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Efficient Subwindow Search
for Object Localization

Matthew B. Blaschko Thomas Hofmann Christoph H. Lampert

Abstract. Recent years have seen huge advances in object recognition from images. Recognition rates beyond
95% are the rule rather than the exception on many datasets. However, most state-of-the-art methods can only
decide if an object is present or not. They are not able to provide information on the object location or extent
within in the image.

We report on a simple yet powerful scheme that extends many existing recognition methods to also perform
localization of object bounding boxes. This is achieved by maximizing the classification score over all possible
subrectangles in the image. Despite the impression that this would be computationally intractable, we show that in
many situations efficient algorithms exist which solve a generalized maximum subrectangle problem.

We show how our method is applicable to a variety object detection frameworks and demonstrate its performance
by applying it to the popularbag of visual wordsmodel, achieving competitive results on the PASCAL VOC 2006
dataset.

1 Introduction

Determining the exact position of an object within an image is much more difficult than simply saying whether
there is an object present at all. One has to recognize all parts of an object instead of relying on just the most
discriminative ones. Also, it is no longer possible to rely on the fact that for many datasets, the image background is
strongly correlated with the presence of certain objects. Perhaps this is the reason why there has been significantly
less work done on localization than on classification. In the recent PASCAL Visual Object Classes Challenge 2006
(VOC2006) [1] there were 23 submissions for the classification task, but only 9 submissions for the localization
task, and only 2 of these submitted results for all object classes. This indicates that much of the human effort
in developing classification methods is not used to also improve localization. We aim to help bridge this gap by
providing a general method to convert classification algorithms into localization algorithms.

The precise definition of object localization varies in the literature. Some techniques define object localization
to be the identification of an object perimeter [2], others the object center [3]. Many approaches build hierarchical
parts models, giving an estimate of the object center as well as its constituent parts [4, 5, 6, 7]. Conditional
random fields have been applied to compute a spatially coherent estimate of whether part of an object is present in
rectangular patches of the image [8]. Recently, Russell et al. have used multiple segmentations and topic models
to extract class specific segments from the image in an unsupervised setting [9]. Another common approach is
to provide a map of the image plane that codes how likely an object is to be present in a specific pixel, but to
not explicitly specify where an object is, or if there is more than one object present [10]. We have chosen here
to define object localization as the placement of a bounding box around the object of interest. This is the most
common parametric description of object locations, and has been used in settings such as VOC2006 [1] due to its
intuitive handling and the relative ease of providing ground truth as compared to providing complete segmentation
data.

Object localization using bounding boxes has been performed using several approaches in the literature. The
kind of search used depends on which model is employed, but we are not aware of previous work that has optimally
maximized a score over the entire space of subwindows. Sliding window approaches have been used extensively
for localization [11, 12], but due to the expense of evaluating each location and taking the maximum, only a
fixed subset of windows are typically used. Rather than improving the search strategy over candidate windows,
much work has been done to build an efficient classifier so that the cost per window evaluation is decreased [12].
Local greedy search has been used with an MRF model to find the extent of man-made structures in satellite
imagery [13]. An initial location is provided, and the extent is iteratively found by growing a rectangular region.
Bouveyron et al. model pixel appearance using a Gaussian mixture model, and then determine object localization

1



by computing the mean and variance of the point coordinates weighted by their posterior probability of belonging
to an object [14]. These estimated means and variances are used heuristically as the subrectangle center and extent
respectively. Another iterative approach is [15], where an initial object region is estimated as the bounding box
of a certain number of the most discriminant feature locations in an image, and this is iteratively improved by a
gradient-decent based procedure.

2 Maximal Subwindow Localization (MSL)

In contrast to previous methods, we provide a technique that efficiently finds theoptimalbounding box according
to a classification score, and that is applicable to a wide variety of existing classification systems.

The underlying intuition of the proposed method is that a classification function that is constructed to take high
values for images with a certain object present, should have its highest values when applied to images which
only contain the object and no background clutter. Applied to subimages of a single image, this means that the
classification score is highest on a subimage showing exactly the object. Inverting this argument, the location and
extent of an object to be detected is given by the image subrectangle on which the classification function takes its
maximal value.

Finding an object by evaluating the classification function naively on all subimages is doomed to failure, since
there areO(n2m2) subrectangles in ann×m image. Instead, heuristic optimization procedures have been proposed
e.g. PRIM [16], which relies on a greedy shrinking process followed by region growing. However, we will show
in Sections3 and6 that for several existing classification systems, the problem can be transformed into the simpler
problem of finding the subrectangle of a matrix that has the maximum sum of entries, known as themaximum
sum subrectangle problem. This classical problem has an intuitiveO(n2m) algorithm to find the optimal solution,
which we will explain in Section4.1. In recent years some algorithms with lower complexity bound have been
developed, e.g.O(n2m(log log m/ log m)1/2) [17, 18].

Additionally, we will give a branch-and-bound algorithm in Section4.2that solves the same problem and—even
though its worst case complexity is quartic—in practice runs in linear to quadratic time on image datasets. This
algorithm also allows us to solve the problem for more general quality functions than the maximum sum of entries.

3 Localization for Bag of Visual Words Classifiers

We begin by demonstrating the proposed method of turning a classifier into a localization routine using a simple
example, thebag of visual words (bovw)model. We make use of the established methods from that field, for more
details please refer the vast literature on object recognition usingbovwrepresentations, e.g. [19, 20, 21, 22, 23, 24].

3.1 Classification using Bag of Visual Words

To a given set of training imagesI1, . . . , IN with binary class labelsy1, . . . , yN , we apply a salient point and
feature detector such as SIFT [25], obtaining keypoint locationsxi

j with descriptorsdi
j . We build a codebook of

representative image descriptors by applyingK-means clustering to the set of descriptors in the training set. For
eachxi

j , we store the discrete labelci
j of the codebook entry closest todi

j .
We represent images by their cluster histograms,hi i. e. we count how often each cluster label occurs in the

image. On the histograms we train a support-vector machine with linear kernel [26]. To classify whether a new
imageI ′ contains an object or not, we build its cluster histogramh′ and decide based on the value of the SVM
decision function onh′. Variants of this method have proven very successful for object recognition in recent years.

3.2 Localization using Bag of Visual Words

As described in Section2, we can use this classifier for localization by finding the subregion on which the decision
function takes its maximal score. First, we rewrite the SVM’s decision functionf . Originally, this is

f(I ′) = β +
∑

i
αi〈h′, hi〉

where〈., .〉 denotes the Euclidean scalar product inRk. αi andβ are the weight vector and bias that were learned
during the training phase. Since〈h′, hi〉 =

∑
k h′khi

k, f is a linear combination of contributions per histogram bin

= β +
∑K

k=1
h′k

∑
i
αih

i
k︸ ︷︷ ︸

=:wk

.
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Algorithm 1: O(n2m) maximum sum algorithm
Require: I ∈ <n×m

Ensure: (t̂, b̂, l̂, r̂) = argmax(t,b,l,r)

∑
t≤i≤b

∑
l≤j≤r Ii,j

M ⇐ IntImage(I)
ŝ ⇐ −∞
for b = 1 to n do

for t = 1 to b do
s ⇐ −∞
for r = 1 to m do

if s < 0 then
l ⇐ r

end if
s ⇐ Mb,r −Mb,l−1 −Mt−1,r + Mt−1,l−1

if s > ŝ then
(t̂, b̂, l̂, r̂, ŝ) ⇐ (t, b, l, r, s)

end if
end for

end for
end for

Using thath′k is just the number of feature points inI ′ for whichk was the closest cluster, we obtain the well-known
fact that the score of a linear SVM can be written as a sum over per-point contributions:

f(I ′) = β +
∑n′

j=1
wc′

j
. (1)

Herec′j is the cluster label belonging tox′j andn′ is the number of feature points inI ′. From this form, we see
thatf can be evaluated over subimages ofI ′ by summing only over the feature points that fall into the subregion.

3.3 Conversion to a Matrix Problem

We can solve the problem of finding the rectangleR ⊂ I ′ with maximalf(R) by converting it into the classical
problem of finding the subrectangle with maximal sum of entries in a matrix. For this, we build a sparse weight
matrix M , wheremu,v has the valuewc′

j
if x′j is theu-th feature point when sorting the points in order of their

x-coordinates, and thev-th feature point in order of theiry-coordinates. The remaining entries ofM are set to
zero. Another way to think about this is to lay a grid with columns and rows of variable size over the image such
that no two feature points lie in the same column or row of the grid. Treating each grid cell as a matrix element,
we obtain the same representation as above. The sum over a subrectangle in this matrix corresponds to evaluating
the sum in Equation (1) over the corresponding rectangle in image space.

4 The Maximum Sum Subrectangle Problem

4.1 Combinatoric Optimization

The maximum sum subrectangle problem is well studied, and we describe here a variant of the classical solution
usingO(nm) space andO(n2m) time [27]. The initial step is to construct an integral image transform of the
array. It can be computed inO(nm) time and space, and allows us to evaluate the score within each subrectangle
in constant time [12]. We could then iterate over all possible subrectangles inO(n2m2) time, but it is more efficient
to make use of the fact that the analogous 1D problem can be solved in linear time. We iterate over all possible
pairs of the starting and ending indices for the rows of the matrix, and perform a 1D search for the starting and
ending indices for the columns (Algorithm1). In the case that the matrix is sparse, as in Section3, we can reduce
memory usage toO(n) by implicitly computing the integral transform only for the portion of the image currently
being explored. Sub-cubic algorithms rely on the basic form of this approach and then apply divide and conquer
strategies [17, 18].

3



4.2 Branch-and-Bound Optimization

An alternative solution algorithm relies on branch-and-bound to reduce the number of candidate regions that have
to be checked. The method we use is derived from Breuel’sRecognition by Adaptive Subdivision of Transformation
Space (RAST)algorithm [28]. The underlying idea is to evaluate many rectangles at the same time by bounding the
maximal score that can be obtained on any of them. For this, we extend the rectangle representation to rectangle
sets: instead of storing one index for each the left, right, top and bottom coordinate, we store intervals for these
quantities. A set of four intervals represents the set of all rectangles that can be constructed by using elements from
the intervals as corresponding rectangle coordinate. A sketch of this is given in Figure1.

Figure 1: Representation of rectangle sets by four integer intervals.

Algorithm 2: Quality Function Optimization using RAST
Require: quality functionf
Require: upper bound̂f : f̂(R) ≥ max

(t,b,l,r)∈R
f(t, b, l, r)

Ensure: (t̂, b̂, l̂, r̂) = argmax(t,b,l,r) f(t, b, l, r)

Initialize P as empty priority queue
(t,b, l, r) ⇐ [1, n]× [1, n]× [1,m]× [1,m]
repeat

split: (t,b, l, r) ⇒ (t1,b1, l1, r1) ∪̇ (t2,b2, l2, r2)
P.enqueue( (t1,b1, l1, r1), f̂(t1,b1, l1, r1) )
P.enqueue( (t2,b2, l2, r2), f̂(t2,b2, l2, r2) )
(t,b, l, r) ⇐ P.dequeue

until (t,b, l, r) consists of only a single rectangle(t̂, b̂, l̂, r̂) ⇐ (t,b, l, r)

The RAST algorithm itself is a classical best-first branch-and-bound search as specified in Algorithm2: in each
iteration, the currently most promising rectangle set is extracted from a priority queue. It is split into two disjoint
sets which are enqueued again, using upper bounds of their score as priority values. RAST is known to find a
global maximum of a quality functionf , if it has access to a function̂f that provides an upper bound for the
maximum off on rectangle sets and that converges tof when the set shrinks to a single rectangle. This holds not
only for summing over subrectangles, but for a wide range of quality functions, see Section6.

To construct a bounding function for our problem we use the monotony property of summation: for a given
parameter setR = (t,b, l, r), we extract the largest possible rectangleRmax = (tlo , bhi , llo , rhi) and the smallest
possible rectangleRmin = (thi , blo , lhi , rlo). We then set

f̂(R) := f+(Rmax ) + f−(Rmin) (2)
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Step Method Parameters
Preprocessing RGB histogram normalization, gray-scale conversion3% black/white quantiles
Feature Extraction SURF keypoints and descriptors [19] threshold 100, no rotational invariance
Codebook Generation k-means clustering, random subset of0.1% feature vectors

concatenation of 10 per-class codebooks k = 300
Image Representation cluster histogram 3000 bins
Classifier Training linear SVM one-vs-rest,C = 1000
Localization maximum sum subimage (1 per image) pixel grid, no size penalty

Table 1: Classifier Details.

wheref+ and f− are the sums over all positive or negative matrix entries in a rectangle.f+ and f− are
monotonous functions with respect to the inclusion relation between rectangles, i. e.f+(R) ≤ f+(Rmax ) and
f−(R) ≤ f−(Rmin) for anyR ∈ R. Therefore,

f(R) = f+(R) + f−(R)

≤ f+(Rmax ) + f−(Rmin) = f̂(R).

showing thatf̂ is a bound forf from above. IfR shrinks to a single rectangleR, we havef̂(R) = f(R) because
Rmax =Rmin =R. Therefore,f̂ has both required properties for applying RAST. Using two pre-computed integral
images, evaluatingf+ andf− areO(1) operations. Thus,̂f can be evaluated in constant time as well.

5 Experiments

So far we have shown how to convert classifiers into localizers in their functional form. We will show next that this
is not only a very simple adaption, but the resulting method can also achieve very competitive results. For this, we
implemented a setup that relies on a sparse bag of visual words representation, similar to the example of Section3.
The details for the underlying classifier are given in Table1. As basis for our experiments we used the dataset of
the PASCAL VOC Challenge 2006 [1], which consists of 5,304 images with 9,507 bounding box annotations in
10 object classes. The dataset is split intotrain, val, andtestportions. All algorithm development was done on the
train andval subsets, whiletestwas reserved for the final evaluation.

The localization evaluation of the VOC challenge requires combined localization and ranking: the task is to
return all bounding boxes of object instances from thetestpart of the dataset together with a confidence score. A
box is said to be correctly localized if the ratio of the areas of the intersection and union between the prediction
and ground truth is greater than0.5. Then, for differentrecall levels, anaverage precision (AP)score is calculated.

Since thetestdataset consists of images of all 10 object classes, it is strongly biased towards images that do not
contain the current object class at all. Therefore, we first used abovwclassifier trained on the image level to order
the images by decreasing SVM score. These scores express the confidence that an object of the class is present
at all. We then performed localization by MSL using a differentbovwclassifier that was trained oninsideversus
outsideof the ground truth bounding boxes.

For final results, we retrained the system using thetrain andval data combined and applied the resulting classifier
to the previously untouchedtestpart of the dataset. The scores achieved are reported in Table2. The described
procedure corresponds to the VOC2006 competition guidelines and allows us to compare ouraverage precision
scores with those of the competetition participants. As additional information, Table3 shows thetotal recall and
total precisionof the localization system when detecting one image per class. The are calculated only for images
that contain an object of the category and can be measured without ranking the detections by their confidence
score.

All experiments were run on an ordinary PC with 2.4 GHz Intel Core Duo CPU under the Linux OS. The average
runtime was43ms per image per class for localization using branch-and-bound (not including feature extraction).

5.1 Localization Results

The performance on data VOC 2006 dataset is measured using precision–recall curves that are be combined into
average precision (AP)scores, as reported in Table2. For comparison, we also repeat the previous results from
the VOC2006 challenge and related publications. InCompetition 3, only VOC provided images were allowed for
training. InCompetition 4, arbitrary training material was allowed. We include results from both, since apart from
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Figure 2: Successfulbuslocalization. Left: Distribution of feature with visualization of scores. Green circles indicates positive,
red boxes negative scores. Grey points have scores close to0. Right: Localization results (red) and ground truth (blue).

Figure 3: Further examples of successful object localization. Maximal subwindow found (red) and ground truth bounding box
(blue).

the training material, the setting was identical, and the results are comparable. Our own method does not make
use of additional training data and would therefore have fallen underCompetition 3. In Table3, we present results
on thetotal recall andtotal precision. The total recall is the percentage of ground truth bounding boxes that our
system correctly identified when returning one detection per image on thetestdata set. The criterion for a positive
identification is an box-overlap of at least 50%, as specified in the VOC2006 rules. Thetotal precisionscore is the
percentage of detected boxes which correspond to actual ground truth object when MSL is applied only to image
which do contain at least one object of the class to be located. This number therefore is closest to an actual measure
of pure localization performance, since it measures the probability for a detected box to actually coincide with the
location of an object.

To get a visual impression of the result achieved, Figures2-4 show example images along with detections and
ground truth. Using the criterion of box overlap, objects in Figures2 and3 were correctly identified, whereas the
images in Figure4 contain one or more objects that were counted as misclassifications.
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(a) Object are missed if too few characteristic features points are detected on them. This can be due to insufficient
texture (left), occlusion of important parts (center) or too small object size (right).

(b) Even with sufficiently many object features, localization errors occur: several objects are present, but we return only
one per image (left), close or overlapping objects cause a single too big bounding box to be returned (center), small
extended parts like legs can be missed (right).

(c) Cars have many near detections, but the overall precision score is poor. This is because the classifier concentrated its
weights in the wheel region, causing the overlap with ground truth boxes to lie below 50%.

Figure 4: Typical reasons for localization mistakes: red boxes show the detection by MSL, blue boxes indicate ground truth
data. Possible extensions to overcome these problems are discussed in Section5.3
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method bicycle bus car cat cow dog horse motorbike person sheep
Cambridge 0.249 0.138 0.254 0.151 0.149 0.118 0.091 0.178 0.030 0.131
ENSMP - - 0.398 - 0.159 - - - - -
INRIA-Douze 0.414 0.117 0.444 - 0.212 - - 0.390 0.164 0.251
INRIA-Laptev 0.440 - - - 0.224 - 0.140 0.318 0.114 -
TUD - - - - - - - 0.153 0.074 -
TKK 0.303 0.169 0.222 0.160 0.252 0.113 0.137 0.265 0.039 0.227
KUL (Comp 4) - - - - - - - 0.229 - -
MIT-Fergus(Comp 4) - - 0.160 - - - - 0.159 - -
MIT-Torralba(Comp 4) - - 0.217 - - - - - - -
Oxford-Chum [15] 0.493 0.249 0.412 - 0.212 - - 0.371 - 0.195
Cornell-Crandall [29] 0.498 0.185 0.458 - - - - 0.388 - -
bag of visual words + MSL 0.380 0.178 0.080 0.165 0.161 0.109 0.091 0.260 0.005 0.117

Table 2: Combined localization and detection results on VOC-2006 dataset, see [1] for a description of the methods. Reported
values areaverage precision (AP)scores as specified in the competition specifications. Methods marked with“Comp 4” made
use of additional training images not provided by PASCAL. The other methods, including MSL, relied only on the material
provided within the challenge for training. Oxford-Chum and Cornell-Crandall did not participate in the challenge but published
results later using the same setup.

bicycle bus car cat cow dog horse motorbike person sheep
total recall 0.475 0.356 0.156 0.499 0.337 0.426 0.330 0.555 0.079 0.180
total precision 0.599 0.508 0.275 0.566 0.619 0.494 0.463 0.726 0.161 0.425

Table 3: Precision and Recall for MSL on images known to contain objects of the category. For each image, the system
identified the box of highest classification score. A detected box counts as correctly identified if it’s overlap with a ground
truth box is at least 50%.Total recall is the percentage of objects that were found by MSL in this way.Total precisionis the
percentage of detections that correctly located an object. Since images can contain more than one object, the total recall is
lower than the total precision.

5.2 Discussion of Results

The table shows that MSL based onbovwand a linear SVM achieves better results than all VOC2006 participants
on two classes:busandcat. Only after the contest, improved results forbuswere published. For four further
classes,bicycle, cow, horse, andmotorbike, our results are comparable to the ones reported by the VOC-2006
participants. For the remaining classescar, dog, personandsheep, our results are worse than what was reported
previously.

Taking into account that our method was not designed specifically for the VOC challenge or tuned to the diverse
object classes, we believe that these are very respectable results. The technique relies entirely off-the-shelf com-
ponents, in a way that can easily be reproduced. Also, with average run-times of less than50ms per image, our
method is certainly amongst the fastest for localizing arbitrary object classes in images.

Further insight is gained by comparing the achieved results with thetotal recall row. Thetotal recall score is
approximately the average precision score we would achieve with a ranking of the predicted bounding box that
consistently scored correct predictions above erroneous ones. Since the recall is always clearly larger than the
AP score achieved, we are confident that using a better method to rank the images would already improve theAP
scores.

The system tested for on the VOC2006 data returns at most one object per class per image. Since there are many
images with several instances of the same object class, we cannot expect to achieve 100% recall with the current
setup. The rowtotal precisiongives the results how many of the boxes that were identified corresponded to actual
objects in the images. The difference between these numbers and thetotal recall row shows how much gain we
can expect by adding support for detecting multiple objects per image. Except for thepersonandcar category,
the precision scores achieved are all very promising, ranging from 42% to 72%. For the car dataset, the lower
performance can be explained by a constant underestimation of the car region as is visible in Figure4(c). We will
comment on this in the following section. For thepersoncategory, none of the VOC2006 participants was able
to achieve promising results. We believe that the intra-class variance of the dataset is too large in this case for a
general object classification system. A system specialized in the detection of faces and/or human shapes might be
more suitable here.
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5.3 Problems and Solutions

Of course, our method does not achieve perfect localization recall. Examples of typical images where our setup
does not identify (all) objects in an image correctly are shown in Figure4. The purpose of this section is to explain
the problems and indicate possible solutions.

The first class of problems are the result of insufficient or misleading features in the bag-of-visual-words repre-
sentation of the image. Examples are given in Figure4(a). In the leftmost image, the cat is not detected because
its body is mainly unstructured an no interest points are detected onto it. To avoid this, one can use a feature rep-
resentation that does not only rely on salient points, but also sample feature points from a regular grid or random
locations in the image. This also allows to increase the total number of distinguishable patches that one can extract
from an image. This is a desired effect, because it has been shown that the performance of object classification and
localization methods can be improved by increasing the number of patches per image [30].

The image in the middle of Figure4(a) shows a similar problem: the image background is strongly textured,
which results in many more features being detected in the background than on the motorbike. Since also important
parts of the motorbike are occluded, the random fluctuations of scores on background features dominated the posi-
tive scores on the motorbike, and the system false reports the whole image as an object. Again, using dense features
can partly compensate for this, because the number of background features becomes more stable. Alternatively, a
better base classifier might be needed, that is more robust to occlusions and diminishes the effect of background
clutter.

The rightmost image of Figure4(a) contains several sheep which are so small that even with a regular grid,
only very few feature points will fall onto them. To nevertheless detect them, we currently investigate the use of
information that can be extracted more reliably from very small image regions, e.g. color and texture. The result
is a combination of different feature sets that can be combined linearly using Multiple-Kernel-Learning [31] and
thereby integrated transparently into MSL.

Another class of problems occurs due to the very simple assumptions we used to introduce MSL. The left
image of Figure4(b) contains three cars (one of which is difficult to spot even for a human observer). Since our
system returns only one object per image, the other two are missed, no matter how good our classifier is. An
obvious solution is to iteratively allow the detection of several images. After the best rectangle has been found,
the corresponding feature points are removed and MSL is started again. Each search returns its own score which
can be used to determine how many objects were present at all. However, this method will not solve the problem
of overlapping or very close objects, as is visible in the center image of Figure4(b). MSL returns a regions that
contains more than one object, leading to two or more missed localizations in the evaluation. To avoid this, we
propose a geometric regularizer in the search. Trained on the shape that object bounding boxes are likely have
(given by aspect ratio and area), it penalizes unlikely shapes in the image, e.g. very elongated structures, as they
occur when many object overlap horizontally, see Section6.2.

For some specific classes, inspecting the localization results shows other, object specific problem: e.g. the
bounding boxes found forcarsare consistently to small, including the wheels, but not the body of the car. This
resulted in many erroneous matches that were very close to true ones (Figure4(c)). A similar effect occurs for
horses, where the body is identified much more reliably than the legs (Figure4(b) right). The reason for this is the
discriminative nature of our SVM-based base classifier: for cars, the wheels are the most discriminative part. The
base classifier learns this by putting a high weight on features that resemble. When searching for the rectangle of
maximum score, the wheel region is found, but the rest of the car might not, because it contains only features of
very small positive, or even of negative weight.

As a possible fix, we are currently examining a post-processing step to the classification that performs a re-
gression of the true bounding box based on the box of maximum score. This allows e.g. to learn that the car
extends spatially above the wheel region, but not below it. Note that this is only necessary for discriminative
base classifiers. A generative model would put weight onto the body of the car, even if the wheel region is more
discriminative.

6 Extensions to other representations and classifiers

The object localization setup in Section3 relied on a bag of visual words representation with a linear SVM classi-
fier. However, the underlying principle of optimizing a classification function over subwindows can also be applied
to many other representations and classifier systems. In this section, we give several further examples.
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6.1 General Sparse Image Representations

From Equation (1) in Section3 we see that neither the feature descriptor nor the classifier chosen matter as long
as we can rewrite the decision function as a linear combination of individual contributions for each feature point.
Another example of this would be the logarithm of the likelihood ratio in a naı̈ve Bayes classifier. Since we
are only searching for the maximum of the quality function, the method is also applicable for any monotonous
transformation of linear feature combinations e. g. logistic regression.

6.2 Geometric Regularization

In addition to the data-dependent score of each subwindow, we can add terms to the objective function that de-
pend only on the shape or position of the bounding box. This corresponds to a geometric regularization term as
proposed in Section5.3 to disallow unreasonable box shapes, even if their classifier score is high. Typically, such
a regularizer could penalize the deviation of the box aspect ratio or size from a class specific mean. Note that we
can see this still as a strict application of the MSL principle, where the underlying classifier now contains a data
independent prior term about image shapes.

6.3 Dense probabilistic representations (Random Fields)

In a probabilistic setting, images are often represented not by sparse interest points, but values and labels are
attached densely to each pixel location. Maximal Subwindow Search is applicable to this cases e.g. when there
is statistical independence between the class conditional densities of different pixel locations when conditioned
on their class labels. This assumption is common in probabilistic models like in Markov-Random-Fields (MRFs)
or Conditional-Random-Fields (CRFs) [8] to make inference tractable at all. MSL can then find the maximum-
a-posteriori solution from the space of all image labelings where the object regions is rectangular. For this, one
chooses the the logarithm of the posterior probability as the quality function to be optimized, and obtain the sum of
log-likelihood ratio of the class conditional densities to be maximized over all subwindows. An additional additive
term derives from the prior and plays a similar role as the geometric regularization term introduced in the previous
section.

6.4 Itemsets, Graphs and Binary Histograms

While the previous methods relied on certain locality assumptions (independence between feature points inbovw
and conditional independence between pixels in theMRF), the method of subimage optimization can also be
applied for representations that capture global properties like co-occurance or geometric arrangements [32, 33, 34].

Examples for this are weighted itemset and graph boosting [33]: a boosting classifier is learned based on weak
classifiers that test for the co-occurance of different feature labels in the image. This makes the value of including
a point into the region of interest depend on which other features are contained in it. Applying MSL, we cannot
make use of integral images anymore, and the evaluation of the quality function is no longer a constant-time
operation. Instead, each decision stump is evaluated in every step. The computational effort for this is kept
moderate by keeping track of which feature combinations can contribute using match lists that are attached to
search states, similar to [35]. Strongly related is the case where the underlying image representation are binarized
feature histograms, because we can model the bins of the histograms as a itemsets contains only a single element.

6.5 Spatial Pyramid Matching Kernel

A very popular generalization of the the bag of words model is to include multi-level pyramid histograms based
on the spatial distribution of points in the 2D image plane [36], called spatial pyramid matching kernel. Using
branch-and-bound, we can maximize the pyramid score over subregions and perform MSL. For a single rectangle
I, the decision function has the form

f(I) = β +
L∑

l=0

βl

∑
i=1,... l
j=1,..., l

N∑
k=1

αk〈h′l,(i,j), h
k
l,(i,j)〉

wherehl,(i,j) denotes the histogram of feature points within the(i, j)-th quadrant of a regularl × l split of the
rectangle andβl is a per-level weighting constant. Originally, it was chosen asβl = 2l−L, but recent results show
that it is better to treat it as a free parameter during the learning process [37]
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Figure 5: Left: Itemset scoring. Green itemsets contribute positively to the score, red ones negatively. Black itemsets do not
contribute at all, because they are not fully contained in the subwindow. Right: Pyramid scoring. At level0 all colorful points
contribute a score depending on their label, but independent of their location. At level1, a point’s contribution also depends on
which quadrant it lies in. Black points never contribute to the score.

As before, we obtain point-wise scores, now not only one value per point, but one per(l, (i, j)) multi-index,
with separate sums that have to be calculated for each sub-part of the rectangle (Figure5 right). For each branch-
and-bound iteration, we compute upper bounds on each subwindow of a given pyramid level using2 × l × l
separate integral images per level. The upper bound of the set of candidates is the sum of the upper bounds of the
subwindows.

6.6 Non Rectangular Shapes

In the area of object detection, axes-parallel boxes are the most common parametric shapes. While it would be
possible to introduce additional parameter such as a rotation angle or a shear, it is unclear if this would improve
the localization performance or rather increase the risk of overfitting.

In other areas of image understanding e.g. in biological applications or industrial computer vision, other para-
metric shapes than rectangles are sometimes preferred. The branch-and-bound optimization can be extended to
these cases, as long as the number of parameters is fixed and not too large. This allows e.g. to efficiently search
for circles or ellipses.

Additionally, non-parametric method for object localization have become more popular, e.g. exemplar based
shape models. These could be integrated into MSL e.g. by binary masks overlaying the bounding box, and it will
be interesting to see if the resulting algorithms can be made as efficient as the purely rectangle-based ones.

7 Conclusion

In this report we showed how existing methods for object classification can be turned into methods for object
localization. The underlying idea of applying full image classifiers to subimages is so simple that it is amazing that
it has not been studied systematically before.

We showed that despite being simple, the method achieves very competitive results for some object classes of the
VOC2006 challenge, which measures combined detection and localization accuracy. Even for the classes where
the method did not perform well, the localization accuracy itself is generally good when applied to only images
in which an object is actually present. Using a better underlying classifier would even improve on this, and we
believe that many existing object classification methods can be turned into successful methods for localization that
way. It is our hope that many researchers with expertise in image classification will adopt the maximal subimage
approach to add localization to their setup.

We imagine that the specific system we describe, with its simple feature extraction and classification pipeline
out of off-the-shelf components, can serve as a baseline method with which future localization algorithms can
compete. Furthermore, a set of classification algorithms that vary in a controlled way can be applied and the
resulting performance can give an indication of the assumptions that are useful for localization in the context of
specific datasets and object categories.
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