Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Overcomplete Independent Component Analysis via Linearly Constrained Minimum Variance Spatial Filtering

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grosse-Wentrup, M., & Buss, M. (2007). Overcomplete Independent Component Analysis via Linearly Constrained Minimum Variance Spatial Filtering. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 48(1-2), 161-171. doi:10.1007/s11265-006-0028-3.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-CC35-D
Zusammenfassung
Independent Component Analysis (ICA) designed for complete bases is used in a variety of applications with great success, despite the often questionable assumption of having N sensors and M sources with N8805;M. In this article, we assume a source model with more sources than sensors (M>N), only L<N of which are assumed to have a non-Gaussian distribution. We argue that this is a realistic source model for a variety of applications, and prove that for ICA algorithms designed for complete bases (i.e., algorithms assuming N=M) based on mutual information the mixture coefficients of the L non-Gaussian sources can be reconstructed in spite of the overcomplete mixture model. Further, it is shown that the reconstructed temporal activity of non-Gaussian sources is arbitrarily mixed with Gaussian sources. To obtain estimates of the temporal activity of the non-Gaussian sources, we use the correctly reconstructed mixture coefficients in conjunction with linearly
constrained minimum variance spatial filtering. This results in estimates of the non-Gaussian sources minimizing the variance of the interference of other sources. The approach is applied to the denoising of Event Related Fields recorded by MEG, and it is shown that it performs superiorly to ordinary ICA.