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Abstract

Convex learning algorithms, such as Sup-
port Vector Machines (SVMs), are often seen
as highly desirable because they offer strong
practical properties and are amenable to the-
oretical analysis. However, in this work we
show how non-convexity can provide scala-
bility advantages over convexity. We show
how concave-convex programming can be ap-
plied to produce (i) faster SVMs where train-
ing errors are no longer support vectors, and
(ii) much faster Transductive SVMs.

1. Introduction

The machine learning renaissance in the 80s was fos-
tered by multilayer models. They were non-convex and
surprisingly efficient. Convexity rose in the 90s with
the growing importance of mathematical analysis, and
the successes of convex models such as SVMs (Vap-
nik, 1995).These methods are popular because they
span two worlds: the world of applications (they have
good empirical performance, ease-of-use and computa-
tional efficiency) and the world of theory (they can be
analysed and bounds can be produced). Convexity is
largely responsible for these factors.

Many researchers have suspected that convex models
do not cover all the ground previously addressed with
non-convex models. In the case of pattern recogni-
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tion, one argument was that the misclassification rate
is poorly approximated by convex losses such as the
SVM Hinge Loss or the Boosting exponential loss (Fre-
und & Schapire, 1996). Various authors proposed non-
convex alternatives (Mason et al., 2000; Pérez-Cruz
et al., 2002), sometimes using the same concave-convex
programming methods as this paper (Krause & Singer,
2004; Liu et al., 2005).

The ψ-learning paper (Shen et al., 2003) stands out
because it proposes a theoretical result indicating that
non-convex loss functions yield fast convergence rates
to the Bayes limit. This result depends on a specific
assumption about the probability distribution of the
examples. Such an assumption is necessary because
there are no probability independent bounds on the
rate of convergence to Bayes (Devroye et al., 1996).
However, under substantially similar assumptions, it
has recently been shown that SVMs achieve compa-
rable convergence rates using the convex Hinge Loss
(Steinwart & Scovel, 2005). In short, the theoreti-
cal accuracy advantage of non-convex losses no longer
looks certain.

On real-life datasets, these previous works only report
modest accuracy improvements comparable to those
reported here. None mention the potential compu-
tational advantages of non-convex optimization, sim-
ply because everyone assumes that convex optimiza-
tion is easier. On the contrary, most authors warn the
reader about the potentially high cost of non-convex
optimization.

This paper proposes two examples where the optimiza-
tion of a non-convex loss functions brings considerable
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computational benefits over the convex alternative1.

Both examples leverage a modern concave-convex pro-
gramming method (Le Thi, 1994). Section 2 shows
how the ConCave Convex Procedure (CCCP) (Yuille
& Rangarajan, 2002) solves a sequence of convex prob-
lems and has no difficult parameters to tune. Section 3
proposes an SVM where training errors are no longer
support vectors. The increased sparsity leads to better
scaling properties for SVMs. Section 4 describes what
we believe is the best known method for implementing
Transductive SVMs with a quadratic empirical com-
plexity. This is in stark constrast to convex versions
whose complexity grows with degree four or more.

2. The Concave-Convex Procedure

Minimizing a non-convex cost function is usually dif-
ficult. Gradient descent techniques, such as conju-
gate gradient descent or stochastic gradient descent,
often involve delicate hyper-parameters (LeCun et al.,
1998). In contrast, convex optimization seems much
more straight-forward. For instance, the SMO (Platt,
1999) algorithm locates the SVM solution efficiently
and reliably.

We propose instead to optimize non-convex prob-
lems using the “Concave-Convex Procedure” (CCCP)
(Yuille & Rangarajan, 2002). The CCCP procedure
is closely related to the “Difference of Convex” (DC)
methods that have been developed by the optimiza-
tion community during the last two decades (Le Thi,
1994). Such techniques have already been applied for
dealing with missing values in SVMs (Smola et al.,
2005), for improving boosting algorithms (Krause &
Singer, 2004), and for implementing ψ-learning (Shen
et al., 2003; Liu et al., 2005).

Assume that a cost function J(θ) can be rewritten
as the sum of a convex part Jvex(θ) and a concave
part Jcav(θ). Each iteration of the CCCP procedure
(Algorithm 1) approximates the concave part by its
tangent and minimizes the resulting convex function.

Algorithm 1 : The Concave-Convex Procedure (CCCP)

Initialize θ0 with a best guess.
repeat

θt+1 = arg min
θ

(
Jvex(θ) + J ′cav(θt) · θ)

(1)

until convergence of θt

1Conversely, Bengio et al. (2006) proposes a convex
formulation of multilayer networks which has considerably
higher computational costs.

One can easily see that the cost J(θt) decreases after
each iteration by summing two inequalities resulting
from (1) and from the concavity of Jcav(θ).

Jvex(θt+1) + J ′cav(θt) · θt+1 ≤ Jvex(θt) + J ′cav(θt) · θt (2)
Jcav(θt+1) ≤ Jcav(θt) + J ′cav(θt) · (θt+1 − θt

)
(3)

The convergence of CCCP has been shown (Yuille &
Rangarajan, 2002) by refining this argument. No ad-
ditional hyper-parameters are needed by CCCP. Fur-
thermore, each update (1) is a convex minimization
problem and can be solved using classical and efficient
convex algorithms.

3. Non-Convex SVMs

This section describes the ”curse of dual variables”,
that the number of support vectors increases in clas-
sical SVMs linearly with the number of training ex-
amples. The curse can be exorcised by replacing the
classical Hinge Loss by a non-convex loss function, the
Ramp Loss. The optimization of the new dual problem
can be solved using CCCP.

Notation In the rest of this paper, we consider two-
class classification problems. We are given a training
set (xl, yl)l=1...L with (xl, yl) ∈ Rn × {−1, 1}. SVMs
have a decision function fθ(.) of the form fθ(x) =
w · Φ(x) + b, where θ = (w, b) are the parameters of
the model, and Φ(·) is the chosen feature map, often
implicitly defined by a Mercer kernel (Vapnik, 1995).
We also write the Hinge Loss Hs(z) = max(0, s − z)
(Figure 1, center) where the subscript s indicates the
position of the Hinge point.

Hinge Loss SVM The standard SVM criterion re-
lies on the convex Hinge Loss to penalize examples
classified with an insufficient margin:

θ 7→ 1
2
‖w‖2 + C

L∑

l=1

H1(yl fθ(xl)) , (4)

The solution w is a sparse linear combination of the
training examples Φ(xl), called support vectors (SVs).
Recent results (Steinwart, 2003) show that the number
of SVs k scales linearly with the number of examples.
More specifically

k/L → 2BΦ (5)

where BΦ is the best possible error achievable linearly
in the chosen feature space Φ(·). Since the SVM train-
ing and recognition times grow quickly with the num-
ber of SVs, it appears obvious that SVMs cannot deal
with very large datasets. In the following we show how
changing the cost function in SVMs cures the problem
and leads to a non-convex problem solvable by CCCP.
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Figure 1. The Ramp Loss function (left) can be decom-
posed into the sum of the convex Hinge Loss (middle) and
a concave loss (right).

Sparsity and Loss functions The SV scaling prop-
erty (5) is not surprising because all misclassified train-
ing examples become SVs. This is in fact a property of
the Hinge Loss function. Assume for simplicity that
the Hinge Loss is made differentiable with a smooth
approximation on a small interval z ∈ [1 − ε, 1 + ε]
near the hinge point. Differentiating (4) shows that
the minimum w must satisfy

w = −C

L∑

l=1

yl H
′
1(yl) fθ(xl)) Φ(xl) . (6)

Examples located in the flat area (z > 1 + ε) cannot
become SVs because H ′

1(z) is 0. Similarly, all exam-
ples located in the SVM margin (z < 1− ε) or simply
misclassified (z < 0) become SVs because the deriva-
tive H ′

1(z) is 1.

We propose to avoid converting some of these examples
into SVs by making the loss function flat for scores
z smaller than a predefined value s < 1. We thus
introduce the Ramp Loss (Figure 1):

Rs(z) = H1(z)−Hs(z) (7)

Replacing H1 by Rs in (6) guarantees that examples
with score z < s do not become SVs.

Rigorous proofs can be written without assuming that
the loss function is differentiable. Similar to SVMs,
we write (4) as a constrained minimization problem
with slack variables and consider the Karush-Kuhn-
Tucker conditions. Although the resulting problem
is non-convex, these conditions remain necessary (but
not sufficient) optimality conditions (Ciarlet, 1990).
Due to lack of space we omit this easy but tedious
derivation.

This sparsity argument provides a new motivation for
using a non-convex loss function. Unlike previous
works (see Introduction), our setup is designed to test
and exploit this new motivation.

Optimization Decomposing (7) makes the Ramp
Loss amenable to CCCP optimization. The new cost

Js(θ) then reads:

Js(θ) =
1
2
‖w‖2 + C

L∑

l=1

Rs(yl fθ(xl)) (8)

=
1
2
‖w‖2 + C

L∑

l=1

H1(yl fθ(xl))

︸ ︷︷ ︸
Js

vex(θ)

−C

L∑

l=1

Hs(yl fθ(xl))

︸ ︷︷ ︸
Js

cav(θ)

For simplification purposes, we introduce the notation

βl = yl
∂Js

cav(θ)
∂fθ(xl)

=
{

C if yl fθ(xl) < s
0 otherwise

The convex optimization problem (1) that constitutes
the core of the CCCP algorithm is easily reformulated
into dual variables using the standard SVM technique.
This yields the following algorithm2.

Algorithm 2 : CCCP for Ramp Loss SVMs

Initialize β0 = <see text>.
repeat

• Compute αt by solving the following convex
problem, where Klm = yl ym Φ(xl) · Φ(xm).

max
α

(
α · 1− 1

2
αT K α

)

subject to
{

y ·α = 0
−β t−1 ≤ α ≤ C − β t−1

• Compute bt using
0 < αt

l < C =⇒ yl fθt(xl) = 1

where fθt(xl) =
L∑

i=1

yiα
t
i Φ(xi) · Φ(xl) + bt

• Compute βt
l =

{
C if yl fθt(xl) < s
0 otherwise

until β t = β t−1

Convergence in finite number of iterations is guaran-
teed because variable β can only take a finite num-
ber of distinct values, because J(θt) is decreasing, and
because inequality (3) is strict unless β remains un-
changed.

Initialization Setting the initial β0 to zero makes
the first convex optimization identical to the Hinge
Loss SVM optimization. Useless support vectors are
eliminated during the following iterations.

2Note that Rs(z) is non-differentiable at z = s. It can
be shown that the CCCP remains valid when using any
super-derivative of the concave function. Alternatively,
function Rs(z) could be made smooth in a small interval
[s− ε, s + ε] as in our previous argument.



Trading Convexity for Scalability

However, we can also initialize β0 according to the
output fθ0(x) of a Hinge Loss SVM trained on a subset
of examples.

β0
l =

{
C if yl fθ0(xl) < s
0 otherwise

The successive convex optimizations are much faster
because their solutions have roughly the same number
of SVs as the final solution. In practice, this proce-
dure is robust, and its overall training time can be
significantly smaller than the standard SVM training
time.

Discussion The excessive number of SVs in SVMs
has long been recognized as one of the main flaws
of this otherwise elegant algorithm. Many methods
to reduce the number of SVs are after-training meth-
ods that only improve efficiency during the test phase
(see §18, Schölkopf & Smola, 2002.)

Pérez-Cruz et al. (2002) proposed a sigmoid loss
for SVMs. His motivation was to approximate the
0− 1 Loss and was not concerned with speed. Sim-
ilarly, motivated by the theoretical promises of ψ-
learning, Liu et al. (2005) proposes a special case
of Algorithm 2 with s = 0 as the Ramp Loss parame-
ter, and β0 = 0 as the algorithm initialization. In the
experiment section, we show that our algorithm pro-
vides sparse solutions, thanks to the s parameter, and
accelerated training times, thanks to a better choice of
the β0 initialization.

Experiments: setup The experiments in this sec-
tion use a modified version of SVMTorch, coded in
C. Unless otherwise mentioned, the hyper-parameters
of all the models were chosen using a cross-validation
technique, for best generalization performance. All re-
sults were averaged on 10 train-test splits.

Experiments: accuracy and sparsity We first
study the accuracy and the sparsity of the solution
obtained by the algorithm. For that purpose, all the
experiments in this section were performed by initial-
izing Algorithm 2 using β0 = 0 which corresponds
to initializing CCCP with the classical SVM solution.
Table 1 presents an experimental comparison of the
Hinge Loss and the Ramp Loss using the RBF ker-
nel Φ(xl) · Φ(xm) = exp(−γ ‖xl − xm‖2). The results
of Table 1 clearly show that the Ramp Loss achieves
similar generalization performance with much fewer
SVs. This increased sparsity observed in practice fol-
lows our mathematical expectations, as exposed in the
Ramp Loss section.

Figure 2 (left) shows how the s parameter of the Ramp
Loss Rs controls the sparsity of the solution. We re-

Dataset Train Test Notes
Waveform1 4000 1000 Artificial data, 21 dims.
Banana1 4000 1300 Artificial data, 2 dims.
USPS+N2 7329 2000 0 vs rest + 10% label noise.
Adult2 32562 16282 As in (Platt, 1999).

1 http://mlg.anu.edu.au/∼raetsch/data/index.html
2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

SVM H1 SVM Rs

Dataset Error SV Error SV
Waveform 8.8% 983 8.8% 865
Banana 9.5% 1029 9.5% 891
USPS+N 0.5% 3317 0.5% 601
Adult 15.1% 11347 15.0% 4588

Table 1. Comparison of SVMs using the Hinge Loss (H1)
and the Ramp Loss (Rs). Test error rates (Error) and
number of SVs. All hyper-parameters including s were
chosen using a validation set.
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Figure 2. Number of SVs vs. training size (left) and train-
ing error (right) for USPS+N (top) and Adult (bottom).
We compare the Hinge Loss H1 and Ramp Losses R−1 and
R0 (left) and Rs for different values of s, printed along the
curve (right).

port the evolution of the number of SVs as a func-
tion of the number of training examples. Whereas the
number of SVs in classical SVMs increases linearly, the
number of SVs in Ramp Loss SVMs strongly depends
on s. If s → −∞ then Rs → H1; in other words, if
s takes large negative values, the Ramp Loss will not
help to remove outliers from the SVM expansion, and
the increase in SVs will be linear with respect to the
number of training examples, as for classical SVMs.
As reported on the left graph, for s = −1 on Adult
the increase is already almost linear. As s → 0, the
Ramp Loss will prevent misclassified examples from
becoming SVs. For s = 0 the number of SVs appears
to increase like the square root of the number of ex-
amples, both for Adult and USPS+N.
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Figure 3. The objective function with respect to the num-
ber of iterations in the outer-loop of the CCCP for
USPS+N (left) and Adult (right).

Figure 2 (right) shows the impact of the s parameter
on the generalization performance. Note that selecting
0 < s < 1 is possible, which allows the Ramp Loss to
remove well classified examples from the set of SVs.
Doing so degrades the generalization performance on
both datasets.

Clearly s should be considered as a hyperparameter
and selected for speed and accuracy considerations.

Experiments: speedup The experiments we have
detailed so far are not faster to train than a normal
SVM because the first iteration (β0 = 0) corresponds
to initializing CCCP with the classical SVM solution.
Interestingly, few additional iterations are necessary
(Figure 3), and they run much faster because of the
smaller number of SVs. The resulting training time
was less than twice the SVM training time.

We thus propose to initialize the CCCP procedure
with a subset of the training set (let’s say 1/P th), as
described in the Initialization section. The first con-
vex optimization is then going to be at least P 2 times
faster than when initializing with β0 = 0 (SVMs train-
ing time being known to scale at least quadratically
with the number of examples). Since the subsequent
iterations involve a smaller number of SVs, we expect
accelerated training times.

Figure 4 shows the robustness of the CCCP procedure
when initialized with a subset of the training set. On
USPS+N and Adult, using respectively only 1/3th and
1/10th of the training examples is sufficient to match
the generalization performance of classical SVMs.

Using this scheme, and tuning the CCCP procedure for
speed and similar accuracy to SVMs, we obtain more
than a two-fold and four-fold speedup over SVMs on
USPS+N and Adult respectively, together with a large
increase in sparsity (see Figure 5).
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Figure 4. Results on USPS+N (left) and Adult (right) us-
ing an SVM with the Ramp Loss Rs. We show the test
error and the number of SVs as a function of the percent-
age r of training examples used to initialize CCCP, and
compare to standard SVMs trained with the Hinge Loss.
For each r, all hyper-parameters were chosen using cross-
validation.
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4. Non-Convex Transductive SVMs

The same non-convex optimization techniques can be
used to perform large scale semi-supervised learning.
Transductive SVMs (Vapnik, 1995) seek large margins
for both the labeled and unlabeled examples, in the
hope that the true decision boundary lies in a region
of low density, implementing the so-called cluster as-
sumption (see Chapelle & Zien, 2005). When there are
few labeled examples, TSVMs can leverage unlabeled
examples and give considerably better generalization
performance than standard SVMs. Unfortunately, the
TSVM implementations are rarely able to handle a
large number of unlabeled examples.

Early TSVM implementations perform a
combinatorial search of the best labels for the



Trading Convexity for Scalability

unlabeled examples. Bennett and Demiriz (1998)
use an integer programming method, intractable for
large problems. The SVMLight TSVM (Joachims,
1999) prunes the search tree using a non-convex ob-
jective function. This is practical for a few thousand
unlabeled examples.

More recent proposals (Bie & Cristianini, 2004; Xu
et al., 2005) transform the transductive problem into a
larger convex semi-definite programming problem. The
complexity of these algorithms grows like (L + U)4

or worse, where L and U are numbers of labeled and
unlabeled examples. This is only practical for a few
hundred examples.

We advocate instead the direct optimization of the
non-convex objective function. This direct approach
has been used before. The sequential optimization
procedure of Fung and Mangasarian (2001) is the
most similar to our proposal. This method poten-
tially could scale well, although they only use 1000
examples in their largest experiment. However, it is
restricted to the linear case, does not implement a bal-
ancing constraint (see below), and uses a special kind
of SVM with a 1-norm regularizer to maintain linear-
ity. The primal approach of Chapelle and Zien (2005)
shows improved generalization performance, but still
scales as (L + U)3 and requires storing the entire
(L + U)× (L + U) kernel matrix in memory.

CCCP for transduction We propose to solve the
transductive SVM problem using CCCP. The TSVM
optimization problem reads:

1
2
‖w‖2 + C

L∑

l=1

H1(yl fθ(xl)) + C∗
L+U∑

l=L+1

T (fθ(xl)) ,

(9)
This is the same as an SVM apart from the last term,
the loss on the unlabeled examples xL+1, . . . , xL+U .
SVMLight TSVM uses a “Symmetric Hinge Loss”
T (x) = H1(|x|) on the unlabeled examples (Fig-
ure 6, left). Chapelle’s method, ∇TSVM, handles un-
labeled examples with a smooth version of this loss
(Figure 6, center). We use the following loss for unla-
beled examples,

z 7→ Rs(z) + Rs(−z) (10)

where Rs is defined as in (7). When s = 0, this
is equivalent to the symmetric Hinge. When s 6= 0,
we obtain a non-peaked loss function (Figure 6, right)
which can be viewed as a simplification of Chapelle’s
loss function.

Using the loss function (10) is equivalent to train-
ing a Ramp Loss SVM where each unlabeled exam-
ple appears as two examples labeled with both possi-
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Figure 6. Three loss functions for unlabeled examples.

Dataset Classes Dims Points Labeled
g50c 2 50 500 50
Coil20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50

Coil20 g50c Text Uspst
SVM 24.6 8.3 18.9 23.2
SVMLight-TSVM 26.3 6.9 7.4 26.5
∇TSVM 17.6 5.8 5.7 17.6
CCCP-TSVM|s=0

UC∗=LC 16.7 5.6 8.0 16.6
CCCP-TSVM 15.9 3.9 4.9 16.5

Table 2. Test Error on Small-Scale Datasets, comparing
different TSVMs.

ble classes. We could then use Algorithm 2 without
changes. However, transductive SVMs perform badly
without adding a balancing constraint on the unla-
beled examples. For comparison purposes, we chose
to use the constraint proposed by Chapelle and Zien
(2005):

1
|U|

∑

l∈U
(w · Φ(xl) + b) =

1
|L|

∑

l∈L
yl , (11)

where L and U are respectively the labeled and un-
labeled examples. After some algebra, we end up us-
ing Algorithm 2 with a training set composed of the
labeled examples, of two copies of the unlabeled exam-
ples using both possible classes, and adding an extra
line and column 0 to matrix K such that

Kl0 = K0l =
1
|U|

∑

m∈U
Φ(xm) · Φ(xl) ∀l . (12)

The Lagrangian variable α0 corresponding to this col-
umn does not have any constraint (can be positive and
negative) and β0 = 0. Adding this special column can
be achieved very efficiently by computing it only once,
or by approximating the sum (12) using an appropriate
sampling method.

Experiments: accuracy We first performed exper-
iments using the setup of Chapelle and Zien (2005) on
the datasets given in Table 2. Following Chapelle et
al., we report the test error of the best parameters op-
timized on the mean test error over all ten splits. All
methods use an RBF kernel and γ and C are tuned
on the test set. For CCCP-TSVMs we either choose
the heuristics s = 0 and C∗ = L

UC or also tune C∗
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Figure 7. Training times for g50c (left) and Text (right)
comparing SVMLight TSVMs, ∇-TSVMs and CCCP
TSVMs. These plots use a single trial.
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Figure 8. Value of the objective function and test error
during the CCCP iterations of training TSVM on two
datasets (single trial), Text (left) and g50c (right). CCCP-
TSVM tends to converge after only a few iterations.

and s. The results are reported in Table 2. Code for
our method can be found at: http://www.kyb.mpg.
de/bs/people/fabee/universvm.html.

CCCP-TSVM achieves approximately the same error
rates on all datasets as the ∇TSVM, and appears
to be superior to SVMLight-TSVM. Training CCCP-
TSVMs with s = 0 (using the Symmetric Hinge Loss
– Figure 6, left) rather than the non-peaked loss of
the Symmetric Ramp function (Figure 6, right) also
yields results similar to, but sometimes slightly worse
than, ∇TSVM. It appears that the Symmetric Ramp
function is a better choice of loss function, and that
the choice of the hyper-parameter s is as important as
in Section 3.

Experiments: speedup Without any particular
optimization, CCCP TSVMs run orders of magnitude
faster than SVMLight TSVMs and∇-TSVMs, see Fig-
ure 7. We were not able to compare with the convex
approach of Bie and Cristianini (2004), as it does not
scale well. In their experiments only 200 examples
were used. Our training algorithm would complete a
similar experiment in a fraction of a second. Finally,
Figure 8 shows the value of the objective function
and test error during the CCCP iterations of train-
ing TSVM on two datasets. CCCP-TSVM tends to
converge after only a few (around 5-10) iterations.

Large Scale Experiments We then performed two
CCCP-TSVM experiments on datasets whose sizes
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Figure 9. Comparison of SVM and CCCP-TSVM on two
large scale problems.
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Figure 10. Optimization time for the Reuters (left) and
MNIST (right) datasets as a function of the number of un-
labeled data. The dashed lines represent a parabola fitted
at the time measurements.

challenge the capabilities of the previously published
methods. The first was to separate the two largest top-
level categories CCAT (corporate/industrial) and
GCAT (government/social) of the training part of
the Reuters dataset as provided by Lewis et al. (2004).
The set of these two categories consists of 17754 doc-
uments in a bag of words format, weighted with a
TF.IDF scheme and normalized to length one. Figure
9 (left) shows training with 100 labeled examples and
different amount of unlabeled examples, up to 10,000
examples (0 unlabeled examples is the SVM solution).
Hyperparameters were found using a separate valida-
tion set of size 2000, and test error was measured on
the remaining data. For more labeled examples, e.g.
1000, the gain is smaller – 10.4% using 9.5k unlabeled
points compared to 11.0% for SVMs.

Figure 10 shows the training time of CCCP optimiza-
tion as a function of the number of unlabeled examples.
The training times clearly show a quadratic trend.

In the second large scale experiment, we conducted ex-
periments on the MNIST handwritten digit database,
as a 10-class problem. The original data has 60,000
training examples and 10,000 testing examples. We
used 1000 training examples, and up to 40,000 of the
remainder of the data as unlabeled examples, testing
on the original test set. Hyperparameters were found
using a separate validation set of size 1000. The re-
sults given in Figure 9 (right) show an improvement
over SVM for CCCP-TSVMs which increases steadily
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as the number of unlabeled examples increases.

5. Conclusion

We described two non-convex algorithms using CCCP
that bring marked scalability improvements over the
corresponding convex approaches, namely for SVMs
and TSVMs. Moreover, any new improvements to
standard SVM training could immediately be applied
to either of our CCCP algorithms.

In general, we argue that the current popularity of con-
vex approaches should not dissuade researchers from
exploring alternative techniques, as they sometimes
give clear computational benefits.
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