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Introduction
In most experiments on multisensory integration in humans, 
participants report or discriminate distinct percepts. 
In many natural tasks, however, sensory signals are not ulti-
mately used only for perception, but rather for action. 
The effects of actions are sensed again by the sensory system, 
so that perception and action are complementary parts of a 
dynamic control system.

▪  We studied the integration of different senses in a closed 
    perception-action loop. 
▪  Question: How are cues from different sensory modalities 
    (visual cues and body cues) used when humans stabilize a 
    simulated helicopter at a target location? Is their interaction
    consistent with maximum likelihood (MLE) integration?
▪  Helicopters in flight are unstable, much like an inverse 
    pendulum, and hovering at one spot requires the pilot to 
    do a considerable amount of active control.

Methods
▪  Setup: motion platform with projection screen (Fig. 1).
▪  Real-time simulation of dynamics and aero-dynamics of a small heli-
    copter (Robinson R-22): three-body mass-spring rotor system and numeri-
    cal approximations of the aero-dynamics (blade element theory) [1]. 
▪  10 different conditions (see Fig. 2): black background (B), visual horizon 
    (H), optic flow (OF), horizon+optic flow (H+OF) and horizontal stripes (STR), 
    all with and without platform rotation motion cueing (P).
▪  Helicopter position and target position were indicated by two spheres.
▪  Task: stabilize pitch and roll axes by using a helicopter cyclic stick.
▪  Measured variables: stabilization performance in the different conditions 
    using mean distance of the helicopter from the target, mean velocity, 
    and mean tilt. n=6 participants.

Results
▪  All three cues, platform rotations, horizon 
    and optic flow, significantly improved the 
    stabilization. Platform rotations tended 
    to help most, optic flow least (Fig. 3).
▪  Stabilization with only the two spheres as
    cues was impossible.
▪  Participants stabilized better laterally 
    than fore/aft. (Fig. 4).
▪  The ‘stripes’ condition showed that 
    horizon motion is more important for 
    stabilization than horizon position.
▪  For some participants, adding cues 
    always improved performance 
    (qualitatively consistent with Bayesian 
    cue integration), but for others there are 
    conditions where adding a cue makes 
    performance worse (Fig. 5).

Discussion
▪  Available sensory cues are combined to improve stabilization.
▪  Some participants showed MLE-contradicting effects when 
    other cues were added to the horizon-only condition (Fig. 5).
▪  This provides possible evidence for a strategy switch.
▪  Model behavior as multi-stage differentiator controller (Fig. 6).

Outlook
▪  Identify the pilot model parameters (Fig. 6) [2].
▪  Characterize the multisensory integration processes.
▪  Compare different physical motion cueing algorithms.
▪  Helicopter control using all four DOF.
▪  Larger physical trajectories: MPI robot arm simulator.
▪  Simulators for pilot training: study transfer to real helicopters.
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Figure 1: The Motion Lab - Hexapod platform and projection
system mounted on the platform.

Figure 2: Visual stimuli used. Stripes (STR), optic flow defined by a random dot
starfield (OF), horizon (H) and both horizon and optic flow (H+OF). The fifth
condition has a black background (B).

Figure 4: Example trajectories for one of the six participants in 
eight different conditions. Blue: platform off, red: platform on.

Figure 3: Results from all 6 participants. Platform-off conditions are shown in blue, platform-on conditions in red. B: black 
background, OF: optic flow, H: horizon, OF+H: optic flow and horizon, STR: stripes. Single-cue conditions are marked with circles.

Figure 6: The helicopter pilot as a controller in a closed-loop system. f contains a factor 1/dt for the time derivative.

Figure 5: Responses of two example participants. Participant 3 shows MLE-contradicting responses
in some conditions (circled).
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Table 1: Results of the four-way ANOVA for 
mean-distance-from-target measures (see 
Fig. 3 left column), with direction D (left/right 
vs. forward/backward), platform rotations P 
(on/off), horizon H (on/off), and optic flow OF 
(on/off) as within-subject variables.

Mean
D
P
D × P
H
D × H
P × H
D × P × H
OF
D × OF
P × OF
D × P × OF
H × OF
D × H × OF
P × H × OF
D × P × H × OF

F=25.075 p=0.004**
F=251.61 p=0*** 
F=70.803 p=0*** 
F=7.124 p=0.044* 
F=70.137 p=0***
F=19.144 p=0.007**
F=27.246 p=0.003**
F=55.93 p=0.001***
F=47.582 p=0.001***
F=1.678 p=0.252
F=39.424 p=0.002**
F=3.648 p=0.114
F=21.786 p=0.005**
F=10.165 p=0.024*
F=14.962 p=0.012*
F=18.144 p=0.008**

Mean    F=17.972,  p=0.008**
D     F=247.055,  p=0***
P     F=6.934,   p=0.046*
D × P     F=1.001,  p=0.363
H/STR    F=2.009,   p=0.216
D × H/STR    F=88.724,  p=0***
P × H/STR    F=24.067,  p=0.004**
D × P × H/STR   F=2.224,   p=0.196

Table 2: Results of a three-way ANOVA testing
the effects of horizon vs. stripes.
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