 6, e.g., where 0 tends
to be large whenever also ¢ is (or inversely).
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Figure 2: Experiment 1; bias and variance of the estimators (25) and (26) from 20 runs, for p =0
and p = 10.

Theorem 3 in Robins and Ritov [1997] proves that a likelihood-based estimator in their frame-
work cannot be uniformly unbiased. The proof is by constructing a specific £ and 8 for which the
estimator will be biased. This specific choice of £ and # used in the proof is very interesting and
instructive for us: They consider £ and 6 correlated such that at half the sites £ = .25 + d and
0 = .5+ a and at the other half of the sites £ = .25 —d and 0 = .5 — a.

In fact, experiment 2 will show that such cases will mislead the LB estimator (26) and lead
it to converge to a heavily biased estimate, while the HT estimator is indeed unbiased. However,
the example motivates us to explicitly consider a dependency between £ and 6 that will enter the
likelihood (Fig. 1(d)).

Theorem 4 Assuming the prior of 6 depends on & in the form 0; ~ Ny, (u, a&;) for some a > 0,
and conditioning the model on a known &, then the & enters the MLE estimator for p as follows:

AMLE Z?:l RiY;/(agXinXi + 1) C,a—o00 Z?:l R’LY;/€XL

=5 — = (29)
>im1 Ri/(adx;nx; +1) i1 Ri/éx,
and with the prior P(u) = N(0,0), the posterior mean is
ﬂBAY _ ZZL:I RlYVZ/(agXlnxi + 1) C,goo E?:l Rl}/l/gxi (30)

C 1o+ Ri/(aéx,nx, +1) 2/ 4+ Riféx,



Proof Starting from equation (28) and adding the dependency of §; on ¢; we have

1
P(D|u) = Cf[Hé (1= Ex)' R H/ (Y;|0;) P ) daj]
i=1
[mdep ofu H/Ny 16;,1) No, (i, ;) do
x _H [ A, 0.1) Ko, (¥ . 1/0,) N ()
J
= H JL (0,1) /Ng .>(/L,O¢§j +1/n;) db,
J
H Ny (a8 +1/n;) (31)
MLE estimator for p:
log P(D|p) = Zlog/\/ Yol +1/nj) =+ Y [— % W (32)
j=1 J J
J
Oylog P(D|p) = ; of + 1/% =0 (33)

from which follows

e S0 (Yi)/(ag; +1/n) Y ViR (afxnx, +1) 5
8 ST /(b + 1ny) | S Rif(axonx, +1)

The posterior mean ﬂBAY follows directly from the likelihood (31), as in the proof to Theorem 2,
with

BAY 1 1 4 1 1 = R;
PulD) =N ,0'), — ==+ PUSITE Y uly TFotne
(1|D) (A ) o o ]; alj+1/n; o ; 1+ agnx,
J n
L BAY ’ <Y]> ’ R; Y,
gy Yy RN (35)
j=1 agj +1/n; Pl

Experiment 2 (£ and 6 correlated) Again, all sites X; are different. We generate a data set
by first sampling 0; ~ N(u,1) and then dependently choosing & = 1/2 + (6; — ) (capped to the
interval [.1,.9]). We compute the three estimators (25), (26), and (29) for 1 < n < 10° data
points. We repeat this for 20 data sets. Fig. 8(a€b) display the bias 1[) — u over the 20 data sets
and the variance of the estimators with increasing number of data points.

The estimator (29) is indeed very similar to the HT estimator; for & — oo they only differ by
the normalization constant (replacing 1/n by 1/ 31" | R;/€x,). For pn =0, the experiments show
that their estimates are almost identical. However, for larger p the LB estimator (29) again has
considerably lower variance. The experiments also confirm that the LB estimator (26) without
assumed £ and 6 dependency is heavily biased.
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Figure 3: Experiment 2; bias and variance of the estimators (25), (29) (BAY2), and (26) (BAY1)
from 20 runs, for 4 = 0 and g = 10. For g = 0 the HT estimator and our likelihood-based
estimator (29) are very similar (hardly distinguishable in these averages).

5 Gaussian Process priors in the continuous case

Problem 3 (continuous X, some missing data) The data D consists of n tuples (X;, R;,Y;)
with 1 <1 < n which are sampled i.i.d. as follows:

X; ~U([0,1]%) (36)
R; ~ Bernoulli(§(X;)) (37)
v {0 &

where € : [0,1)% — [6,1 — 6] for small 6 > 0 is a function that provides for each site X a
success probability £(X), and with the unknown function 6 : [0,1]* — R. Find an estimator

for = [, 0(x) dx.

Theorem 5 Assuming a Gaussian process prior 0 ~ GP(u, k) for the function 6, with a constant
mean function p € R and kernel function k, the MLE estimator for u is

L MLE 17 (I+Kx)71 Y
b AT Uy Kx) 1

(39)



where Kx is the Gram matriz at the observed data sites with entries K;; = k(X;, X;), and Y
is the (31, R;)-dimensional vector of all observations, i.e. it contains all entries Y; such that

R, =1.

Proof Let Ox be the vector of the values 6(X;) for all ¢ with R; = 1, i.e. the evaluation of 6
at the observed sites. Note that, given the GP prior, the distribution of fx is a joint Gaussian,
Ox ~ N(ul, Kx) with constant mean p1 and the Gram matrix as covariance matrix.

P(D|p) = / P(DI0) P(0|p) df = / [Texn)™a—e(xa))' =" PYi|X,,0)% P(6]u) do
i=1

X /Ny(ox,f) NGX(/J,17K)() d@X = /NQX(C, C) NY(,LL].,I'FKX) dHX

= Ny (p1,1 + Kx) (40)

with ¢ and C appropriately chosen according to the product rule in Eq. (14). This implies the
MLE estimator for p:

_MLE 17 (I+Kx>_1 Y

= . 41
i T (T hx) 11 (41)
|
Remark 6 For the kernel function k(x’,x) = a0, we get
AMLE Z?:l RZK/(]- + ang‘) (42)

XL Ri/(tagx,)
which is exactly the same as the estimator (29) in the discrete case for C — oo (when each site is
observed only once).

It is interesting to see that here the choice of the kernel function plays the central role. As-
suming smoothness of the function 6 enters the estimator in a way analogous to observing the
same point multiple times, as in the estimator (26). Indeed, smoothness means that what has
been learned about one site can be transferred to another. Assuming a ¢-dependent variance term
a0, in the kernel retrieves the estimator we proposed to handle the case of dependent & and

6.

6 Conclusion

We investigated several approaches to derive likelihood-based estimators in the example of Robins-
Ritov, which are summarized in Table 1. The estimators are based on additional assumptions on
the latent generative model. In particular, we considered a hyperparameter p, which allows the
likelihood-based approach to transfer what can be learned from observations at some sites to
unobserved sites. And we considered a dependence of the £ and 6 in terms of an explicit prior
P(0]¢, 1), which allows us to define a likelihood-based estimator which depends on and accounts
for the a priori knowledge of the “stratum-specific randomization probabilities” £&. The likelihood-
based estimators we derive from this approach are very similar to the HT estimator. Experiments
show that they are unbiased also for correlated & and 6, but appear to have lower variance than
the HT estimator.
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frequentist

Emprical Bayesian

Fully Bayesian

no missing data
(Pr. 1)

missing data

(Pr. 2)
indep. £ and 6

missing data
(Pr. 2)
dep. £ and 6

missing data &
continuous (Pr.
3)

(Eq. (4)) (Th. 1)
1 & 1 &
w2 n 2V
(HT) (Th. 3)
Z?:l Rzyrz/ng Z?:l RZYL
n >y R
(HT) (Th. 4)
Z;L:1 RiYi/quz Z?:1 RzYz/ng
n ZZT'L:1 Ri/€Xi
(HT) (Th. 5)
Yoy RiYi/E(X) 17T (I+Kx)'Y
n 17 (IT+Kx) 11

(Th. 2)

n

1
s DY
2/c+n P
(Th. 3)
Z?:l RY;
2/0’ + Z:‘L:l R,‘

(Th. 4)
Z:‘L:I R1Y7/§X1

2/0+ > Ri/¢x,

Table 1: Overview of the derived estimators (for the case C' — o00).
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