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Automatic 3D Face Reconstruction from Single
Images or Video

P. Breuer, K. I. Kim, W. Kienzle, V. Blanz, B. Schölkopf

Abstract. This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face
from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector
Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are
detected using a novel regression- and classification-based approach, and probabilistically plausible configurations
of features are selected to produce a list of candidates for several facial feature positions. In the next step, the
configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a
combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable
Model. The result is a high-resolution 3D surface model.

1 Introduction

For reconstruction of 3D faces from image data, there are a variety of approaches that rely on different sources
of depth information: some perform triangulation from multiple simultaneous views, e.g. stereo or multiview-
video methods. Others use multiple consecutive monocular views in video streams for structure-from-motion or
silhouette-based approaches. Finally, there are algorithms that rely on single still images only, for example by
exploiting shading information (shape-from-shading) or by fitting face models to single images. In this paper, we
propose an algorithm for 3D reconstruction that

• can be applied either to single still images or to raw monocular video streams,

• involves zero user interaction,

• produces close-to-photorealistic 3D reconstructions.

To perform this task which, to the best of our knowledge, has so far not been accomplished within the given
specifications, we are building a system which integrates two well-known techniques: Support Vector Machines
(SVMs) and Morphable Models. The processing steps of our algorithm are

1. Face Detection using SVM

2. For video data: selection of a frontal view

3. Facial component detection using regression and classification

4. Selection of the most plausible combination of components based on Gaussian distributions

5. Selection of the most plausible nose position based on a Morphable Model

6. 3D reconstruction, initialized with the components.

The integration involves several extensions of the system parts: For facial component detection, we train an
array of regressors for each component, as opposed to only one regressor used in existing algorithms. The detection
results are then refined by a classification-based approach which combines SVM-based component detections and
the prior distribution of their joint configurations. We train and test the classifiers based on the results of the
regression-based method. This helps to filter out image regions far from the facial components and accordingly
prevents the training of an SVM from being disturbed by irrelevant image information. Moreover, we propose
a novel, model-based criterion for plausibility of component configurations. This involves a new method for
estimating texture from images (Section 4) that is more efficient than the iterative model-fitting that we use for the
final reconstruction.

For reconstruction from video, our system selects a single frontal frame from the video automatically, and
performs model-based reconstruction from this frame. This is in contrast to previous work in model-based shape
reconstruction from monocular video, which involved an analysis of multiple frames, such as model-driven bundle-
adjustment [1], structure-from-motion with subsequent refinement by a deformable face model [2], nonrigid
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structure-from-motion with intrinsic model constraints [3] and feature tracking and factorization of the tracking
matrix for non-rigid shape estimation [4]. Zhang et al. [5] presented an algorithm that involves tracking, model fit-
ting and multiple-view bundle adjustment. Many of these algorithms require manual interaction such as a number
of mouse clicks.

Unlike previous model-based algorithms for 3D face reconstruction from single images [6, 7, 8], the combined
algorithm no longer requires manual rigid pre-alignment of the 3D model or manual labeling of features on the 2D
image. Due to our automated face and feature detection components, these restrictions do not apply for our system.
Xiao et al.[9] presented a combination of Active Appearance Models and 3D Morphable Models that tracks features
in realtime in videos, and reconstructs a face mesh for each frame. This system is very impressive, but so far the
authors have only used a low-resolution face mesh that does not generate photo-realistic face reconstructions.

For related work in the feature detection literature, which involves SVM-based methods [10, 11], we refer the
readers to the excellent survey of Yang et al. [12].

2 Detection of faces and facial components

2.1 Face detection

As a first step, a face detector is applied to the input image. For this purpose, we tried two publicly available
face detection libraries for Matlab: an approach based on SVMs [13], and an implementation of the widely used
Boosting based detector [14]. We found the detection results very similar and both implementations sufficiently fast
for our purposes. Although the Boosting approach seemed to be more efficient, we chose the SVM implementation
since it also returns a confidence value together with each detected face in the image. In our fully-automatic
system, the confidence estimates are used to resolve ambiguities: if there are more than one detections in an image
or a video, we discard all but the one for which the detector is most confident. Also, we believe that the better a
detection matches the prototypical face that the detector responds to, the better subsequent processing stages (facial
component detection, 3D model fitting, etc.) work. Therefore, we run the detector on an image and a video and
pick the most confident detection among all frames. The input image containing the best detection is cropped to
a square region around the face, and is then rescaled to200 × 200 pixels. This is the reference coordinate system
used in all subsequent processing steps.

2.2 Facial component detection based on regression

The second stage computes position estimates of eye and mouth corners (will be referred to as component of
interest (COI), hereafter) in the200× 200 image. For this purpose, we developed a novel algorithm, which can be
seen as a generalization of the regression method proposed by [15]. It predicts the position of a COI from pixel
intensities within ak × k window. Invariance under intensity changes is achieved by subtracting the mean value
from each window, and dividing it by its standard deviation. The kernel ridge regression (KRR) is adopted for
this purpose (see Sec. 2.4 for details). The novelty of our approach is that for each facial component we train an
array of12 × 12 = 144 regressors, as opposed to only one [15]. All of them predict the same quantity, but they
are trained on differentk × k regions on the200 × 200 image, evenly spaced on a12 × 12 grid (see Fig. 1, left
image). To predict the position of that component in a test image, all144 estimates are computed, and then binned
into 1-pixel-sized bins. The bin with the most votes is chosen as the predicted location. The rationale behind this
is that faces cannot be arbitrarily deformed, and thus the appearance of facial regions away from the component in
question can be informative about its position. The use of144 regressors makes the detector extremely redundant
and therefore robust to occlusions and other local changes. This effect is shown in Fig. 1.

2.3 Refinement of component detection based on classification

The regression-based approach is fast and robust. However, it turns out that its accuracy is not sufficient for
subsequently fitting the 3D face model. In the present section, we present a classification-based method which is
built on top of the regression-based component detection. The basic idea is to scan the input face imageI with a
small window and classify a pixel of the window (cf. below), using an SVM, as belonging to either the COI, or
background.

We generated training examples for the classifier by sampling small windows from locations with pre-defined
distances of the ground truth locations. Positive examples have their reference point in a3× 3 window around the
ground truth location; negative examples, on the other hand, have it inside a25×25 window, excluding the central
9× 9. The reference point can be slightly offset to the side in the window (see Fig. 2 for details).
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Figure 1: Regression-based detection of facial components.Left: illustration of the regressor array. For each component (e.g., a
corner of the mouth, here marked dark blue) 144 regressors are learned. Each one operates on a different image region, centered
at one of the light blue points.Right: prediction on a corrupted test image (the left eye region is covered with a white rectangle).
Plus marks indicate desired component locations.
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Figure 2: The configuration for sampling training data for outer corner of the left eye: the25×25 window for sampling negative
examples is motivated by the typical location error of the regression-based method which lies within the range of 0 to 9 pixel
distances from the true eye corner locations (with 3-pixel margins for all directions from the19× 19 area); The9× 9 window
is excluded in sampling the negative patterns such that the training is not affected by ambiguous patterns; The right offset of
the classification window from a reference point is larger than the left offset to include more pixels from the actual eye area.

In the classification stage, instead of scanning the entire face image, the search space for a given COI is restricted
as a19 × 19 window surrounding the regression-based detection. Then, each pixel within the search window is
classified into the COI if the corresponding SVM output is larger than a given thresholdt which is initially set at 0.

While more accurate than the regression-based method in general, the problem of the classification method is
that it does not automatically single out a detection. Instead, it either produces a detection blob around the COI or
sometimes produces no detection fort = 0. When the size of detection blob is too small (or zero), we thus adaptt
such that the blob size is larger than or equal to a predetermined thresholdr.

In the next step, the individual detection results need to be combined, taking into account a prior in the
space of joint configurations. A configuration of eye and mouth corners constitutes a 12-dimensional vector
H = (h1, . . . , h6) = ((hx

1 , hy
1), . . . , (h

x
6 , hy

6)) ((x, y)-coordinates values for six components). Then, the best
detection vector is obtained by firstly generating randomly 100,000 vectors, by sampling two dimensional vectors
((x, y)-coordinates)) from each component blob and concatenating them to constitute 12-dimensional vectors, and
then choosing the maximizer of the following objective function.

C(H) =
∑

i=1,...,6

α log
(

1
1 + exp (−gi(Wi))

)
−M(H), (1)

3



wheregi(Wi) is the real-valued output of thei-th SVM for the input image windowWi corresponding to the
coordinatehi, andM(H) is the Mahalanobis distance of configurationH to the mean of a Gaussian distribution
estimated based on training configurations. We motive this cost function as follows. Suppose we want to obtain
the most probable configuration

H∗ = arg max P (H = O|I)
= arg max P (I|H = O)P (H = O), (2)

whereO = (o1, . . . , o6) is the unknown ground truth configuration. The cost function (1) is then obtained as a
result of the following series of approximations

H∗ ≈ arg max P (W1, . . . ,W6|H = O)P (H = O)

≈ arg max

 ∏
i=1,...,6

P (Wi|hi = oi)

 P (H = O)

≈ arg max

 ∑
i=1,...,6

log P (Wi|hi = oi)

− 1
α

M(H),

where the first line replaces the image by the small windows (Wi), the second line corresponds to an independence
assumption of the component likelihoods, and the third line assumes a Gaussian distribution of the configurations
H. The last step is to substituteP (Wi|hi = oi) with the component detection posteriorP (hi = oi|Wi) 1 calculated
by wrapping the SVM output with a sigmoidal function based on the idea of [16].2 This technique of replacing the
likelihood by the posterior estimated from a discriminative classifier is common in speech and character recognition
applications and has shown to improve the discrimination capability of generative models [17, 18].

A similar approach has been proposed in [19] where they restricted the search space of an SVM classifier based
on joint configurations. However, unlike [19], we restrict the search space based on the regression based detection
and use both the prior on joint configuration and the approximation of likelihood provided by the SVM to choose
the best configuration.

In the computation ofP (H), the (x, y)-coordinate of the outer corner of the left eye was used as the origin
(0, 0), and the width and height of the bounding box for the joint configuration were normalized by dividing by
the width of the original box. Accordingly,H is a 10-dimensional vector.

In addition to the eye and mouth corners, we also use nose tip for fitting the 3D face model. However, it turns out
that the nose is very hard to identify from local features alone which both the regression-based and classification
based methods rely on. Accordingly, the nose detection is performed in a separate step which will be explained
in Sec. 4. To facilitate this, we generate several nose candidates based on detected eye and mouth corners. It
should be noted that even complete knowledge of the other components does not accurately determine the nose
position, since the nose position determines the rotation angle of the head, and the other components alone do not.
A conditional Gaussian model of nose tip location given the eye and mouth corners are estimated from which the
nose candidates are obtained by thresholding based on Mahalanobis distance (cf., Fig. 3).

2.4 Training

For training the regression-based component detector, randomly selected 552 faces of the BioID database [20]
were used. A Gaussian kernel (K(x,y) = exp(−γ‖x − y‖2)) was utilized for the KRR. The parameters were
found by cross-validation: length scaleγ and ridge parameter for KRR were obtained as0.05 and1, respectively
while the size of the regression inputk and a scaling factors by which the image was downscaled before sampling
thek × k window were set to9 and0.1, respectively.

1By applying the Bayes formula; HereP (Wi) is a constant and accordingly can be discarded. Originally, the marginal
P (hi) should be included in the substitution which can easily be calculated based on training configurations. However, it is
assumed to be uniform in the current paper as within the search window given by the regression-based method, relatively small
variations of single component coordinate might not be that informative.

2The original formulation of Platt’s method requires tuning a parameter in the sigmoidal function for each component class
which in this paper is replaced by a single parameterα in Eq. (1). Accordingly, the objective function (1) is not an exact
implementation of (2).
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For estimating the distribution of components in the classification-based component detector, again 552 faces of
the BioID database were used. Then, for each component SVM, 8,832 training patterns (2,208 and 6,624 positive
and negative patterns, respectively) are collected from these 552 faces. Exploiting the vertical symmetry of faces,
SVMs are only trained on components lying in the left side of the faces (outer and inner corners of left eye and
left corner of mouth). For all SVM models, Gaussian kernels were utilized with hyperparameters chosen by cross
validation. The input window size for eye and mouth detection was determined as(31 × 31) (with the reference
point horizontally placed 8 pixels from the side, and vertically in the center; cf. above) which for the eye case,
roughly corresponds to the average length of the eye in(200 × 200)-size face images. The blob size thresholdr
andα in Eq. (1) were empirically set to 25 and 4, respectively. We did not find the parameters to affect the results
significantly, but would expect that a future choice by cross validation could somewhat improve the performance.

The threshold for choosing nose candidates from eye and mouth corner detection is set to be 1.1. This value
ensures that the resulting candidate set includes desired nose points for the entire training set. However, instead
of investigating all the candidates, we use only a small subset sampled with a regular interval (3 pixels for each
dimension) in an image domain so that on average, the number of actual candidates are around 100 (Fig. 3).

3 A Morphable Model of 3D Faces

For selecting the optimal nose position and for the 3D reconstruction of faces, we use a Morphable Model of 3D
faces [21, 6], which is a vector space of 3D shapes and textures spanned by a set of examples. We use laser scans of
200 individuals who are not in the test sets used below. Shape and texture vectorsSi, Ti are defined such that any
linear combination of examples within a few standard deviations from the average face is a realistic face. Shape
vectors are formed by thex, y, z-coordinates of all verticesj ∈ {1, . . . , n}, n = 75, 972 of a polygon mesh, and
texture vectors are formed by red, green, and blue values:

Si = (x1, y1, z1, x2, . . . , xn, yn, zn)T (3)

Ti = (R1, G1, B1, R2, . . . , Rn, Gn, Bn)T . (4)

It is essential that these face vectors are in dense correspondence, so each vector component describes the
same point, such as the tip of the nose, in all faces. Correspondence can be established using optical flow [6].
By Principal Component Analysis (PCA), we obtain a set ofm’ orthogonal principal componentssi, ti, and the
standard deviationsσS,i andσT,i around the averagess andt. In this basis, faces can be written as

S = s +
m′∑
i=1

αi · si, T = t +
m′∑
i=1

βi · ti. (5)

In the following, we use them′ = 149 most relevant principal components only.

4 Model-Based Confidence Measure for Feature Points

In this section, we use the 2D locations of facial components as feature points and compute a 3D-based confidence
measure for the plausibility of a configuration, using a Morphable Model. It is more important to consider depth
for the nose position than for the eyes and mouth positions, which are approximately coplanar. We consider the
following feature points: the tip of the nose, the corners of the mouth, and the external corners of the eyes. The
internal corners of the eyes turned out to be dispensable for model fitting.

For each of the feature pointsj = 1, ..., 5, we have the image positions(qx,j , qy,j) and we know which vertex
kj of the model it corresponds to. We can now find the linear combination of examples and the 3D rotation, scale
and translation that reproduces these positions best. We do this with an efficient, quasi-linear approach [22] that
we summarize below. Unlike previous work, we are now using the Mahalanobis distance from the average face as
a measure of 3D distortion.

To assess how well the reconstructed face fits to the pixel values in the image, we modify the above algorithm
[22]: After shape fitting, we can look up the desired color or grey values of the image for each vertex. Unlike
the algorithm in Section 5, we assume simple ambient illumination here. For finding the optimal nose position,
it has turned out to be best to use only vertices in the nose region. The color values(Rkj

, Gkj
, Bkj

) for vertices
kj are reconstructed by the textures of the Morphable Model using the algorithm described in this section. Again,
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Mahalanobis distance is used as a confidence measure. For grey-level images, we replace colors in the Morphable
Model by grey-levels.

Both the coarse shape and texture reconstruction is achieved by a Maximum a Posteriori estimate [22]. In the
following, let eitherv = S or v = T, and

x = v − v, v =
1
m

m∑
i=1

vi. (6)

In this unified notation, letsi be the eigenvectors from PCA, andσi the standard deviations which we include
as explicit factors in the expansion

x =
m′∑
i=1

ciσisi = (σ1s1, σ2s2, ...) · c (7)

so the estimated normal distribution takes the simple form

p(c) = νc · e−
1
2‖c‖

2
, νc = (2π)−m′/2. (8)

Now let a reduced set of model data be a vectorr ∈ IRl of 3D coordinates of 5 feature points, or color values of
the vertices in the nose region. These can be obtained by a projection operator from the full vectorsv. In addition,
we may perform orthographic projection, rotation and scaling to geometry, or change contrast in the color channels.
For the moment, assume that these operations are known, and they combine to a linear operator

r = Lv L : IRn 7→ IRl. (9)

y = r− Lv = Lx (10)

The least-squares solution of this problem would be to minimize

E(x) = ‖Lx− y‖2. (11)

Let qi = L(σisi) ∈ IRl be the reduced versions of the scaled eigenvectors, and

Q = (q1,q2, ...) ∈ IRl×m′
. (12)

In terms of model coefficientsci from (7), (11) is

E(c) = ‖L
∑

i

ciσisi − y‖2 = ‖Qc− y‖2. (13)

However, it has been shown that this simple approach would produce significant overfitting artifacts [22], so
we use a Maximum Posterior Probability (MAP) approach [22]: Given the observed vectory, we are looking for
the coefficientsc with maximum posterior probabilityP (c|y). As an intermediate step, consider the likelihood of
measuringy, givenc: In the noiseless case,c would define the vector

ymodel = L
∑

i

ciσisi =
∑

i

ciqi = Qc (14)

We assume that each dimensionj of the measured vectory is subject to uncorrelated Gaussian noise with a
varianceσ2

N . Then, the likelihood of measuringy ∈ IRl is given by

P (y|ymodel) =
l∏

j=1

P (yj |ymodel,j) (15)

=
l∏

j=1

νN · e
− 1

2σ2
N

(ymodel,j−yj)
2

= νl
N · e

− 1
2σ2

N

‖ymodel−y‖2

(16)

with a normalization factorνN . In terms of the model parametersc, the likelihood is
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P (y|c) = νl
N · e

− 1
2σ2

N

‖Qc−y‖2

. (17)

According to Bayes Rule, the posterior probability is

P (c|y) = ν · P (y|c) · p(c). (18)

with a constant factor ν = (
∫

P (y|c′) · p(c′)dc′)−1.
Substituting (8) and (17) yields

P (c|y) = ν · νl
N · νc · e

− 1
2σ2

N

‖Qc−y‖2

· e− 1
2‖c‖

2
, (19)

which is maximized by minimizing the cost function

E = −2 · logP (c|y) =
1

σ2
N

‖Qc− y‖2 + ‖c‖2. + const. (20)

To simplify the calculation, we introduce a regularization factorη = σ2
N ≥ 0 and minimize

E = ‖Qc− y‖2 + η · ‖c‖2. (21)

Using a Singular Value DecompositionQ = UWVT with a diagonal matrixW = diag(wi), it can be shown
[22] that the optimal coefficients are

c = Vdiag(
wi

w2
i + η

)UT y. (22)

Our confidence measure for feature points is
‖cshape‖+ ‖ctexture‖.

In order to deal with unknown position, orientation and scale, we use the method of [22], which is to treat not
only translation, but also rotation and scaling as additive terms, and add a set of vectorssi and coefficientsci to
the system. For rotation, this is a first-order approximation only. Fromcγ , cθ, cφ, we recover the anglesγ, θ, φ,
then updateL and iterate the process, which gives a stable solution after the second pass [22]. For the estimation
of texture, we apply the same method to deal with gains and offsets in the color channels.

5 3D Face Reconstruction

In an analysis-by-synthesis loop, we find the face vector from the Morphable Model that fits the image best in
terms of pixel-by-pixel distance. This optimization is achieved by an algorithm that was presented in [7]. For the
optimization to converge, the algorithm has to be initialized with the feature coordinates of the 5 feature points
provided by the previous processing steps.

In image synthesis, a given set of model parametersα andβ (5) define a 3D face, and we can compute a color
imageImodel(x, y) by standard computer graphics procedures, including rigid transformation, perspective projec-
tion, computation of surface normals, Phong-Illumination, and rasterization. The image depends on a number of
rendering parametersρ. In our system, these are 22 variables for 3D orientation and position, focal length of the
camera, angle, color and intensity of directed light, intensity and color of ambient light, color contrast as well as
gains and offsets in each color channel.

All parameters are estimated simultaneously in an analysis-by-synthesis loop. The main goal of the analysis is
to find the parametersα, β, ρ that make the synthetic imageImodel as similar as possible to the original image
Iinput by minimizing

EI =
∑

x

∑
y

∑
c∈{r,g,b}

(Ic,input(x, y)− Ic,model(x, y))2. (23)

All scene parameters are recovered automatically, starting from a frontal pose in the center of the image, at
frontal illumination and with color contrast 0. For initialization, the 2D feature points(qx,j , qy,j) and the image
positions(px,kj

, py,kj
) of the corresponding verticeskj define a function
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Figure 3: Left: nose candidates given by the component detection; Right: nose position chosen by the model-based measure.

EF =
∑

j

‖
(

qx,j

qx,j

)
−

(
px,kj

py,kj

)
‖2. (24)

that is added to the image differenceEI in the first iterations. Adding regularization terms to the cost function, we
obtain

E =
1
σ2

I

EI +
1

σ2
F

EF +
∑

i

α2
i

σ2
S,i

+
∑

i

β2
i

σ2
T,i

+
∑

i

(ρi − ρi)
2

σ2
R,i

(25)

using standard deviations from PCA, and ad-hoc estimates forσR,i. Similar to Section 4, the cost function (25)
can be derived from a maximum-a-posteriori approach. The optimization is performed with a Stochastic Newton
Algorithm [7]. Since the linear combination of texturesTi cannot reproduce all local characteristics of the novel
face, such as moles or scars, we extract the person’s true texture from the image and correct for illumination [6].

6 Results

We tested our algorithm on 50 still images and 6 videos.
As stills, we used the first 50 individuals from the FERET database [23] in frontal views (ba). The face detection

algorithm succeeded in 48 out of 50 images, at a computation time of less than 50 ms per image on a standard PC.
Detecting the facial components and classification-based refinement took around 4 minutes per face.

We evaluated the results by measuring the average Euclidean distance of the 6 components from manually
labeled ground truth within the rescaled face images (200 × 200 pixels). On the BioDB [20] (276 test images
from the DB used in training; disjoint from the training set however) we measured an error of 2.07 pixels for the
regression based system. On the FERET data we measured an error of 4.67 pixels for the regression based system
and an error of 3.13 pixels for the classification based refinement.3

Given four feature points for the corners of the eyes and mouth, along with around 100 candidates for the nose,
the model-based confidence measure returns the most likely nose position, as illustrated in Fig. 3. The shape-based
confidence measure is computed in 25ms on a standard PC, while the texture-based measure takes approximately
30s due to higher numberl of samples. Fig. 4 shows the quality of the returned nose positions.

Reconstruction was based on four points given by the facial component detection (external corners of the eyes,
and corners of the mouth) and the nose position returned by the model-based confidence measure. The compu-
tation time is approximately 3 minutes. For evaluation, the results of all 48 fully automated reconstructed heads
from the still images were shown to six students. We gave them the following instructions: ”The following 3D
reconstructions are supposed to be used as personalized avatars in a game. Divide the results into four groups: very
good, good, acceptable and bad.” Their ratings are shown in Tab. 1, and typical examples are shown in Fig. 5.

The 6 videos were recorded with a webcam (Logitech QuickCam pro 4000). Each video shows a moving person,
e.g. turning their heads, taking glasses off and on, moving forward and backward, etc. The recording speed was 30
frames/sec. and the resolution of each frame was320× 240. Our face detection algorithm attempts to detect faces
in every frame, and returns the single frame with maximum detection score. Component detection, confidence

3Cf. the pure classification-based method (i.e., without the regression stage) produced an average error of 4.01 pixels. In
this case, the negative training sample is collected from a rather large image area of size60× 60 around the ground truth.
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Figure 4: Difference between desired and measured nose positions in the 50 rescaled FERET images (2 examples failed already
at face detection).

participant 1 2 3 4 5 6 mean
very good 6 8 3 9 11 8 7.5

good 21 20 16 14 12 18 16.8
acceptable 13 14 14 11 13 14 13.2

bad 8 6 15 14 12 8 10.5

Table 1: Rating of 48 examples by six participants (2 examples failed at face detection).

measure for the feature points and finally the reconstruction proceed the same way as for the still images. For all
video examples we got similar results, one of which is shown in Fig. 6.

7 Conclusion

By combining Support Vector Machines and 3D Morphable Models, we have addressed the problem of fully
automated 3D shape reconstruction from raw video streams. The system has proved to be robust with respect to
a variety of imaging conditions, such as those found in our example videos. Our algorithm scales well in terms
of the resolution and quality of the 3D reconstructions, which is due to the model-based approach and the explicit
representation of imaging parameters. The results and the rating scores by human participants demonstrate that
the system produces a high percentage of photo-realistic reconstructions and it can be used for other practical
applications e.g., as a preprocessing step for face recognition.
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