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Abstract

Kernel based mnonlinear Feature FExtraction
(KFE) or dimensionality reduction is a widely
used pre-processing step in pattern classifica-
tion and data mining tasks. Given a positive
definite kernel function, it is well known that
the input data are implicitly mapped to a fea-
ture space with usually very high dimensional-
ity. The goal of KFE is to find a low dimen-
sional subspace of this feature space, which re-
tains most of the information needed for clas-
sification or data analysis. In this paper, we
propose a subspace kernel based on which the
feature extraction problem is transformed to a
kernel parameter learning problem. The key
observation is that when projecting data into a
low dimensional subspace of the feature space,
the parameters that are used for describing
this subspace can be regarded as the param-
eters of the kernel function between the pro-
jected data. Therefore current kernel parame-
ter learning methods can be adapted to opti-
mize this parameterized kernel function. Ex-
perimental results are provided to validate the
effectiveness of the proposed approach.

1 Introduction

Feature extraction or dimensionality reduction is a
widely used pre-processing step for classification and
data mining tasks, since extracting proper features can
reduce the effect of noise and remove redundant infor-
mation in the data that is irrelevant to the classification
or data analysis tasks.

Suppose that we are given a set of n data points,
{x;}1;, where x; € X C R? is the input data, X is the
input space. Traditional feature extraction approaches,
such as the Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) are linear methods
and they project the input data x; into a low dimensional
subspace of the input space X.

Recently, constructing nonlinear algorithms based on
the kernel methods [Scholkopf and Smola, 2002] have
proved successful. For a given positive definite kernel

function K : X x X — R, the input data x;, 1 <i<n
are implicitly mapped to a feature space F with usually
very high dimensionality. Let ¢(-) denote the map from
X to F, then

K(Xi7 Xj) = <¢(XZ)7 ¢(Xj)>a
A kernel based algorithm essentially applies linear meth-
ods in F for the mapped data {(¢(x;)}" ;. For example,
in the Kernel Principal Component Analysis (KPCA) al-
gorithm [Schélkopf and Smola, 2002], PCA is used to ex-
tract a representative subspace of . Compared with the
traditional linear approaches, kernel methods are more
powerful since they can explore nonlinear structures of
the data, and more flexible as we can recover the linear
algorithms by simply using the linear kernel in the kernel
based methods.

Usually the dimensionality of F is very high or even
infinite, which is helpful for separating different classes
of data. However, such a high dimensional space F may
contain some redundancy that is irrelevant or even noisy
for the given classification or data mining tasks. Hence,
as is the case for feature extraction in the input space,
it may be also helpful for classification or data mining
tasks to find a lower dimensional subspace S of F.

Many Kernel based Feature Extraction (KFE) ap-
proaches have been proposed to find a lower dimensional
subspace S of the feature space F. For example, KPCA
[Scholkopf and Smola, 2002] is widely used for this task.
As mentioned above, it essentially performs linear PCA
in the feature space F. The goal is to find directions
along which the data variance is the largest.

In this paper, we discuss feature extraction meth-
ods with the focus on improving the classification ac-
curacy. In the c-class classification problem, each data
point x; is associated with a label y; € R° where
Vi = [y, ¥ie) ", and gy = 1 (1 < k < ¢) if x; be-
longs to class k, and 0 otherwise.® It can be seen that
KPCA may be not effective for classification problems
since it is an unsupervised feature extraction method,
which ignores the labels of the given data.

Hence several supervised KFE algorithms have been
proposed, which make use of both the input data and the

1<4,5<n

'Other strategies for constructing the label y; (1 < i < n)
are also possible.



corresponding labels. Like KPCA, they also perform lin-
ear feature extraction or linear dimensionality reduction
in the feature space F.

The Kernel Fisher Discriminant Analysis (KFDA)
[Mika et al., 2001] aims to find a data projection by
minimizing the within-class variance and maximizing
the between-class variance simultaneously, thus achiev-
ing good discrimination between different classes. An
efficient variant of KFDA based on QR decomposition,
called AKDA/QR, is proposed in [Xiong et al., 2005].
A distinct property of AKDA/QR is that it scales as
O(ndc). And in AKDA/QR, the number of features ex-
tracted is fixed to the number of classes.

The Partial Least Squares (PLS) algorithm [Wold,
1975] has been widely applied in the domain of chemo-
metrics. Unlike the PCA algorithm, which extracts fea-
tures only based on the variance of the input data, the
PLS algorithm uses the covariance between the inputs
and the labels to guide the extraction of features. The
Kernel PLS (KPLS) algorithm is proposed in [Rosipal
and Trejo, 2001].

The Orthogonal Centroid (OC) [Park and Park, 2004]
algorithm is a linear dimensionality reduction method
that preserves the cluster structure in the data. In
this algorithm, the given data are firstly clustered, and
then projected into a space spanned by the centroids
of these clusters. An orthogonal basis of this subspace
is computed by applying QR decomposition to the ma-
trix whose columns consist of the cluster centroids. In
[Kim et al., 2005], this method is applied for dimension-
ality reduction in text classification tasks and exhibits
good results. Its kernel based nonlinear extension, i.e.
the Kernel Orthogonal Centroid (KOC) algorithm is also
presented in [Park and Park, 2004]. To incorporate the
label information, the KOC (and OC) algorithm treats
input data in the same class as one single cluster, there-
fore the number of extracted features equals the number
of classes. However this method can be easily extended
by allowing more clusters in each class.

In this paper, we propose a subspace kernel, based on
which the nonlinear feature extraction problem can be
transformed into a kernel parameter learning problem.

The rest of this paper is organized as follows. In sec-
tion 2, we propose the basic idea of our approach and
formulate the subspace kernel. Some connections to the
related methods are described in section 3. In section
4, we present one possible way to optimize the proposed
subspace kernel. Experimental results are provided in
section 5 and we conclude the paper in the last section.

2 Nonlinear Feature Extraction via
Kernel Parameter Learning

2.1 Basic Idea

As mentioned before, a given positive definite kernel K
implicitly introduces a mapping of the given data ¢(x;),
1 <4 < n, to a usually high dimensional feature space F.
When projecting ¢(x;) (1 <i < n) into a subspace S of
F, the kernel function has to be modified correspondingly

since the feature space has changed from F to S. For
convenience, we call this modified kernel function the
subspace kernel. As will be shown later, the parameters
that are used for describing S are also the parameters
of the corresponding subspace kernel. Therefore current
kernel parameter learning methods can be adapted to
optimize this kernel function. This way we can find a
discriminating subspace S where different classes of data
are well separated. In the following, we will explain the
above idea in detail by formulating the aforementioned
subspace kernel.

2.2 The Subspace Kernel

Suppose S is an ny dimensional subspace of F and
O = [0y,...,0,,] is a matrix whose columns constitute
an orthogonal basis of S. Let 7 denote the subspace
spanned by the mapped data ¢(x;) (1 < i < n) in F,
then each o; can be uniquely decomposed into two parts,
one is contained in 7 and the other one is in the orthog-
onal complement of 7,

0k=0k+oﬁ, 1<k<ny

where OQ € T and (o, ¢(x;)) = 0 for 1 <i < n. There-
fore for any ¢(x;), its projection into S can be computed

as
07 ¢(x;) = (01) T o(x;) (1)

where Oll = [o! ... ,oﬂbf].2

Equation (1) indicates that to compute the projection
of ¢(x;) in S, it is enough to only consider the case where
S is a subspace of 7, which implies that any vector in S
can be expressed as a linear combination of ¢(x;), 1 <
i <n. Therefore, for any ny vectors zy,...,z,, €S, let
Z denote [z1,...,2,,], and X denote [¢(x1),...,d(X,)],
then Z can be written as

Z=XW (2)

where W = [w;] € R™™"f is a matrix of combination
coefficients.

Moreover, if z1, .. ., z,, are linearly independent, then
the ny dimensional subspace S can be spanned by these
ny vectors. Thus the elements of W introduce a sub-
space S of F, for which we have the following lemma.
Lemma 1. When projecting the data ¢(x;) into S, the
kernel matriz of the projected data in S can be computed

as,’

K’IJJ

(X'Z)(2'Z2)""(X'Z)" (3)
= (KW)(W'KW) 1(KW)" (4)

where K = [k;;] € R"*" is the kernel matriz of the input
data, i.e. k;; = K(x;,%;).

2More precisely, the result of equation (1) is the coordi-
nate of the projection of ¢(x;) in S. As is widely done in
the literature of feature extraction and dimensionality reduc-
tion, this coordinate will be used as the extracted features
for classification.

3Here the “kernel matrix of the projected data” refers to
the matrix whose elements equal the inner product of the
projected data in S.



Proof. For any ¢(x;), 1 <1i < n, in order to calculate its
projection into the subspace S, spanned by the columns
of Z = XW, we need an orthogonal basis U of S. We
build U as follows:
U=72T (5)

In the above equation, T is computed as follows: Assume
K. =Z"Z then

T=VA > (6)
where A € R"7*"s is a diagonal matrix of eigenvalues of
matrix K., and V € R *"f is a matrix whose columns
are eigenvectors of K,. Equation (6) leads to

K '=TT" (7)
and
TK.T=1 (8)

where I is the unit matrix. The following equation fol-
lows from (5) and (8),

U'u=T'K.T=1

So the columns of U form an orthogonal basis of the
subspace S.

Thus, for ¢(x;) € F, 1 < i < n, their projections into
the subspace S can be computed as

X,=U'X=T"2"X (9)

where X, is the matrix whose columns are the projec-
tions of ¢(x;) in S, 1 < i <n.

Having obtained the projected data X,,, we can now
compute the inner product between points in the sub-
space as the following:

KY = X/X,=X"UU"X (10)
= X'ZTT'2'X
= X"ZK'(X'Z)"
= (X'2)(2'2)7'(X"Z)" (11)
= X'XW)(WTXTXW) }(XTXW)"
= (KW)(W'KW) Y(KW)" (12)

where we used equation (5) in the second line, equation
(7) in the third line and equation (2) in the fifth line.
The equations (11) and (12) are identical to (3) and (4)
respectively, therefore the lemma is proven. O

The proof also tells that for a given W, the projection
of the data into the subspace & introduced by W can be
computed as equation (9).

Let K,(-,-) denote corresponding subspace kernel
function. Then according to (3) and (4), for any x,x’ €
X, the subspace kernel K, (-, ) between them can be
computed as

Ku(xx) = ¢(x) Z(Z"2)7'Z7 ¢(x') (13)
= Y(x)"W(WTKW) "W Ty (x')(14)
where
w(X) = [K(Xa Xl)a sy K(Xv Xn)]T
is the empirical kernel map [Schélkopf and Smola, 2002].

Equation (14) illustrates that the elements of W, by
which the subspace S is described, also serve as the ker-
nel parameters of K, (+,). So in order to find a discrim-
inating subspace S where different classes of data are
well separated, we can turn to optimize the correspond-
ing subspace kernel K,,.

3 Connections to Related Work

3.1 Feature Selection via Kernel
Parameter Learning

In [Weston et al., 2000; Chapelle et al., 2002], kernel
parameter learning approaches are adopted for feature
selection problem. The kernel of the following form is
considered

Kp(u,v) = K(6.xu,0.xv) (15)

where .x denotes the component-wise product between
two vectors. Namely, for @ = [01,...,04]" and u =
[ur,...,uq)", 0. xu = [Oyuy,...,04uq)". By optimiz-
ing the kernel parameter 8 with margin maximization
or Radius-Margin bound [Chapelle et al., 2002] mini-
mization, and with a 1-norm or 0-norm penalizer on 6,
feature selection can be done by by choosing the features
corresponding to the large elements of the optimized 6.

Feature selection locates a discriminating subspace of
the input space X. Similarly as the above approaches,
we also use kernel parameter learning algorithms to find
a discriminating subspace. However, in this paper, we
address the problem of feature extraction but not feature
selection, and the subspace we want to find is contained
in the feature space F but not the input space X.

3.2 Sparse Kernel Learning Algorithms

The subspace kernel function given by (14) is in a general
form. As described before, each column in the matrix
Z =z1,...,2n,] (cf(2)) is a vector in the feature space
F. Now we show that this kernel relates to the work of
[Wu et al., 2005] in the special case where each column
of Z has a pre-image [Scholkopf and Smola, 2002] in the
input space X. That is, for each z; € F, there exists a
vector z; € X, such that z; = ¢(2;). So now the subspace
S can be spanned by ¢(21), ..., 3(2n, ).

For convenience, let Z = [¢(21), ..., P(2n,)] (note that

7 = Z). Then in this case, according to (13), the sub-
space kernel function now becomes:

Ko(x,x) = ¢(x)Z(Z2"2)7'2"p(x')
= Us(x)K; :(x) (16)
where 1:(x) = 6(x)TZ = [K(x,21),....K(xX,20,)]",
and K; = ZTZ.

In [Wu et al., 2005], an algorithm for building Sparse
Large Margin Classifiers (SLMC) is proposed, which
builds a sparse Support Vector Machine (SVM) [Vap-
nik, 1995] with ny expansion vectors, where n; is an
given integer. In [Wu et al., 2005], it is pointed out that
building an SLMC is equivalent to building a standard



SVM with the kernel function computed as (16). And
the SLMC algorithm essentially finds an ny dimensional
subspace of F, which is spanned by ¢(21),...,3(2x,),
and where the different classes of data are linearly well
separated.

n [Wu et al., 2005], the kernel function (16) is ob-
tained with the Lagrange method, which is different from
the one adopted in the above. And the kernel function
(16) is a special case of the subspace kernel (14). There-
fore it can be seen that based on the general subspace
kernel (14), useful special cases can be derived for some
applications.

4 Optimizing K,
We optimize K, based on the Kernel-Target Alignment
(KTA) [Cristianini et al., 2002], which is a quantity to
measure the degree of fitness of a kernel for a given learn-
ing task. In particular, we compute W by solving the
following KTA maximization problem:
Kv* KY
(K" K')r (17)
\/<va Kw>F<Ky7 Ky>F
where (-,-)p denotes the Frobenius product between
two matrices that are of the same size, i.e. for any
two equally sized matrices M and N, (M,N)r =
> MiNi;. In (17), KY € R™ " is the gram matrix
between the labels, defined by
K'=Y'Y (18)
,¥n] € R and y; is the label of

max
WER™ X" f

A(W) =

where Y = [y, ...
X, 1 <1< n.

The elements in KY reflect the similarities between la-
bels, as K?j equals 1 if x; and x; belong to the same class,
and 0 otherwise. Therefore ’aligning’” K* with KY will
make the similarities between the data points in the same
class higher than the similarities between the points in
different classes. Thus by maximizing A(W), we can
find a subspace of F, where points in the same class
are closer to each other than those in different classes.
Hence a good classification performance can be expected
for the data projected into this subspace.

Note that the subspace kernel allows us to apply many
kernel parameter learning algorithms to the feature ex-
traction problem. Therefore apart from KTA, we can
also choose other approaches to compute W, such as
the one based on the Radius-Margin Bound [Chapelle et
al., 2002]. For simplicity, we use KTA in this paper.

Gradient based algorithms can be used to maximize
A(W). In our implementation, we use the conjugate
gradient algorithm to solve problem 17‘)r To compute
A(W), we utilize the fact that K¥ = X X,, (see (10))
and KY = Y'Y (see (18)). Thus, we can decompose
K" and KV as follows

ny

KY = %% (19)
i=1

K' = > 39/ (20)

<.
Il
-

where x; € R™ (1 <i < nf) denotes the i-th column of
X, and §; € R" (1 < j < ¢) denotes the j-th column of
Y.

Based on the above two equations, we have

DD &)’ (21)

(KY K% p =
i=1j=1
ny mny

K"K p = > Y (%/%;) (22)
=1 j=1

Equation (21) and (22) can be computed with time
complexity O(neny) and O(nnfc) respectively. When
both ny and ¢ are small, they are more efficient than
computing the Frobenius product directly, which re-
quires time complexity of O(n?).

Similarly, to compute VA(W), we can use the follow-
ing equations:

oK™ 2 oK™
Yy — ol o
( o K )P z;yz ( Do )yi (23)
oKY L aKw
Gy K17 = Z: w2

where wy, (1 <u <n,1 < v < ny)is the element of W.
Inspired by ( 3) and ( 4), we investigate how to com-

pute o (d —)o, where o € R" is an arbitrary vector.

Actually, by performmg linear algebra straightforwardly,
we have
+ OKY

OWyy
where (3, is the v-th element of a vector 3, computed as
B=(W'KW) (WK (26)

t,, is the u-th element of a vector t, defined

o = 2t, 0, (25)

and in (25),
as:
t=Ka-KWg (27)
Note that for any given «, the vectors B and t need
to be computed only once, according to (26) and (27)

respectively, then o' gK a can be calculated as (25)
(25)

forl<u<nandl<w S ny. Now we can apply
0 (23) and (24), and VA(W) can be calculated.

5 Experimental Results

5.1 Experimental Settings

We empirically investigate the performance of the fol-
lowing KFE algorithms on classification tasks: KPLS,
KOC, AKDA/QR and the proposed Subspace Kernel
based Feature Extraction (SKFE) method. Following the
same scheme in [Xiong et al., 2005], the features ex-
tracted by each KFE algorithm are input to a 1-Nearest
Neighbor (1-NN) classifier, and the classification perfor-
mance on the test data is used to evaluate the extracted
features. As a reference, we also report the classifica-
tion results of the 1-NN algorithm using the input data
directly without KFE.



As mentioned before, in a c-class classification prob-
lem, the number of features n; extracted by both
AKDA/QR and KOC is fixed at ¢. To compare with
these two algorithms, the value of ny for SKFE is also
set to ¢ in the experiments, although the number of fea-
tures extracted by SKFE can be varied. For KPLS, three
different values of ny are tried: ¢/4, ¢/2 and ¢. The best
results are reported for KPLS.4

For our proposed SKFE algorithm, the function A(W)
in (17) is not convex, so the optimization result depends
on the initial choice of W. To get a good initial guess, we
can use the subspaces found by other KFE algorithms
for initialization. In the experiments, for efficiency we
use the KOC algorithm to compute the initial W.

5.2 Experiments on Microarray Gene
Expression Data

In this subsection, we take seven microarray gene
datasets to test various KFE methods: Brain Tumorl,
Brain Tumor2, Leukemial, Leukemia2, Prostate Tumor,
DLBCL and 11_Tumors.? Descriptions of these datasets
are presented in Table 1. As shown in Table 1, a typi-
cal characteristic of these datasets is that the number of
data n is much smaller than the data dimensionality d.

Table 1: Datasets adopted in the experiments. The first
seven are microarray gene datasets, while the last seven
are text datasets. For each of them, the number of data
n, the dimensionality d and the number of classes ¢ are
provided.

[ Dataset [ type [ n [ d [ c ]
B.Tumorl GENE 90 5920 5
B.Tumor2 GENE 50 10367 4
Leukemial GENE 72 5327 3
Leukemia2 | GENE 72 11225 3

P.Tumor GENE 102 10509 2
DLBCL GENE i 5469 2
11_Tumors GENE 174 12534 11
trll TEXT 414 6424 9
tr23 TEXT 204 5832 6
trdl TEXT 878 7454 10
trdb TEXT 690 8261 10
lal TEXT 3204 31472 6

la2 TEXT 3075 31472 6
hitech TEXT 2301 10080 [§

A Gaussian kernel is used in the experiments:
K(x,x") = exp(—y || x = x" [|?) (28)

Five fold cross validation is conducted for parameter
selection, and the best cross validation error rate is used
to measure the performance of different algorithms. The
experiment is repeated 20 times independently. And the
results in Table 2 show the mean cross validation error
and the standard deviation over these 20 runs.

“When ¢ = 2, only two values of ny are tried for KPLS: 1
and 2.
®They are available at http://www.gems-system.org.

From Table 2, we can observe that SKFE and KPLS
compare favorably to the other KFE algorithms. In par-
ticular, SKFE improves the results of KOC algorithm in
all cases, although KOC is used to initialize SKFE. It
can also be seen that SKFE and KPLS are competitive
with each other. They are are not significantly differ-
ent (judged by t-test) on Leukemial, Leukemia2, DL-
BCL and 11_Tumors, and KPLS is better than SKFE
on Brain Tumor2, while SKFE outperforms KPLS on
Brain Tumorl and Prostate Tumor.

5.3 Experiments on Text Classification

In this subsection, we investigate different KFE methods
on the text classification task. It has been observed that
there usually exist cluster structures in the text data.
The OC algorithm (or equivalently the KOC algorithm
with the linear kernel), which can keep these structures,
is used for dimensionality reduction in text classification
tasks in [Kim et al., 2005] and exhibits good results.

Seven text datasets from the TREC collections are
adopted: trll, tr23, tr41, tr45, lal, la2 and hitech. More
information about these seven datasets are available at
Table 1.

Similar to the microarray gene data, the data used in
text classification tasks are also of very high dimension-
ality. Another characteristic of these seven datasets is
that they are highly unbalanced, which means that the
number of data contained in different classes are quite
different. For example, in the tr1l dataset, there are 132
data points contained in the seventh class, while just 6
data points in the ninth class, only 4.6% of the former.

On each dataset, we randomly select half of the data
from each class to form the training set and use the re-
maining data for test. As is done in the OC algorithm,
the linear kernel is used in this set of experiments. Sim-
ilarly as before, for each dataset, the experiment is re-
peated independently 20 times. The average test error
and the standard deviation over these 20 runs are re-
ported in Table 3.

Table 3 illustrates that SKFE outperforms other KFE
methods on most datasets. Also it can be seen from
both Table 2 and 3 that in most cases, all the KFE
algorithms obtain better performances than the 1-NN
algorithm with the raw data, whilst reducing the data
dimensionality dramatically from d to nf, where ny <<
d. (c.t. section 5.1 for the choice of ny.)

Although SKFE compares favorably to the other KFE
methods in terms of the classification accuracy, its com-
putational cost is higher than the others. For the prob-
lems reported in Table 1, on a 2.2 GHz Pentium-4 PC,
KPLS requires from 0.15 to 39 seconds, AKDA /QR takes
between 0.35 and 3 seconds, KOC requires between 0.11
and 5 seconds, while SKFE takes between 0.38 to 69 sec-
onds. The optimization step of SKFE is implemented in
C++, and the others are implemented in Matlab.

6 Conclusion

We have presented a subspace kernel based on which
nonlinear feature extraction can be conducted by kernel



Table 2: Average cross validation error rates (%) and the standard derivations (%) on the seven microarray gene
datasets. For each dataset, the results shown in boldface are significantly better than the others, judged by t-test,

with a significance level of 0.01.

Dataset || 1-NN || KPLS | AKDA/QR | KOC SKFE
B.Tumorl [[ 14.33£1.65 || 14.28%£1.26 | 13.89£1.42 | 14.83£1.58 | 12.00+1.42
B.Tumor2 || 28.904+2.79 || 24.704+3.57 | 26.70+£3.63 | 28.30+2.99 | 27.3042.27
Leukemial || 11.944+2.13 || 5.2141.49 7.50£1.65 | 7.57+1.88 | 4.86%1.46
Leukemia2 || 6.74%1.64 8.96+2.27 | 7.01+1.77 | 7.36+1.81 | 3.68+0.82

P.Tumor 24.1741.94 || 19.80+1.87 | 28.82+2.59 | 20.88+2.38 | 14.85+1.63

DLBCL 14.03+1.72 || 4.09+1.21 | 14.744+1.80 | 9.22+1.93 | 3.57+0.93
11_Tumors || 16.52£1.09 || 11.44+0.85 | 12.70+£0.89 | 15.11+1.01 | 11.8440.96

Table 3: Average test error rates (%) and the standard deviations (%) on the seven text datasets. For each dataset,
the results shown in boldface are significantly better than the others, judged by t-test, with a significance level of

0.01.

Dataset || 1-NN || KPLS | AKDA/QR | KOC | SKFE
tril 26.66£2.64 || 21.71£2.61 | 23.63%4.32 | 15.29+3.14 | 15.78+2.47
tr23 28.25+4.76 || 30.05+6.35 | 27.30+4.88 | 23.20+4.40 | 18.85+3.86
trdl 20.1743.02 || 9.56+1.55 | 9.59+1.40 | 7.66+0.96 | 6.14+1.08
tr5 28.48+2.68 | 23.45+2.24 | 19.33+3.84 | 15.23+2.15 | 9.85+1.80
lal 40.82+1.68 || 19.23+0.69 | 18.67+0.77 | 18.2840.82 | 14.51+0.96
1a2 38.82£1.59 || 16.94+0.76 | 16.25+1.02 | 16.36+£0.94 | 13.23£0.74
hitech || 57.83+1.69 || 33.14£1.57 | 31.88+1.08 | 31L.71+1.41 | 29.71+1.12

parameter learning. Connections to related work have
been explained. In particular, the comparison with the
Spare Large Margin Classifier (SLMC) [Wu et al., 2005
illustrates that useful special cases can be derived from
the proposed subspace kernel for some applications. We
have also described a method to optimize the subspace
kernel by Kernel-Target Alignment (KTA) [Cristianini
et al., 2002] maximization. But other kernel parameter
learning approaches can also be applied. Finally, ex-
perimental results have been provided to validate the
effectiveness of our approach.
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