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Overview

Long-term goal: develop and optimize new paradigms that are suitable

for people in the “completely locked-in” state (CLIS).

• Enable the patient to make a binary decision.

• Use signals elicited auditory and tactile stimuli, measureable by

EEG.

• Use machine-learning algorithms to classify the signals.

This presentation concerns the results from preliminary experiments

with healthy subjects.
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Why Non-Visual?

• In the CLIS state, patients are functionally blind:

– eyes cannot be opened at will;

– eyes may move involuntarily (often rolling up);

– lens cannot be refocused or gaze directed;

– no microsaccades, so images fade out (Troxler effect);

– no saccades, so no integration of visual scenes: the fovea

images a fixed 2 deg. spot, and resolution is very low in most

of the visual field;

– long immobility of the eye often leads to infections;

PASCAL Workshop, Berlin June ’07 page 2 of 26



Why Non-Visual?

• In the CLIS state, patients are functionally blind:

– eyes cannot be opened at will;

– eyes may move involuntarily (often rolling up);

– lens cannot be refocused or gaze directed;

– no microsaccades, so images fade out (Troxler effect);

– no saccades, so no integration of visual scenes: the fovea

images a fixed 2 deg. spot, and resolution is very low in most

of the visual field;

– long immobility of the eye often leads to infections;

PASCAL Workshop, Berlin June ’07 page 2 of 26



Why Non-Visual?

• In the CLIS state, patients are functionally blind:

– eyes cannot be opened at will;

– eyes may move involuntarily (often rolling up);

– lens cannot be refocused or gaze directed;

– no microsaccades, so images fade out (Troxler effect);

– no saccades, so no integration of visual scenes: the fovea

images a fixed 2 deg. spot, and resolution is very low in most

of the visual field;

– long immobility of the eye often leads to infections;

PASCAL Workshop, Berlin June ’07 page 2 of 26



Why Non-Motor?

• Motor imagery-based BCI shows promising results with normal

subjects, and patients with extensive paralysis (Kübler et al 2005,

Neurology 10). So far it has not worked with patients in CLIS.

Why?

– Can the patient still imagine movement?

– Can the motor and premotor cortex still produce ERD/ERS

during motor imagery?

– (...and are these in fact the same question?)

– Are they still intact enough to (relearn to) do so?

? EEG is still the most attractive technology for clinical BCI.

? Most of the EEG signal comes from pyramidal neurons.

? ALS kills the pyramidal neurons of the motor cortex.
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Neurology 10). So far it has not worked with patients in CLIS.

Why?

– Can the patient still imagine movement?

– Can the motor and premotor cortex still produce ERD/ERS

during motor imagery?

– (...and are these in fact the same question?)

– Are they still intact enough to (relearn to) do so?

? EEG is still the most attractive technology for clinical BCI.

? Most of the EEG signal comes from pyramidal neurons.

? ALS kills the pyramidal neurons of the motor cortex.

PASCAL Workshop, Berlin June ’07 page 3 of 26



Why Non-Motor?

• Motor imagery-based BCI shows promising results with normal

subjects, and patients with extensive paralysis (Kübler et al 2005,

Neurology 10). So far it has not worked with patients in CLIS.

Why?

– Can the patient still imagine movement?

– Can the motor and premotor cortex still produce ERD/ERS

during motor imagery?

– (...and are these in fact the same question?)

– Are they still intact enough to (relearn to) do so?

? EEG is still the most attractive technology for clinical BCI.

? Most of the EEG signal comes from pyramidal neurons.

? ALS kills the pyramidal neurons of the motor cortex.

PASCAL Workshop, Berlin June ’07 page 3 of 26



Auditory and Tactile BCI

Exogenous (i.e. stimulus-driven) BCI’s rely on the conscious direction of the

user’s attention.

For paralysed users, this means covert attention.

Does covert attention affect ERPs?

Yes, e.g.:

• Desmet et al. 1977, Journal of Physiology 271.

• Garćıa Lorrea 1995, Psychophysiology 32.

• Eimer et al. 2003 Experimental Brain Research 151.

...at least, when you average hundreds of trials. Can we obtain a reliable

effect on a timescale suitable for BCI?
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I: Auditory stimulation in EEG
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Trial structure

0.0 1.0 1.5 6.0 6.52.0 sec

fixation point on screen

visual cue auditory stimulus

EEG recording

+ 2−4 sec

pause

16 subjects, 400 trials each in one 3-hour session.

Cued direction of attention without feedback.
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Data structure

channel #40

...
... ...

channel #3

...

...

channel #2

average signal following beeps
in left stream (142 samples)

average signal following beeps
in right stream (125 samples)

channel #1

... ......

trial #400

trial #2

trial #1
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II: Tactile stimulation in MEG

0 2 4 6

time/seconds

9 subjects, each 200 cued trials without feedback.

5 classes including the no intentional control (NIC) state.
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Classification

f (X) =

Σ
sensors

Σ
time

(

G
S × T

.* X
S × T

)

+ b

G is the weight “vector” found by some classifier (SVM, LR, LDA. . . )

f(X) = tr [G>X]

= tr [WtW
>

s X] = tr

[

W>

s
2× S

X Wt
T × 2

]
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Classification

f(X) = tr [G>X]

It can be helpful to assume that G consists of only a small number (let’s say

2) of relevant spatio-temporal features—

• whose spatial characteristics are stationary in time;

• whose temporal characteristics are stationary in space:

= tr [WtW
>
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Bilinear Discriminant Analysis

f(X) = tr [G>X]

= tr [WtW
>

s X] = tr

[

W>

s
2× S

X Wt
T × 2

]

(because arguments inside a trace operator may be cyclically reordered)
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Bilinear Discriminant Analysis

f(X) = tr [G>X]

= tr [WtW
>

s X] = tr

[

W>

s
2× S

X Wt
T × 2

]

= tr

[

L
2× 2

]

By making G low- instead of full-rank, we are assuming that there is a

low-dimensional subspace onto which we can project X without loss (and

perhaps with improvement) in performance of f(X). We assert that, for

classification, each data point X(i) can be sufficiently represented by a small

number of coefficients—two, in our example:
(

L
(i)
11 , L

(i)
22

)

.
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Bilinear Discriminant Analysis

f(X) = tr [G>X]

= tr [WtW
>

s X] = tr

[

W>
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X Wt
T × 2

]
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[

L
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]

This implies a basis of spatial and temporal features As and At such that

f(X) = f(X̃), where X̃ = As
S × 2

. . .

L A>
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2× T
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. . .
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
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
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


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2× 2
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Bilinear Discriminant Analysis

f(X) = tr [G>X]
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Ws = Rs

. . .

S , Wt = Rt

. . .

S ,

As = Rs

. . .

S -1 , At = Rt

. . .
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. . .
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s As = W>

t At = I
F × F

How do we obtain Ws, Wt ? Simple idea: feed X into a classifier and look at

the singular value decomposition of the resulting G:

G = Rs

. . .

S 2 R>t , where R>s Rs = R>t Rt = I

If you want to reduce the rank, you can throw away columns of Rs and Rt

and recompute G.
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. . .

L A>

t such that W>

s As = W>

t At = I
F × F

How do we obtain Ws, Wt ? Simple idea: feed X into a classifier and look at

the singular value decomposition of the resulting G:

G = Rs

. . .

S 2 R>t , where R>s Rs = R>t Rt = I

Alternatively: obtain a low-rank G in the first place, by using a classifier

which is regularized by penalizing the rank of G:

Tomioka and Aihara (ICML 2007) give a (convex!) formulation for LR.
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f(X) = f(X̃) where X̃ = As

. . .

L A>

t such that W>

s As = W>

t At = I
F × F

How do we obtain Ws, Wt ? Simple idea: feed X into a classifier and look at

the singular value decomposition of the resulting G:

G = Rs

. . .

S 2 R>t , where R>s Rs = R>t Rt = I

. . . but neither approach performs at its best if G is found directly in the

space of X.
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Spatial Whitening in ERP classification

Spatial whitening (decorrelating) transformations are very common in EEG

analysis, as a partial way of undoing the volume conduction effect which

causes all sensor outputs to be highly correlated. Examples:

• surface Laplacian filters (approximate)

• ICA

• CSP and friends (esp. for extraction of bandpower features)

Generally: XP = P> X , with P such that E{P>X(P>X)>} = I
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Spatial Whitening in ERP classification

Spatial whitening (decorrelating) transformations are very common in EEG

analysis, as a partial way of undoing the volume conduction effect which

causes all sensor outputs to be highly correlated. Examples:

• surface Laplacian filters (approximate)

• ICA

• CSP and friends (esp. for extraction of bandpower features)

Generally: XP = P> X , with (e.g.) P = Σ−
1

2

Even in linear classification, non-orthonormal transformations of the data

affect the classifier’s regularization environment and can lead to very

different results.
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Spatial Whitening in ERP classification

Krusienski et al. (J. Neural Eng. 2006) report in visual ERP classification (in

a grid-speller) that Fisher’s (unregularized) Linear Discriminant Analysis

performs as well as, or better than, Support Vector Machines.

We suggest that this is because no decorrelation was performed. The lack of

whitening masked the potential benefits of regularization:
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Spatial Whitening in ERP classification
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Spatial Whitening in ERP classification

0 s w ws
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

S
V

M
 e

rr
or

 −
 F

D
A

 e
rr

or

preprocessing (w = whiten,   s = center & standardize each trial−by−channel)

auditory ERP data, offline analysis

each subject, each fold

0 s w ws
0

0.1

0.2

0.3

0.4

0.5

bi
na

ry
 g

en
er

al
iz

at
io

n 
er

ro
r 

(e
st

. o
ve

r 
10

 fo
ld

s)

example subject (612)

0 s w ws
0

0.1

0.2

0.3

0.4

0.5

bi
na

ry
 g

en
er

al
iz

at
io

n 
er

ro
r 

(e
st

. o
ve

r 
10

 fo
ld

s)

avg. over 16 datasets

SVM
FDA

PASCAL Workshop, Berlin June ’07 page 10 of 26



Spatial Whitening in ERP classification

SVM results on tactile MEG data

(Cornelius Raths’ Diploma Thesis 2007, paper in preparation):
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Filters and Patterns

Learn the classifier weights on the preconditioned data XP = P>s XPt:

f(X) = tr [G>

P XP] = tr [G> X]

= tr [G>

P P>s XPt] = tr [PtG
>

PP>s X]
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GP = Rs
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
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
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Ws = PsRs

. . .

S , Wt = PtRt

. . .

S ,

As = P−>s Rs

. . .

S -1 , At = P−>t Rt

. . .
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Preconditioning and Regularization

Learn the classifier weights on the preconditioned data XP = P>s XPt:

f(X) = tr [G>

P XP] = tr [G> X]

= tr [G>

P P>s XPt] = tr [PtG
>

PP>s X]
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Preconditioning and Regularization

Learn the classifier weights on the preconditioned data XP = P>s XPt:

f(X) = tr [G>

P XP] = tr [G> X]

= tr [G>

P P>s XPt] = tr [PtG
>

PP>s X]

the classifier (LR, SVM,. . . ) optimizes GP instead of G. This does not

change f(X), so the loss term is unaffected. However, assuming an L2

regularizer, the classifier’s objective becomes:

λ tr [G>

PGP] +
∑

i

L
{

y(i)f(X(i))
}

,
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Learn the classifier weights on the preconditioned data XP = P>s XPt:

f(X) = tr [G>

P XP] = tr [G> X]

= tr [G>

P P>s XPt] = tr [PtG
>

PP>s X]

the classifier (LR, SVM,. . . ) optimizes GP instead of G. This does not

change f(X), so the loss term is unaffected. However, assuming an L2

regularizer, the classifier’s objective becomes:

λ tr [G>

PGP] +
∑

i

L
{

y(i)f(X(i))
}

,

in which further expansion, substitution and reordering gives

tr [G>

PGP] = tr
[

S4 A>

t PtP
>

t At S4 A>

s PsP
>

s As
]

.
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Preconditioning and Prior knowledge

The regularization term can be written as

tr
h

S4 A>t Σ−1

t At S4 A>s Σ−1
s As

i

where Σ−1

t = PtP
>

t and Σ−1
s = PsP>s .

It contains terms which look a little like logged Gaussian prior probabilities over the spatial and

temporal patterns, (not incorporated in the usual way, though: cross-terms for F > 1, and

multiplication of spatial and temporal terms).
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It contains terms which look a little like logged Gaussian prior probabilities over the spatial and

temporal patterns, (not incorporated in the usual way, though: cross-terms for F > 1, and

multiplication of spatial and temporal terms).

Some alternative approaches use direct prior probabilities on the spatial patterns or filters, for

example to smooth them (e.g. Dyrholm et al. JMLR 2007, Dyrholm and Parra, Proc. IEEE EMBS

2006, Farquhar et al. Applied Neuroscience Conference 2007).

Similar, though not identical, effects are achieved by suitable choice of Σs and Σt in the

preconditioning approach above, with the advantage that convex formulations can be applied for

finding GP.
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preconditioning approach above, with the advantage that convex formulations can be applied for

finding GP.

Choosing Σs equal to the EEG or MEG sensor covariance matrix seems sensible, since it means the

spatial basis functions by which we represent X̃ reflect realistic EEG- or MEG-like

volume-conduction properties.

A Σt may also be chosen as a prior which smooths the temporal patterns, although to save

computation time one can also simply smooth and downsample the data.
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Bilinear Discriminant Component Analysis
Dyrholm et al, 2007

Note that an arbitrary invertible F × F matrix B may be applied after the

filters have been found:

f(X) = tr [B SR>s P>s X PtRtS B−1] .

PASCAL Workshop, Berlin June ’07 page 14 of 26



Bilinear Discriminant Component Analysis
Dyrholm et al, 2007

Note that an arbitrary invertible F × F matrix B may be applied after the

filters have been found:

f(X) = tr [B SR>s P>s X PtRtS B−1] .

This does not change f(X), but it changes the interpretation of the

discriminative components:

Ws = PsRs

. . .

S B> , Wt = PtRt

. . .

S B−1 ,

As = P−>s Rs

. . .

S -1B−1 , At = P−>t Rt

. . .

S -1B> .

Now
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Bilinear Discriminant Component Analysis
Dyrholm et al, 2007

Note that an arbitrary invertible F × F matrix B may be applied after the

filters have been found:

f(X) = tr [B SR>s P>s X PtRtS B−1] .

Various approaches are available:

• set B = I (leave filters and patterns to be determined by the interaction

between regularizer and preconditioner)

• optimize B such that the (L11, . . . , LFF ) are maximally independent

across different instances L(i) (Dyrholm et al., JMLR 2007).

• optimize B according to L1 penalties on As and At (for sparse basis

functions, perhaps confined in space and time) or on Ws and Wt (fewer

electrodes to stick).
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Sparsification

outer products

from SVD of

composite,

G = USV>

after

minimization of

L1 norms of UB>

and VB−1, w.r.t

F × F matrix B
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Does a low-rank constraint help?
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Example decomposition (auditory)

Auditory EEG data:
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Example decomposition (auditory)

Auditory EEG data:
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Classification performance (auditory)
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Example decomposition (tactile)

Subset of tactile MEG data (left little finger versus right little finger):
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Subset of tactile MEG data (left little finger versus right little finger):
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Example decomposition (tactile)

Subset of tactile MEG data (left little finger versus right little finger):
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Slow waves indicating attention
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Slow waves indicating attention

PASCAL Workshop, Berlin June ’07 page 20 of 26



Classification performance
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Bit rates
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Conclusions

• It is possible to classify attention modulation of evoked responses to

auditory and tactile stimuli, from 4.5–second signal segments.

• The stimuli are frequent (not an “oddball” paradigm).

• The classifier tends to rely more heavily on early (100–200 msec)

components, although P300-like components are also useful.

• In addition, slow waves may help us to distinguish the control/no

control problem.

• How well will this work as an online BCI?

• How much can the stimuli be speeded up?

• How high can the number of classes go, in the tactile experiment?

• How will speed and number of classes interact?
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Thank you for your attention.
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Auditory stimulus design
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Whitening and rotation
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Whitening and rotation
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Whitening and rotation
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Whitening and rotation
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