
Exploring model selection techniques for

nonlinear dimensionality reduction

Stefan Harmeling
Edinburgh University, Scotland

stefan.harmeling@ed.ac.uk

Informatics Research Report EDI-INF-RR-0960

SCHOOL of INFORMATICS
Institute of Adaptive and Neural Computation

March 2007

Abstract : Nonlinear dimensionality reduction (NLDR) methods have become useful tools for practi-
tioners who are faced with the analysis of high-dimensional data. Of course, not all NLDR methods are
equally applicable to a particular dataset at hand. Thus it would be useful to come up with model selection
criteria that help to choose among different NLDR algorithms. This paper explores various approaches
to this problem and evaluates them on controlled data sets. Comprehensive experiments will show that
model selection scores based on stability are not useful, while scores based on Gaussian processes are
helpful for the NLDR problem.

Keywords : Nonlinear dimensionality reduction, bootstrap, GPLVM

1 Introduction

High-dimensional data that is contained in some lower-dimensional manifold can be embedded into
much lower dimensions by nonlinear dimensionality reduction (NLDR) methods (see [18, 15, 2, 16]).
Suppose the data is given as vectors y1, . . . , yn ∈ RD in some high-dimensional space RD, but
actually lies on some much lower, say d � D, dimensional manifold. Then the task of NLDR is
to find d-dimensional vectors x1, . . . , xn ∈ Rd such that the entries of xi are the coordinates along
that (possibly quite curvy) manifold. Of course, this is not always possible. Usually it is necessary
that the manifold is isomorphic to Rd.

Several methods exist for NLDR, each pursuing a different paradigm, which is often motivated
by the NLDR problem but also influenced by computational concerns. Since NLDR is an example
of unsupervised learning, the different methods always will give some results when applied to a
particular dataset. The difficult task for the practitioner is to judge the different solutions to
decide from which solution she can learn something about her dataset. This paper explores and
tests model selection techniques for this problem which should help practitioner to assess their
solutions. By the end of this paper we will have experimentally shown that:

1. A stability-based approach to model selection for NLDR fails.

2. A Bayesian approach based on Gaussian process latent variable models (GPLVMs) can rank
NLDR solution in a meaningful way, that corresponds to some ground truth.

Towards these goals we proceed as follows: after briefly discussing model selection for NLDR in
Section 2 we describe in Section 3 situations in which NLDR might fail and in Section 4 how to
compare different embeddings. Then we explain in Section 5 stability-based approaches and in
Section 6 a Bayesian approach to compare the performance of different NLDR methods. After
that in Section 7 we experimentally evaluate those approaches. Finally, we summarize our results
in Sec. 8.

2 Model selection for NLDR

In supervised learning problems (like the classification task), we can compare different classification
methods by the test error they achieve, when applied to test data. The best method for the
problem at hand is the classification procedure that has reached the smallest test error. Such kind
of model selection is more difficult for unsupervised learning problems (like clustering and NLDR).
The reason is that the goal is usually more qualitatively described. For instance for clustering we
want a method to find the clusters which somehow group the data points. This is interpretable
in many ways. Are we looking for large clusters? Or for clusters of similar size? Are we looking
for exactly five clusters? Are we looking for a hierarchy of clusters? Similarly for the NLDR
problem, in which the informal goal is to unfold the underlying manifold. Such an imprecise
description has the advantage that it opens up many possibilities to approach the problem. On
the other hand it makes it quite difficult to compare solutions from different algorithms, because
it is quite hard in real-world situations to objectively measure whether one embedding is more
meaningful than another. Looking at a single NLDR algorithm it is usually possible to compare
different solutions (for instance for hyperparameter learning), since a single algorithm optimizes
a single fixed cost function. Such a cost function is motivated by the NLDR goal, but also by
computational concerns. The solution of a particular NLDR algorithm is then of course favored
by its own cost function, but probably not by the cost functions of other NLDR methods. For
instance ISOMAP looks for an embedding that preserves all pair-wise geodesic distances along
the manifold, whereas LLE seeks an embedding that preserves the local neighborhoods. Each of
these methods can measure how well its individual criterion is met, but it is not straightforward
to compare the results of different methods, since they try to optimize different things and their
cost functions are usually on different scales as well.

Thus in order to implement a useful model selection procedure we need to define neutral scores
that rank different embeddings for a given dataset obtained from different algorithms. Of course

1

such scores will not be objective either. Similar to the algorithmic decisions, the various NLDR
method make in choosing their cost functions, such a neutral score will only capture particular
aspects of possible embeddings and will thus be subjective as well. However, possibly the choice
will be more guided by the abstract description of the NLDR problem and by our views about
what embeddings we are looking for and not by computational concerns like whether it can be
calculated by an eigenvalue problem. To this end, this paper will describe and test two classes of
subjective score functions:

Stability-based scores: the intuition behind stability is that, if an embedding reflects the un-
derlying statistical properties of a dataset it should be a robust solution. That is a slight
perturbation of the dataset should not change the embedding very much. On the other hand,
not-so-meaningful embeddings should be unstable. We will see in the experiments that this
criterion is ineffective.

Bayesian scores: one possibility to be subjective about NLDR is to formulate our initial beliefs
about possible embeddings as a probability distribution over possible mappings. Such a
distribution allows us to compare different solution by asking, which embedding is more
likely given our prior beliefs. As we will see in the experiments this approach is useful.

In order to evaluate these score functions, we will design several controlled NLDR datasets in
which LLE and/or ISOMAP have or do not have problems to find good embeddings. Note that
in this paper we will focus on LLE and ISOMAP, because both methods are easily implemented
and they are fast, which makes them particularly useful for comprehensive evaluations.

3 When does NLDR fail?

Even though NLDR methods are quite successful in obtaining interesting embeddings (for instance
[18, 15, 2, 16]), there are situations in which common NLDR methods fail. These can have different
reasons which we discuss next.

3.1 Proximity-graph related problems

Many NLDR methods, including LLE and ISOMAP, are based on proximity graphs: usually the
k-nearest-neighbor graph is employed, the vertices of which are the given data points and the
edges connect a data point to its k nearest neighbors. Alternatively, ε-ball graphs can be used,
the edges of which connect a data point to its neighbors which are not further than ε away. The
idea is that under the assumption that the data points originate from a low dimensional manifold,
both graphs (as do proximity graphs in general) have the property that their edges only go along
the underlying manifold for appropriately chosen hyperparameters (here k or ε) and for densely
enough sampled data. Since the proximity graph is central to LLE and ISOMAP, their results
can be easily become corrupted if the employed graph does not go along the underlying manifold,
which can happen because of:

• noise,

• sparse sampling.

In Section 7 we will test our model selection scores on such cases.

3.2 Model mismatch

The second group of failures is due to model mismatch. Model mismatch appears if a dataset does
not fulfill the (implicitly determined) model of the applied algorithm, in our case of LLE and/or
ISOMAP. Proximity-graph related issues can be also interpreted as model mismatches, but there
are further reasons why a model mismatch can occur:

2

• the embedding dimension is chosen too small,

• the data is connected but not convex (a problem for ISOMAP),

• the manifold is non-uniformly sampled (a problem for LLE),

• or the manifold is not flat (the fishbowl problem).

These lists of failures are of course not exhaustive and for other NLDR methods we will be able
to identify other failures. We will use these cases to evaluate our model selection scores.

4 Comparing two embeddings

The observed data points y1, y2, . . . , yn ∈ RD originate from some high dimensional space (with
large D) which we call data space. For notational brevity we collect those vectors as columns in the
D×n matrix Y = [y1, y2, . . . , yn]. Given Y an NLDR algorithm calculates the lower dimensionally
embedded vectors x1, x2, . . . , xn ∈ Rd for some d � D. Similar to Y we collect those vectors in
an d × n matrix X. We call Rd the embedding space or latent space. Suppose we obtain another
embedding Z. How can we measure how similar they are? We do this in two steps: (i) first we
whiten the embedded data and then (ii) we calculate some squared distance using the Procrustes
analysis. Both parts will be detailed in the next two subsections.

4.1 Whitening

First of all we assume that X has been already transformed such that the mean of the columns
of X is zero. Additionally whitening a dataset X, forces its covariance to be the identity matrix.
Whitening has its name from the fact that the covariance of white noise is also the identity matrix.
Let us write the estimated covariance matrix in terms of X,

C = XX>/n. (1)

Let V be the matrix of C’s eigenvectors (as column vectors in V) and let Λ be diagonal matrix of
C’s eigenvalues (along the diagonal), then we have

CV = V Λ. (2)

We whiten X by transforming it with V and Λ,

Xw = Λ−1/2V >X, (3)

which can be verified by observing that Xw’s (estimated) covariance matrix,

XwX>
w /n = Λ−1/2V >XX>V Λ−1/2/n = I, (4)

is the identity matrix (using the previous Equations and V >V = I).

4.2 Procrustes analysis

Let us assume that X and Z have already been whitened. Then we apply Procrustes analysis (see
for instance [3]) which transforms X such that the sum of the distances between the points (that
is the columns) in X and Z,

ρ̄(X, Z) =
n∑

i=1

(zi − t(xi))>(zi − t(xi)). (5)

is minimized. Hereby the transformation t : Rd → Rd has the form

t(x) = αAx + b (6)

3

with α ∈ R being a scaling factor, A being a rotation matrix and b being an translation vector. The
Procrustes distance of X and Z is the minimal sum of distances among all possible transformation,

ρ(X, Z) = min
α,A,b

ρ̄(X, Z). (7)

Note that because t(x) is an invertible transformation, ρ is symmetric in X and Z. The reason
for initial whitening is that Procrustes analysis allows only to adjust the overall scaling of the two
datasets. However, in the NLDR problem we additionally want to ignore the scaling in each of
the different embedding dimensions.

5 Stability-based model selection

Intuitively speaking, stability-based model selection scores measure how much a result would
change if we had slightly different data. This concept was successfully applied to independent
component analysis (ICA, for an overview see [7]). For ICA, the question was whether calculated
independent components reflect statistical properties of the given dataset or whether they are due
to random variation in the data. [11, 12, 10, 6] were able to show that the most stable components
are usually the most relevant ones. Solutions that were purely random or due to over-fitting could
be identified. Viewing an obtained ICA solution as a (latent) model of the original data, stability
analysis was thus able to perform a certain form of model selection. Both ICA and NLDR are
unsupervised learning methods for which model selection in general is difficult. Motivated by the
success of stability-based model selection in ICA, we will try in the following to apply stability-
based measures to NLDR problems.

Stability analysis in a nutshell can be described as follows: In practical problem we only have a
single dataset Y . Thus it is not directly possible to estimate the stability of the solution that some
algorithm would give us. However, if we had access to the distribution from which Y originates,
we could draw more datasets Y (1), Y (2), . . . , Y (R) and apply the chosen algorithm to each of those
samples to obtain several solutions, which we could analyse how similar they are to each other
(which we call scatter) and to the solution obtained from Y (which we call offset). Bootstrap (BT)
and noise injection (NI) are two approaches which generate datasets that share certain properties
of the given dataset Y .

5.1 Bootstrap

Bootstrap (BT, see [5]) approaches the problem of generating more datasets from the point of
view of the distribution of the column vectors, that is of the data points themselves. It takes
the empirical distribution given by the set of column vectors in Y and repeatedly samples with
replacement from the columns of Y to generate surrogate datasets Y (1), Y (2), . . . , Y (R) of the
same size as Y . Of course the empirical distribution as expressed by the columns of Y is a discrete
distribution and thus only a coarse approximation to the true distribution of the data points.
Furthermore, note that in the surrogate datasets many data points (column vectors) will appear
several times.

Using those additional datasets, we can define two scores which measure different aspects of
the stability. For notational convenience we denote the currently considered NLDR algorithm by
φ and view φ as a mapping from data space to embedding space, that is the embedded vectors
can be written as X = φ(Y).

1. Calculate the average Procrustes distance of the embeddings of the surrogate datasets to the
initial solution:

offset =
1
R

R∑
r=1

ρ(φ(Y), φ(Y (r))) (8)

4

2. Additionally, we can calculate pairwise Procrustes distances of the embeddings of the surro-
gate datasets:

scatter =
1

R2

R∑
r=1

R∑
s=1

ρ(φ(Y (r)), φ(Y (s))) (9)

Note that “scatter” can be small while “offset” is large, if the solutions for the resampled datasets
are very different from Y but very stable. On the other hand, if “scatter” is large, then “offset”
will also be large. Informally speaking, “offset” is related to bias and “scatter” to variance.

5.2 Noise injection

An alternative to BT sampling is noise injection (NI, see [6]) which differs from BT in the way
the surrogate datasets are generated: instead of resampling the original dataset Y , we obtain
surrogate datasets Y (1), Y (2), . . . , Y (R) by adding small amounts of white noise to Y :

Y (r) =
√

1− σ2 Y +
√

σ2 N (r) (10)

with each entry of N (r) being standard normally distributed for all r, and σ2 being a parameter
between zero and one that determines the mixture of true data and noise. Thus instead of using
the empirical distribution, NI employs a kernel density estimate of the distribution of data vectors.
However, instead of sampling from the overall kernel density estimate (which would be possible as
well) in this paper we sample from each Gaussian distribution (centred at each data point) exactly
once. Another point of view is that the original dataset Y is shaken a little bit to get a similar
but slightly different one. Using again Equations (8) and (9) this induces two NI scores, “offset”
and “scatter”.

6 Bayesian model selection

Recognising that model selection for unsupervised learning problems is necessarily subjective,
we suggest to formalize our beliefs about the embedding. A reasonable assumption is that the
embedding should be smooth and invertible. Thus let us assume that the mapping from the (low
dimensional) embedded vectors to the given (high dimensional) data vectors is smooth (see also
[1]). That is, we formulate a prior distribution over the mappings from the low dimensional space
to the high dimensional space. The reason for not choosing to model the mapping from data space
to embedding space is that there are smooth mappings from data space to embedding space which
“fold” the manifold which will result in (an unwanted) loss of information. Having specified a
distribution over inverse embeddings, we can compare the likelihoods of different solutions, hereby
also taking into account the values of possible hyperparameters. In the following we will formulate
such priors using Gaussian processes.

Gaussian processes have been used extensively in machine learning (see [14]). They provide
a principled way to state prior beliefs about functions. In the following we introduce Gaussian
processes and explain how we can use them to formulate model selection scores for NLDR.

6.1 Gaussian processes

A Gaussian process can be seen as a set of random variables indexed by real numbers (that is as a
stochastic process), such that each finite subset of those random variables is distributed according
to a multivariate Gaussian distribution. One instance of a Gaussian process (that is one instance
of the set of random variables) can be seen as a function f : R → R from the real numbers to
the real numbers. Viewing the function f as a random variable itself (as a random function to
be specific), a Gaussian process defines a distribution over functions. Allowing multidimensional
indices, we can similarly define Gaussian processes over real-valued functions of vectors:

5

Definition 1 The random function f : Rd → R is distributed according to a Gaussian process
with mean function m : Rd → R and covariance function k : (Rd × Rd) → R, abbreviated

f ∼ GP (m, k), (11)

if and only if for each finite set of vectors x1, x2, . . . , xn ∈ Rd the random vector (f(x1), f(x2), . . . , f(xn))>

is distributed according to a multivariate Gaussian distribution with n dimensional mean vector µ
with entries

µi = m(xi) (12)

and n× n dimensional covariance matrix Σ with entries

Σij = k(xi, xj). (13)

The parameters of a Gaussian process are the mean function m and the covariance function k.
Note that the vector (f(x1), f(x2), . . . , f(xn))> is random due to the randomness of f .

6.2 Multidimensional Gaussian processes

So far, we considered real-valued functions of vectors. However, the inverse mapping of the
NLDR embedding is vector-valued. We can generalize the previous definition to vector-valued
functions f : Rd → RD by viewing f as a vector of real-valued functions of vectors, that is
f = (f1, f2, . . . , fD)> with fI : Rd → R for all I. Similarly view m : Rd → RD as m =
(m1,m2, . . . ,mD)> and k : (Rd × Rd) → RD as k = (k1, k2, . . . , kD)>. Note that the upper case
indices I and J run over dimensions in RD and lower case indices i and j run over a finite set of
data points in Rd.

Definition 2 The vector-valued random function f : Rd → RD is distributed according to a
Gaussian process with mean function m : Rd → RD and covariance function k : (Rd ×Rd) → RD,
abbreviated

f ∼ GP (m, k), (14)

if and only if for all I ∈ {1, 2, . . . , D}

fI ∼ GP (mI , kI). (15)

Note that the random functions f1, f2, . . . , fD are independent given m and k. This is not the
most general form of a multidimensional Gaussian process: here we employed a vector-valued
covariance function, but instead we could consider it to be matrix-valued, k : (Rd×Rd) → RD×D.
The latter form could take possible correlations between different dimensions in RD into account.
Definition 2 is a special case thereof assuming zero correlations between different dimensions.
The more general form is beyond the scope of this paper and for our purposes Definition 2 is
sufficient. We even simplify it further and will write f ∼ GP (m, k) for real-valued covariance
function k : (Rd × Rd) → R. In that case for each dimension I we will use the same covariance
function k.

6.3 Gaussian process latent variable model

The Gaussian process approach to the NLDR problem introduces the Gaussian process latent
variable model (GPLVM, see [8]) which is a latent variable model for the observed data points
y1, y2, . . . , yn ∈ RD using Gaussian processes: the GPLVM assumes a Gaussian process prior for
the mapping f : Rd → RD from the low dimensional space Rd (the latent space) to the high
dimensional space RD (the data space):

f ∼ GP (0, k) (16)

6

Note that we fix the mean function m to be zero everywhere which is all right if nothing more
is known. The covariance function k can be freely chosen as well. In this paper we choose the
weighted sum of the squared exponential covariance function and white noise covariance function,

k(xi, xj) = θrbf exp(− (xi − xj)>(xi − xj)
2σ2

) + θnoiseδij , (17)

for data points xi, xj ∈ Rd with δij = 1 for i = j and zero otherwise, and θrbf > 0 and θnoise > 0
being the signal and noise variance, and σ > 0 being the kernel width. The first term, the squared
exponential covariance function, captures the following intuition: suppose a and b are close in the
embedding space Rd. Then exp(. . .) will be large and with it k(xi, xj) will be large. Hence their
images f(xi) and f(xj) will be correlated and thus close as well. We will assume k to fixed and
not a random function. We collect all those hyperparameters of the covariance function in the
variable θ = (σ, θrbf, θnoise). Since we share a single covariance function k for all dimensions I, also
the hyperparameters θ are shared among all dimensions I.

Having defined a prior for f , we generate a data point yi given some latent point xi simply by
mapping xi via f ,

yi = f(xi). (18)

Notation-wise we collect (again) all observed data points in a D × n matrix Y = [y1, y2, . . . , yn],
similarly for the latent data points, X = [x1, x2, . . . , xn] (in the embedding space). Now we want an
expression for how likely it is to observe Y given X under the Gaussian process prior for f . By the
defining property of the Gaussian process each row YI of Y is distributed according to a Gaussian
distribution and since the rows are independent we obtain a product of those distributions,

p(Y |X, θ) =
D∏

I=1

N(YI ; 0,K) (19)

with K being the covariance matrix1 with entries

Kij = k(xi, xj). (20)

Note that K depends on the hyperparameter θ. Viewing also the matrix X as the parameter to
optimize we can call p(Y |X, θ) the likelihood of X and θ. Taking logs we obtain the log-likelihood,

log p(Y |X, θ) = −Dn

2
log 2π − D

2
log |K| − 1

2
tr(K−1Y Y >) (21)

which is identical to Equation (6) in [8]. Probabilistic nonlinear PCA which is introduced in
[8] directly maximizes log p(Y |X, θ) with respect to X in order to find an embedding of Y . In
that manner GPLVMs are used for nonlinear dimensionality reduction. However, log p(Y |X, θ) is
prone to many local minima, so direct minimization is often not straightforward (see also [9] for
recent work on this). Slightly differently, we propose in this paper to use GPLVMs to evaluate
the performance of LLE and ISOMAP.

6.4 GPLVMs as a model selection criterion for NLDR

In order to compare the results of different algorithms we need to agree on a criterion that some-
what captures our (informal) notion of what a good embedding is. We suggest that a good
embedding leads to a smooth mapping from the embedded data points to the observed points.
Thus we will assume a Gaussian process prior with a squared exponential covariance function
(and a noise term) for that mapping. Note that as discussed in [9] a GPLVM makes sure that
far-away points in data space are far away in latent space, which corresponds to the intuition that
the embedding should not fold parts of the manifold together.

1In the “kernel-methods” world K is called the kernel matrix (e.g. [17, 13]).

7

Suppose we are observing some data which we (as before) represent as column vectors of the
D × n matrix Y . An NLDR algorithm calculates a low dimensional embedding which consists of
a d× n matrix X of column vectors. Then we can define the GPLVM scores as follows:

Definition 3 The GPLVM scores calculate for the fixed covariance function k in Equation (17)
that depends the hyperparameter θ = (σ, θrbf, θnoise) (i) how likely it is that Y has been generated
from X by some random function f ∼ GP (0, k), that is the log-likelihood,

lml = max
σ,θrbf,θnoise

log p(Y |X, θ), (22)

and (ii) the corresponding optimal values of the hyperparameters,

(width, sigvar, noivar) = arg max
σ,θrbf,θnoise

log p(Y |X, θ) (23)

Before calculating these values we whiten X and Y . This is important because otherwise the
hyperparameters for different runs would not be comparable. Note that while the hyperparameters
change with linear transformations of X and Y , the log-likelihood log p(Y |X, θ) does not.

In order to calculate these quantities, the hyperparameters are optimized using standard conjugate
gradient descent algorithm (as implemented by Carl Rasmussen’s Matlab function minimize.m,
which is part of the Gaussian process package available at http://www.gaussianprocess.org/gpml/code/matlab/doc/).
In principle, of course, this optimization might run into local minima. However, our experience
during the experiments described in the following was that various randomly initialized runs lead
to the same results.

By now we defined various scores which we will analyse further in the following. Of course
we could use alternative covariance functions with alternative hyperparameter dependent on the
problem we look at.

7 Experiments

To find out which of these scores are useful for model selection in NLDR problem, we applied them
to various (controlled) examples that correspond to the cases (discussed in Section 3) in which
NLDR methods often fail.

For artificial datasets like the one we use in the following, we often know from the data
generation process the “true” embedding, which we denote by the d×n matrix Z = [z1, z2, . . . , zn].
The word “true” is in quotation marks, since that is only one possible embedding and we could
produce a different one for instance by monotonically transforming each coordinate. However, we
tried to choose a more or less canonical embedding that best matches the one we would expect.

Since we do try to get the best possible results for the various algorithms, we did not search
for the best value k (number of neighbors in the proximity graph). Also we did not apply all
available algorithms to all problems, which would have been computationally demanding for some
of the indices. Instead we focused on using LLE and ISOMAP, which run reasonably fast on the
problems we looked at.

7.1 Proximity graph related issues

The first two experiments are constructed to contrast a dataset with a proximity graph that does
not go along the manifold, against an example with a correct proximity graph. Then we can
compare our qualitative expectations with the scores we calculate.

7.1.1 Noise

The first way to corrupt the proximity graph is by adding noise to the dataset. In the first row of
plots in Figure 1 we show from left to right the noisy spiral dataset (with 400 points), its “true”

8

(a) noisy spiral (k = 8)

(b) "true" embedding

(c) spiral (k = 8)

(d) "true" embedding

(e) lle (f) isomap (g) lle (h) isomap

(a/b) noisy spiral (c/d) spiral
(e) lle (f) isomap (g) lle (h) isomap

procrustes dist 0.76914 0.99662 0.016086 0.017243
gplvm nlml 890.0938 880.4318 -6198.4008 -7263.0611

width 0.25662 0.34146 0.10483 0.38439
sigvar 0.61935 0.69599 0.5841 0.84122
noivar 0.70246 0.69962 2.2109e-05 1.5671e-05

bootstrap 10 scatter 0.77297 3.8636e-16 0.76226 8.7486e-16
offset 0.73397 3.3307e-16 0.62785 9.1038e-16

bootstrap 50 scatter 0.89553 4.3059e-16 0.77991 8.1766e-16
offset 0.85861 5.5511e-16 0.5902 8.7486e-16

noise inj 10 0.3 scatter 0.77199 4.3521e-16 0.54319 7.3275e-16
offset 0.81871 3.3307e-16 0.513 1.1102e-15

noise inj 10 0.6 scatter 0.84088 3.1974e-16 0.667 8.2157e-16
offset 0.79698 9.992e-16 0.54336 9.1038e-16

Figure 1: (a) Noisy spiral data with (b) its “true embedding” and (e) LLE’s and (f) ISOMAP’s
embeddings, (c) clean spiral data with (c) its “true embedding” and (g) LLE’s and (h) ISOMAP’s
embeddings. The table shows all scores for these datasets.

9

embedding, and the clean spiral dataset (with 400 points) with its “true” embedding. Note that
the graph (for k = 8) of the noisy spiral has several shortcuts which are due to the noise, while the
clean spiral has none. Those shortcuts are the reason why the embeddings of LLE and ISOMAP
(both with k = 8) are not perfect (the two left-most plots in the second row), while on the clean
dataset the embeddings are perfect (the two right-most plots in the second row). These findings by
visual inspection are matched by the Procrustes distance that compares the embeddings found by
the algorithms to the respectively “true” embeddings. However, the calculation of the Procrustes
distance requires access to the “true” embeddings, which are of course not available in real-world
datasets. Thus let us see which of the indices best match to our visual results and the Procrustes
distance: the log-likelihood of the GPLVM model and the noise-variance are large for the noisy
spiral and very small for the clean spiral which is in correspondence to the Procrustes-score.
However, note that for both the clean and noisy spiral we have

lml(LLE) > lml(ISOMAP) (24)
noivar(LLE) > noivar(ISOMAP) (25)

while

procrustes(LLE) < procrustes(ISOMAP). (26)

What about the stability-based scores? They all fail to capture the quality of the solution: we
tried BT with 10 and 50 repetitions and NI with 10 repetitions and two levels of added noise (0.3
and 0.6). However, the scores for LLE are all quite large, while the values for ISOMAP are very
small, indicating that ISOMAP is not very sensitive to slight variations of the dataset while LLE
is. Thus all those scores are here not useful for model comparison, since they are affected by the
different algorithms in different ways.

7.1.2 Sparse sampling

The second way to corrupt the proximity graph is by sparse sampling. Figure 2 shows the datasets
and the results: the left dataset is an undersampled swiss roll with only 100 data points. This
leads to a lot of shortcuts as can be seen in the upper left plot, indicating that the graph does
not go along the manifold. The second dataset is sampled with 400 data points which does not
have any shortcuts for k = 6. Of course, ISOMAP (with k = 6) fails on the first undersampled
swiss roll, while it somewhat gets a reasonable embedding on the classic swiss roll. These findings
are reflected by the Procrustes score, which requires knowledge of the “true” embedding, and also
by the log-likelihood, the lml-score, and the noise-variance, the noivar-score. Again the methods
based on resampling fail. Intuitively speaking, the ISOMAP embedding of undersampled swiss
roll is quite wrong, but at the same time very stable.

7.2 Model mismatch

The second category of examples in which LLE and/or ISOMAP fail are due to model mismatch:
in these situation we apply those NLDR methods to datasets for which they were not designed
to work. Of course this is of practical relevance, since the practitioner does not know in an
unsupervised learning problem, whether the model assumptions of the applied algorithms are
fulfilled. Thus it is interesting to explore model selection scores for these situations as well.

7.2.1 Embedding dimension too small

The simplest form of model mismatch in NLDR problem is a dataset in which there is no manifold
to find. For this we created two datasets (both 400 data points, see Figure 3), (i) with a three
dimensional Gaussian blob that does not have any manifold structure (left-most plots in the first
row), and (ii) a uniformly sampled square that is embedded into three dimensions with some
rotation (right-most plots in the first row). Of course, LLE and ISOMAP (both with k = 8)

10

(a) undersampled swiss roll (k = 6)(b) "true" embedding (c) swiss roll (k = 6) (d) "true" embedding

(e) lle
(f) isomap

(g) lle

(h) isomap

(a/b) undersampled swiss roll (c/d) swiss roll
(e) lle (f) isomap (g) lle (h) isomap

procrustes dist 0.82196 0.75055 0.31727 0.030654
gplvm nlml 287.893 264.9918 -512.666 -1220.4645

width 0.49121 0.41378 0.42306 0.61248
sigvar 0.95262 0.93925 3.9455 1.1221
noivar 0.40877 0.33329 0.073515 0.057237

bootstrap 10 scatter 0.88044 2.6645e-17 0.85743 -2.2649e-16
offset 0.97651 6.6613e-17 0.88859 -7.1054e-16

bootstrap 50 scatter 0.96214 7.9226e-17 0.94146 -1.144e-16
offset 0.96383 3.9968e-17 0.86604 1.0658e-16

noise inj 10 0.3 scatter 0.80172 1.7764e-17 0.76175 -1.1102e-16
offset 0.81203 6.6613e-17 0.72157 -3.9968e-16

noise inj 10 0.6 scatter 0.84919 8.8818e-17 0.8444 -2.2204e-16
offset 0.89058 8.8818e-17 0.83021 -7.1054e-16

Figure 2: (a) Undersampled swiss roll data with (b) its “true embedding” and (e) LLE’s and (f)
ISOMAP’s embeddings, (c) classic swiss roll data with (d) its “true embedding” and (g) LLE’s
and (h) ISOMAP’s embeddings. The table shows all scores for these datasets.

11

(a) gaussian blob (k = 8) (b) "true" embedding (c) square in 3D (k = 8) (d) "true" embedding

(e) lle

(f) isomap
(g) lle (h) isomap

(a/b) gaussian blob (c/d) square in 3D
(e) lle (f) isomap (g) lle (h) isomap

procrustes dist 0.60062 0.59199 0.0016892 0.0019481
gplvm nlml 1081.6954 1094.3383 -5487.522 -2483.3359

width 5.0058 15.077 1.2314 1.4083
sigvar 2.3292 6.3859 0.86211 1.1214
noivar 0.57605 0.58514 0.0014166 0.024187

bootstrap 10 scatter 0.89546 3.9524e-16 0.88688 3.8192e-16
offset 0.9805 3.9968e-16 0.92139 7.9936e-16

bootstrap 50 scatter 0.97542 5.4587e-16 0.96297 6.7111e-16
offset 0.98346 -4.2188e-16 0.91418 4.3521e-16

noise inj 10 0.3 scatter 0.77486 3.5971e-16 0.83788 4.0856e-16
offset 0.69503 1.3323e-16 0.75126 1.1102e-16

noise inj 10 0.6 scatter 0.86647 2.3981e-16 0.88 4.5297e-16
offset 0.85889 5.107e-16 0.88229 0

Figure 3: (a) Three-dimensional Gaussian blob data with (b) its “true embedding” and (e) LLE’s
and (f) ISOMAP’s embeddings, (c) two-dimensional square data with (d) its “true embedding”
and (g) LLE’s and (h) ISOMAP’s embeddings. The table shows all scores for these datasets.

12

fail on the Gaussian blob to find something reasonable, while at least the color coding from the
“true” embedding is somewhat correct. However, still a two dimensional embedding of an three
dimensional Gaussian blob has to squash one dimension which should be reflected in our scores. On
the other hand, the square in three dimensions is easily found by LLE and ISOMAP (again both
with k = 8). All those visual findings are nicely matched by the Procrustes score, the lml- and the
noivar-score. In this example lml- and also noivar-score are also able to distinguish between the
embeddings of the square in three dimensions obtained by LLE and ISOMAP. Different from the
experiment in Section 7.1.1 now LLE gets a better lml- and a better noivar-score than ISOMAP.
Again the stability-based scores are ineffective as in the previous experiments.

7.2.2 Connected but not convex

As pointed out by several authors (for instance [4]) ISOMAP requires the dataset to be connected
and convex, that is the proximity graph should only have a single connected component and there
should not be big holes in there. Otherwise, the theoretical guarantees of ISOMAP are not valid.
To study whether our scores can detect such situations we generated a uniformly sampled square
in two dimensions (with 400 datapoints) that has a square hole in the middle (see plots in the
first row of Figure 4). Applying LLE and ISOMAP (both with k = 10) we compare the results.
Note that the dataset and its “true” embedding are identical. Of course we could embed the two
dimensional dataset into higher dimension using some high dimensional rotation, but the distances
between the data points would not change and thus the dataset from the perspective of LLE and
ISOMAP (which both consider only the distances) would not be different. LLE is able to embed
the data, that is it finds a two dimensional representation that does not change the shape of the
hole (left plot in the second row). On the other hand, the embedding found by ISOMAP has
made the shape of the hole rounder (right plot in the second row). This behaviour is due to the
fact that ISOMAP calculates all pair-wise distances along the graph. The length of paths that go
around the corners are overestimated.

These findings are reflected by the Procrustes-, lml- and noivar-score as in the other experi-
ments. Again, the stability-based scores fail.

7.2.3 Non-uniform sampling problem

It is also well-known that the performance of LLE is influenced by the sampling distribution:
the average local distance between data points of classic swiss roll (with 2000 data points, see
two right-most plots in the first row of Figure 5) is much smaller in the inside loop than in the
outside loop. This misleads LLE which prefers a uniform distribution in embedding space as can
be seen from the result we get by applying LLE (with k = 12, see third plot from the left in the
second row). ISOMAP (with k = 12 as well) does not depend on the embedding distribution (see
right-most plot in the second row) and gives a good result. We can help LLE by changing the
sampling along the manifold. The two left-most plots of the first row show a swiss roll (with 2000
data points) along which the density of the data points is kept constant. With this dataset LLE
(again with k = 12) has less problems and calculates a reasonable embedding (see left-most plot
in the second row). The embedding found by ISOMAP (again k = 12) is similarly good as for the
non-uniformly sampled swiss roll.

These qualitative findings are matched by the Procrustes-, the lml- and the noivar-score. They
all give similar scores to the two ISOMAP solutions and they are able to express the qualitative dif-
ference between the two LLE solutions. However, the Procrustes-score favors overall the ISOMAP
solution of the left dataset, while the lml-score and the noivar-score favor the LLE-solution of the
left dataset. Again the stability-based scores fail.

13

(a) square with hole (k = 10) (b) "true" embedding

(c) lle
(d) isomap

(a/b) square with hole
(c) lle (d) isomap

procrustes dist 0.0041376 0.0059498
gplvm nlml -3782.1966 -1717.2723

width 0.89443 0.58406
sigvar 0.85311 0.86816
noivar 0.00095137 0.016316

bootstrap 10 scatter 0.87956 -1.8208e-16
offset 0.88357 -1.1102e-15

bootstrap 50 scatter 0.95198 -1.3429e-16
offset 0.86755 1.4211e-16

noise inj 10 0.3 scatter 0.75738 -5.5067e-16
offset 0.62082 -3.3307e-16

noise inj 10 0.6 scatter 0.86222 -1.5099e-16
offset 0.84206 -7.5495e-16

Figure 4: (a) Uniform square with a hole with (b) its “true embedding” and (c) LLE’s and (d)
ISOMAP’s embeddings. The table shows all scores for this dataset.

14

(a) uniform swiss roll (k = 12) (b) "true" embedding (c) swiss roll (k = 12) (d) "true" embedding

(e) lle (f) isomap

(g) lle

(h) isomap

(a/b) uniform swiss roll (c/d) swiss roll
(e) lle (f) isomap (g) lle (h) isomap

procrustes dist 0.017211 0.0015772 0.15967 0.013028
gplvm nlml -33093.2119 -14377.6287 -27180.8851 -14689.2611

width 0.42351 0.3172 0.46517 0.31701
sigvar 0.72068 0.58185 0.96465 0.61964
noivar 0.00048579 0.014584 0.0017158 0.013712

bootstrap 10 scatter 0.87535 -3.9968e-17 0.8727 -1.3323e-15
offset 0.91465 -7.9936e-16 0.89428 -1.954e-15

bootstrap 50 scatter 0.95748 -1.5916e-16 0.95453 -1.4175e-15
offset 0.91444 1.0658e-16 0.89838 -1.9895e-15

noise inj 10 0.3 scatter 0.74525 1.0658e-16 0.81463 -1.4211e-15
offset 0.7589 1.9984e-16 0.7927 -1.2434e-15

noise inj 10 0.6 scatter 0.83904 -7.9936e-17 0.81486 -1.4566e-15
offset 0.83888 -4.4409e-16 0.80041 -1.4655e-15

Figure 5: (a) Uniform swiss roll data with (b) its “true embedding” and (e) LLE’s and (f)
ISOMAP’s embeddings, (c) classic swiss roll data with (d) its “true embedding” and (g) LLE’s
and (h) ISOMAP’s embeddings. The table shows all scores for these datasets.

15

(a) uniform fishbowl (k = 12) (b) "true" embedding (c) fishbowl (k = 12) (d) "true" embedding

(e) lle (f) isomap
(g) lle

(h) isomap

(a/b) uniform fishbowl (c/d) fishbowl
(e) lle (f) isomap (g) lle (h) isomap

procrustes dist 0.010063 0.24375 0.776 0.25521
gplvm nlml -17702.4822 1517.6244 5181.2392 4144.5873

width 0.20999 0.33446 1.0127 0.43557
sigvar 0.45094 1.1383 0.80622 0.77524
noivar 0.0049896 0.27527 0.56249 0.45898

bootstrap 10 scatter 0.89019 7.5495e-17 0.89598 3.5527e-17
offset 0.92727 1.9318e-15 0.96414 4.885e-16

bootstrap 50 scatter 0.9732 6.6969e-17 0.97532 2.5562e-16
offset 0.94479 -7.3275e-16 0.96086 5.0182e-16

noise inj 10 0.3 scatter 0.84829 3.5083e-16 0.87082 2.6201e-16
offset 0.88095 8.8818e-16 0.86952 4.6629e-16

noise inj 10 0.6 scatter 0.88313 3.1974e-16 0.88656 -4.5297e-16
offset 0.91201 1.1546e-15 0.94562 4.6629e-16

Figure 6: (a) Uniform fishbowl data with (b) its “true embedding” and (e) LLE’s and (f) ISOMAP’s
embeddings, (c) fishbowl data with (d) its “true embedding” and (g) LLE’s and (h) ISOMAP’s
embeddings. The table shows all scores for these datasets.

16

7.2.4 Fishbowl problems

The “fishbowl” dataset2 that is uniformly sampled in data space (with 2000 data points, see the
two right-most plot in the first row of Figure 6) is difficult to embed for LLE and ISOMAP (both
with k = 12) as can be seen by their resulting embeddings (see the two right-most plots in the
second row). The reason for this failure for ISOMAP is that it tries to keep the original distances
in data space also in embedding space. However, an embedding of the fishbowl must open up the
top rim to make it flat. LLE does not try to preserve all distances but only local ones. Since LLE
is also happy with an embedding that collapses far away points to the same location in embedding
space (if it has to), we obtain a solution that looks like the fishbowl is squashed from the side. Of
course both embeddings do not capture the “true” embedding (shown in the upper right corner).
Changing the sampling of the fishbowl, such that it is more densely sampled at the rim of the
bowl than at the bottom (with 2000 data points, see the two left-most plots in the first row of
Figure 6), LLE (again with k = 12) is able to find a good solution that corresponds closely to the
“true” embedding, which is actually uniformly sampled in embedding space. On the other hand,
ISOMAP (also with k = 12) fails as well on the left dataset.

This qualitative discussion is matched again by Procrustes score (which requires the knowledge
of the “true” embedding), by the log-likelihood, the lml-score, and the noivar-score. The ranking
of all those scores agree, which again show that the GPLVM is useful for model selection of NLDR
problem. Again the stability-based score depend on the algorithm and do not help.

7.3 Summary

First of all we note that the Procrustes-score that takes into account the unobservable “true”
embedding best matches the visual qualitative judgements that the author made. Secondly, two
scores based on the GPLVM, namely the negative log-likelihood and the noise-variance closely
follow the Procrustes-score with some minor disagreements. However, noting that the scores
based on the GPLVM are calculated without access to the ground truth, we suggest to use the
GPLVM scores for model selection in the NLDR problem. On the other hand, the scores based
on the stability idea failed. The reason for this failure is the fact that wrong solutions to the
NLDR problem are often quite stable and that the algorithms react differently on the resampling
procedures.

8 Conclusion

Model selection for unsupervised learning problems is generally difficult. This report explores
and evaluates different scores for the model selection problem in the NLDR domain which is
an example of an unsupervised problem. Extensive experiments that concentrate on situations
in which common NLDR algorithms do or do not have problems, show that scores based on
stability are not useful, while scores based on Gaussian processes are quite good at matching
an “informed” score that takes into account the data generation process. The later scores are
promising candidates that might help practitioners to judge their results they get from different
off-the-shelf NLDR algorithm on their real-world datasets and hereby help to understand their
data.

Another observation from this study is that while GPLVM provides a good score to evaluate the
quality of an embedding at hand it is usually difficult to optimize the GPLVM criterion directly.
This suggests for practitioner to first run LLE or ISOMAP and then secondly use the result as an
initialization for GPLVM, which has the chance to overhaul the embedding, hereby to straighten
out the disadvantages of LLE or ISOMAP.

2The data is sampled from the surface of a sphere of which the top cap is removed. Such a capped sphere looks
like a fishbowl.

17

Acknowledgements

The author is grateful for valuable discussions with Chris Williams and Amos Storkey. This
research was supported by the EU-PASCAL network of excellence (IST- 2002-506778) and through
a European Community Marie Curie Fellowship (MEIF-CT-2005-025578).

References

[1] C.M. Bishop, M. Svensén, and C.K.I. Williams. GTM: The generative topographic mapping.
Neural Computation, 10(1):215–234, 1998.

[2] C.J.C. Burges. Geometric methods for feature extraction and dimensional reduction. Data
Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Re-
searchers. Kluwer Academic Publishers, 2005.

[3] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman & Hall/CRC, 2001.

[4] D.L. Donoho and C. Grimes. When does Isomap recover the natural parameterization of
families of articulated images. Department of Statistics, Stanford University, Tech. Rep, 27,
2002.

[5] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, New
York, 1994.

[6] S. Harmeling, F. Meinecke, and K.-R. Müller. Injecting noise for analysing the stability of
ICA components. Signal Processing, 84:255–266, 2004.

[7] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2001.

[8] N.D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional
data. Advances in Neural Information Processing Systems, 16:329–336, 2004.

[9] N.D. Lawrence and J. Quiñonero-Candela. Local distance preservation in the GP-LVM
through back constraints. Proceedings of the 23rd International Conference on Machine
Learning, pages 513–520, 2006.

[10] F. Meinecke. Resampling-techniken für ICA und ihre anwendungen in der biomedizinischen
datenanalyse. Diplomarbeit, Institut für Physik, Universität Potsdam, 2003.

[11] F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. Estimating the reliability of ICA
projections. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2002.

[12] F. Meinecke, A. Ziehe, M. Kawanabe, and K.-R. Müller. A resampling approach to esti-
mate the stability of one-dimensional or multidimensional independent components. IEEE
Transactions on Biomedical Engineering, 49:1514–1525, Dez 2002.

[13] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-
based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181–201, 2001.

[14] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[15] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

[16] L.K. Saul, K.Q. Weinberger, J. Ham, F. Sha, and D.D. Lee. Spectral methods for dimension-
ality reduction. In O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semisupervised Learning.
MIT Press, 2006.

18

[17] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[18] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

19

