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Summary

Perceptual similarity is thought to play a fundamental role in human cognition. In this
Ph.D. thesis, a set of parametrically-defined, novel 3D objects were used to investigate
perceptual similarity from three new angles: (1) studying the effects of seeing versus
touching, (2) comparing the effects of touching using different hand movements, and
(3) comparing human similarity judgments to similarities computed by state-of-the-art
algorithms. In all three studies, similarities were analyzed using multidimensional scaling
(MDS) techniques, which provided maps of the objects in “perceptual similarity space,”
as well as the relative weights of perceptual dimensions. Maps and weights were then
compared across conditions. In the first study, differences between judging similarity
using vision, touch, or both were demonstrated and modeled by linearly rescaling a
single perceptual map. The second study showed that using different hand movement
patterns can also lead to changes in perceptual similarity. Furthermore, when a given
hand movement allowed for the extraction of more than one object property, relative
property weights varied across individuals; these individual biases remained stable over
several months. In the third study, good fits were found between perceptual spaces derived
from human vision and those derived from algorithms biased towards shape extraction,
however none of the algorithms tested provided a good overall fit to haptic data, in
which large intersubject variability was observed. Overall, the thesis highlights the role
of feature extraction mechanisms in determining similarity and demonstrates how MDS
techniques can be used to visualize and quantify these effects. Using MDS, differences in
similarities could be accounted for by linear rescaling a single perceptual map, illustrating
a potential mechanism for connecting unimodal and multimodal representations. The
thesis has also led to the development of a new, similarity-based approach to perceptual

validation of virtual environments and feature extraction algorithms.



Chapter 1
Introduction

In a recent review of research on similarity, Goldstone and Son (2005) provide a long list
of cognitive abilities which depend on the ability to judge similarity, including reason-
ing, problem-solving, perceptual recognition, and categorization. They divide similarity
research into two classes: research on conceptual stimuli, such as theories or stories, and
research on perceptual stimuli, such as colours, textures, sounds, odors, and tastes. In the
latter group, most studies have examined similarity judgments performed using a single
sensory modality; however, judging the similarity between objects in the real world often
requires that information from more than one sense be combined. For instance, compar-
ing two pieces of fruit involves combining information about the colour and texture of
their peel, the pungency of their smell, the softness of their fruit, and the sweetness of
their taste. Not only does information about distinct object properties coming from dif-
ferent senses need to be combined to judge similarity; whenever a single object property
can be extracted using more than one modality, the two sources may provide redundant
or conflicting information. This raises the question of how disjunct as well as overlap-
ping information provided by multiple sensory systems is combined to subserve similarity
judgments.

One of the challenges in studying multimodal object similarity, at least for the case
of visuohaptic similarity, is the difficulty of producing large numbers of novel stimuli
with fully controllable properties, which can be both seen and touched. Until recently,
visuohaptic stimuli have been created by precision-cutting (Klatzky et al., 1987; Lakatos
and Marks, 1999), casting (Norman et al., 2004), hand-moulding (Garbin, 1984; James
et al., 2002; Forti and Humphreys, 2005), or assembling toy bricks (Newell et al., 2001;
Forti and Humphreys, 2005). In this thesis, a new combination of computer graphics
and 3D printing technology was used for stimulus creation. Designing objects using
computer graphics software provides full control of object properties and the opportunity

to create completely novel objects with which participants have had no prior experience.



Stimuli can be easily modified, replicated, and rendered into 2D images or printed into 3D
models. Furthermore, since one can change object properties incrementally in software,
it is possible to create an arbitrarily large family of objects with parametrically-defined
differences. The objects can then be visualized as a set of points in a multidimensional
“input space” spanned by the parameters varied in software.

Having a well-defined input space is particularly advantageous for studying similarity
because of a long tradition of visualizing similarity data using spatial models, in which
the distance between two items is related to the similarity between them. This approach
was pioneered by Richardson’s characterization of a psychological colour space based on
comparisons made amongst Munsell colour samples (Richardson, 1938). Research on the
structure of such psychological spaces has been closely connected to the development of
multidimensional scaling (MDS) techniques (seminal work by Torgerson (1952); Shepard
(1962)). MDS techniques operate on pairwise similarity ratings taken over a set of stimuli
and return a map of objects in which distances have been fit to similarity data. The
techniques have been applied to study mental representations of a wide range of stimulus
classes, either to 'discover’ them or to test specific hypotheses about them. Some examples
include colours (Ekman, 1954), Morse code patterns (Shepard, 1963), spices (Jones et al.,
1978), textures (Hollins et al., 1993; Bergmann Tiest and Kappers, 2006), synthetic tones
(Caclin et al., 2005), salts (Lim and Lawless, 2005), and facial expressions (Bimler and
Paramei, 2006). MDS techniques have also been used to study how mental representations
differ across individuals. For example, Bosten et al. (2005) recently used them to show
that colour-deficient observers are sensitive to an additional dimension of colour variation
which is not perceived by colour-normal observers. In addition to providing helpful
visualizations, spatial models derived from human similarity data have proven to have
significant power for predicting human performance in identification, recognition and
categorization tasks and have been used to formulate a number of influential models of
these tasks (Gillund and Shiffrin, 1984; Kruschke, 1992; Nosofsky, 1991; Edelman, 1999).

In this thesis, we adopted the spatial modeling approach to investigate similarity
from three new angles. We began by defining a two-dimensional input space of novel,
3D objects. In a first study, we investigated how this space was perceived by humans
when they explored the objects using either vision, touch, or both at the same time. In
a second study, we focused on the haptic modality and investigated how changes in the
type of hand movement used to explore the objects affected similarity space. We also
tested the stability of perceptual similarity over time. In a third study, we compared
similarity spaces generated by human vision and touch against similarity spaces based on
computationally-extracted object features.

The thesis is structured as follows: we first provide an overview of the common ap-



proach used to gather and analyze similarity data, then summarize each of the three
papers presented as part of the thesis, and close by considering future avenues of research

in multimodal similarity.



Chapter 2
Summary of Methods

This section provides an overview of the approach used in the thesis. It consists of the

following four steps, illustrated in Figure 2.1:

1. creating a set of parametrically-varying, novel, 3D objects over which similarities

are to be measured;
2. measuring similarity data under a specific set of experimental conditions;

3. multidimensional scaling (MDS) of similarity data to generate perceptual maps of

objects and corresponding dimension weights;

4. comparing perceptual maps and weights to quantify the effects of changes in exper-

imental conditions.

2.1 Creating a set of novel, 3D objects

We began by creating the family of objects shown in Figure 2.2. The stimuli were designed
to be novel and parametrically-related to one another. Three-dimensional models were
created using a 3D graphics software package. These models could then either be rendered
into 2D images (with full control of size, viewpoint, illumination, background scene, etc.)
or manufactured into real, touchable models via 3D printing. Object parameters were
manipulated in order to create variations in the objects’ macrogeometry (“shape”) and
microgeometry (“texture”). We chose to manipulate geometry specifically because it
is a property which can be extracted using both vision and touch. At the same time,
macrogeometry is preferentially extracted by vision, while microgeometry, which can also
be considered a material property, is preferentially extracted by touch (Lederman et al.,

1996).
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Figure 2.1: General Approach: (1) Creation of a parametrically-varying stimulus set; (2)
gathering similarity data using specific feature extraction mechanisms (FEM); (3) MDS
analysis of similarity data; (4) comparison of perceptual spaces to assess the effects of
using different mechanisms to judge similarity.

Moving upward from the bottom row of objects in Figure 2.2, the objects’ shape was
gradually smoothed by “relaxing” angles in the 3D mesh via a local averaging operation.
The objects’ texture was generated by applying a local displacement map to the 3D mesh.
Moving from left to right in Figure 2.2, texture was gradually smoothed by decreasing
the amount of vertex displacement dictated by the map. Although Figure 2.2 shows
the stimuli equidistantly spaced along two dimensions (the primary ones manipulated in
software), it is important to note that there is no necessary relationship between these
dimensions/distances and those perceived by participants. Characterizing the perceptual

space is precisely the reason for using multidimensional scaling techniques.

2.2 Collecting similarity data

For human experiments, similarity data consisted of ratings provided on a seven-point
scale (1 = low similarity; 7 = high similarity). For computational experiments, similarity
data consisted of distance measures computed on the outputs of the various feature
extraction algorithms. Each of the three studies involved a different variation in the way

similarity data was generated:

e In Cooke et al. (2007a), the sensory modality used to explore the objects was varied.

Object properties were extracted by the visual system, the haptic system, or both

simultaneously.
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Figure 2.2: Stimuli varied parametrically in terms of microgeometry (“texture”) and
macrogeometry (“shape”).

e In Cooke et al. (2007b), the hand movement used to explore objects was varied.
Object properties were extracted by following their contours, by rubbing either their

centres or their extremeties, or by gripping them.

e In Cooke et al. (2006), human visual and haptic extraction were compared against
machine extraction using computational algorithms which extracted features from

either 2D images or 3D models of the objects.

2.3 Analyzing similarity data using MDS

Similarity data were analyzed using a set of algorithms referred to as multidimensional
scaling (MDS) techniques. MDS techniques refer to a class of algorithms which operate on
any type of pairwise proximity data collected over a set of items, such as similarity ratings,

and return a spatial model of the items. When the input proximities correspond to human
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similarity ratings, the output spatial configuration can be interpreted as a “psychological
space” (Attneave, 1950). Since we have chosen to study perceptual stimuli, we refer to
this space as a “perceptual space.”

Human similarity matrices were analyzed using two variants of MDS, both imple-
mented in the SPSS ALSCAL MDS package. The first variant, replicated MDS (RMDS),
allows for the simultaneous analysis of several similarity matrices. For a user-specified
dimensionality, it returns a single map and a goodness-of-fit measure, referred to as
“stress”, which corresponds to a normalized difference between the fitted distances and
the observed proximities. RMDS was used to analyze groups of similarity matrices gath-
ered under a single experimental conditions; maps and stress values were computed for
solutions of one up to five dimensions. The second variant, weighted MDS (WMDS), also
referred to as individual differences scaling (INDSCAL), takes in in one input matrix of
similarities per subject and returns a single stimulus configuration together with a set
of weights for each subject. The weights specify how the dimensions of the perceptual
configuration should be stretched in order to best fit the individual matrices. WMDS also
has the advantage of specifying the orientation of the configuration relative to perceptual
dimensions, which facilitates the task of interpreting the dimensions.

Together, these analyses provided the four following types of information about per-

ceptual space:

e How many dimensions of stimulus change were used by subjects to judge similarity,

i.e., the dimensionality of perceptual space;

e Whether or not these dimensions corresponded to the dimensions which were ma-

nipulated, i.e., the interpretation of perceptual space dimensions;

e What the relative importance of the dimensions used to judge similarity was, i.e.,

the weights of the perceptual dimensions;

e A visualization of similarities amongst objects as distances between them, i.e, the

configuration of stimuli in perceptual space.

2.4 Assessing differences between perceptual simi-

larity spaces

Finally, to quantify the effects of our experimental manipulations, data gathered under

different conditions were compared as follows:
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e The dimensionality of perceptual space was determined using stress values output by
MDS. Although the interpretation of stress values is somewhat controversial (Lee,
2001), a sharp drop in stress values for a given dimensionality, usually resulting in
stress values below 0.2, is conventionally interpreted as evidence that the output
configuration provides a good fit to the data (Kruskal and Wish, 1978).

e The interpretation of perceptual space dimensions was done by first comparing the
order of stimuli in perceptual space against the order of stimuli in the input space
- finding the same order in both cases implies that the input dimensions were
recovered in perceptual space - and second, by analyzing debriefing questionnaires

to identify labels used by subjects in referring to the differences amongst stimuli.

o The weights of perceptual space dimensions output by MDS were compared by

carrying out T-tests on the mean of population samples.

e The configuration of stimuli of perceptual space was compared by visual inspection

and by computing Procrustes fit errors between two configurations.

The following section summarizes the results obtained by applying this methodology.

12



Chapter 3
Overview of Results

This section summarizes the findings reported in the three papers which comprise the

thesis.

3.1 Multimodal similarity and categorization of

novel, three-dimensional objects

This paper (Cooke et al., 2007a, Paper 1) investigated how perceptual similarities and
categorization vary when different sensory modalities are used to explore objects. Sub-
jects explored the objects (described in the Methods section) using either vision alone,
touch alone, or both vision and touch. MDS techniques were used to obtain percep-
tual spaces arising from each of these conditions. The spaces were then compared in
order to test for an effect of modality. Given the close connections between similarity
and categorization (Hahn and Ramscar, 2001), we were also interested in investigating
modality-specific differences in categorization; therefore, we had subjects categorize the
objects at the end of the similarity rating experiment.

We found similarities as well as differences amongst the representations recovered
from haptic, visual, and visuohaptic exploration. Regardless of modality, subjects re-
ferred to the dimensions used to judge similarity as “shape” and “texture” exclusively
(Figure 7 in Paper 1, centre column). The same ordinal relationships amongst stimuli
in the input space were found in MDS spaces reconstructed from visual, haptic, and bi-
modal exploration, i.e., subjects were able to recover these relationships regardless of the
modality used. Given the complexity of the measurement space, this is not a trivial pro-
cess, as demonstrated by the difficulty of performing the same task using state-of-the-art
computational algorithms (Paper 1, Figures 6 and 7).

Despite sharing common dimensions and ordinal relationships, there were two clear

13



differences amongst modality-specific perceptual spaces. First, the relative weights of
shape and texture dimensions differed: on average, shape dominated texture when ob-
jects were seen, while shape and texture were roughly evenly-weighted when objects were
either touched, or both seen and touched (Paper 1, Figure 4, left). This finding agrees
with the notion that vision is specialized for the extraction of object macrogeometry
(Lederman et al., 1996). Interestingly, the same pattern of weights was observed in the
categorization task (Paper 1, Figure 6), indicating that a relationship between similar-
ity and categorization exists not only for stimuli perceived visually, but also for those
perceived haptically and visuohaptically. Second, compared to the visual condition, we
observed larger individual differences in similarity weights used in the haptic condition
and even greater differences in the visuohaptic condition (Paper 1, Figure 4, right).!

A final result is particularly relevant vis-a-vis the question of multimodal integra-
tion: fitting similarity data from all three modality conditions using a single map with
subject-specific weights was as good as fitting data from each modality condition with
three separate, modality-specific maps. This implies that, for this data set, differences
across modalities can be accounted for by simply linearly scaling the dimensions of a com-
mon map. Furthermore, when both similarity and categorization weights were averaged
according to modality, bimodal weights turned out to be values between unimodal weights
(Paper 1, Figures 4 and 6), indicating that a weighted average of unimodal weights may

used in the multimodal condition.

3.2 Multidimensional scaling analysis of

haptic exploratory procedures

This paper (Cooke et al., 2007b, Paper 2) took a closer look at perceptual similarities in
the haptic modality and, in particular, the role of hand movements or “exploratory pro-
cedures” (EPs) in shaping similarity space. Lederman and Klatzky (1987, 1993) classified
EPs into six types (lateral motion, pressure, static contact, holding, enclosure, and con-
tour following) and showed that the ease of extracting object properties varies according
to the EP used. For instance, texture is extracted best by lateral motion, a back-and-
forth rubbing motion of the fingers over a surface, whereas this EP provides little or no
information about object shape. In contrast, gripping objects in the hand allows for fast
extraction of global shape and texture, whereas detailed shape information is harder to
perceive by gripping. Following an object’s contour, though time-consuming, allows for

extraction of both texture and exact shape. A natural question, therefore, is whether

ndividual variability in haptic weights was also observed in in Papers 2 and 3. This issue is further
discussed in Paper 1, p.5, Paper 2, p.13-16, and Paper 3, p.18.

14



these differences in extraction capabilities affect perceptual similarities. To investigate
this, we had subjects provide similarity ratings after exploring the objects using one of
four EPs (contour-following, gripping, tip-touching, or lateral motion on the objects’ cen-
tres). In addition, to test whether perceptual similarities were stable over time, subjects
repeated the experiment several months later.

The results showed that the specific type of hand movement used to explore the ob-
jects does indeed affect perceptual similarity. Both the number of dimensions needed
to represent similarity data, as well as the specific stimulus configurations in perceptual
space, varied as a function of hand movement. One expected result was that the dimen-
sions used to judge similarity are critically dependent upon the dimensions which can
physically be extracted using a specific hand movement. Specifically, lateral motion on
the objects’ centres, which does not provide any information about global shape changes,
yielded one-dimensional perceptual representations in which the single dimension corre-
sponded to texture. In contrast, two perceptual dimensions, shape and texture, were
needed to explain similarity data when subjects gripped the objects, followed their con-
tours, or touched their tips. For these EPs, we also observed a clear difference in the
spatial layout of the configurations themselves: shape differences were roughly perceptu-
ally equidistant when subjects explored object tips or followed object contours, but when
objects were gripped, objects with smoother macrogeometry were grouped apart from
those with sharp angles in the macrogeometry (Paper 2, Figure 3).

In addition, the perceptual importance of shape and texture varied markedly from
individual to individual when both properties could be extracted. Thus, the individual
variation observed in the other two studies, in which only contour-following was used, was
not specifically due to the use of the contour-following EP. Interestingly, weights used by
the same individuals were significantly correlated (Paper 2, Figure 6, right), indicating
that subjects may have been imposing an inherent preferred tradeoff value across all
conditions. What could be the source of these biases? In the grip condition, photographs
of subjects’ grip positions allowed us to correlate shape/texture weight with the number
of object tips contacted by subject-specific grip positions (Paper 2, Figures 8 and 9).
However, for the other two EPs (contour-following and lateral motion on the objects’
tips), the biases could not be explained. Further studies are required to test whether
differences could be related to subtle, yet systematic differences in the way subjects
perform the EPs, or to individual cognitive biases arising from individual preferences
and /or experience.

When subjects returned to repeat the experiment several months later, the same
patterns of weights were found, i.e., individual differences remained stable over time

(Paper 2, Figures 6 and 7). Further work is needed to determine whether stability is
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due to an influence of memory (of the objects and/or task) or whether stability could be
explained by the fact that both experiments involved the same inputs being processed by
the same perceptual system, i.e., that subjects used “the world as an external memory
store” (Simons, 1996; O’Regan and Noe, 2001).

The fact that haptic similarities were so variable across individuals is an important
finding for the designers of haptic devices. The paper demonstrates how MDS techniques
can be used to quantify individual differences and, as a result, makes it possible to
calibrate systems to compensate for these differences. The paper concludes by presenting

a similarity-based approach for validating haptic devices (Paper 2, Figure 10).

3.2.1 A similarity-based approach to haptic device

validation

One variant of the similarity-based approach for validating haptic devices proposed in
Paper 2 was demonstrated in a collaboration with ETH Ziirich.? The target of the study
was a haptic rendering algorithm for simulating tissue samples, to be used as part of a
surgical training system. At this stage of the development process, the engineering goal
was to have an algorithm capable of rendering a set of virtual objects which are perceived
to vary only in terms of stiffness. This study tested two versions of such an algorithm.
Users were presented with mixed pairs of virtual objects and real objects. The real objects
consisted of rubber samples manufactured to have different physical stiffness values. Two
types of virtual objects were used; each type was rendered with a different version of the
rendering algorithm. The first version, referred to as “higher-fidelity,” was expected to
yield more realistic stimulation than the second version, referred to as “lower-fidelity.”
The setup was designed such that subjects would be unaware whether a given object was
real or virtual.

MDS analysis revealed that when virtual objects were rendered using the lower-fidelity
algorithm, users made similarity judgments based on stiffness differences, but also distin-
guished between real and virtual objects along an additional perceptual dimension. When
the higher-fidelity algorithm was used, stiffness alone sufficed to account for similarity
data. This result can be interpreted as “validating” the higher-fidelity algorithm, since
it led to the desired perceptual relationships amongst the objects (i.e., no significant per-
ceptual difference between real and virtual objects), and “invalidating” the lower-fidelity
algorithm, since it led to an additional degree of perceptual separation between real and
virtual objects.

This study provides proof-of-concept for a similarity-based approach to haptic device

2This collaboration resulting in the second-author publication (Leskovsky et al., 2006).
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validation. There is a growing need for such methods given the increasing number of
haptic devices being developed for teleoperation, training, assistance, and entertainment
(for an overview, see Fisch et al. (2003)). Furthermore, the method can be applied to
validate multimodal interfaces, such as visuohaptic surgical simulators, which require that
multiple sources of information about the virtual environment be successfully integrated
(Oviatt, 1999).

3.3 Object feature validation using visual
and haptic similarity ratings

This paper (Cooke et al., 2006, Paper 3) compared similarity spaces generated by human
haptic and visual perception against similarity spaces generated using state-of-the-art
computational feature extraction algorithms. Our motivation for doing this was two-
fold: to validate computational features by identifying algorithms which yield similarity
spaces akin to those produced by humans and to identify computational mechanisms
which may underlie feature extraction processes in the human haptic and visual systems.
Nine algorithms were implemented: five operated on 2D images of the objects and four
operated on 3D object models (2D: raw image subtraction, edge detection, Gabor jets,
the Visual Difference Predictor (VDP), and the Structural Similarity measure (SSIM));
3D: raw 3D position, perimeter, curvature, and local shape histograms). In addition, the
algorithms were run on a set of higher-resolution object data as well as a set of lower-
resolution data in order to investigate the effect of scale variation on computed similarity
space representations.

As found in Paper 1, human similarity spaces varied according to the modality used
to explore the objects, with shape dominating for vision and properties being equally
weighted for touch on average.®> The structure of similarity spaces extracted from com-
putational measures also varied according to the type of computational algorithm used,
both in terms of interstimulus distances (Paper 3, Figures 6 and 7) and relative dimen-
sion weights (Paper 3, Figure 8). Based on these representations, the algorithms were
divided into two groups: a group yielding texture-dominated representations (3D curva-
ture and perimeter) and a group yielding shape-dominated representations (2D and 3D
raw subtraction, VDP, SSIM, and 3D shape histograms).

3The similarity ratings experiments conducted for Paper 3 differed from the ones conducted for Paper
1 in a number of ways: in Paper 1, visual stimuli were real objects presented under natural lighting
conditions, whereas in Paper 3, they were photographs presented in darkness on a computer screen;
in Paper 1, haptic stimuli were mounted upright on a stand, whereas in Paper 3, they were laid flat
on a table. Despite these differences, we found consistent patterns of property weights across modality
conditions, including greater intrasubject variability in the haptic condition than in the visual condition.

17



The map generated from each computational measure was fit to each human subject
map and mean fit errors were calculated, once for all subjects in the haptic condition
and once for all subjects in the visual condition.* A computational measure was deemed
to be “perceptually valid” relative to either vision or touch if the mean fit error was not
significantly different from the error generated by fitting all human subject maps to one
another.

When fit to visual data, the 3D shape, 2D and 3D subtraction, VDP, and SSIM
measures met this criterion at the fine scale of object data, while Gabor jets, SSIM, and
both subtraction measures met it at the coarse scale (Paper 3, Figures 9 and 10, top left).
In general, shape-dominated measures provided good fits to human visual maps because
they shared the common characteristic of strongly separating objects according to shape
differences. However, the algorithms had more difficulty ordering the stimuli according to
texture, which humans did very well. The main effect of the scale manipulation was that
algorithms had more difficulty recovering texture from the coarser data set. This affected
texture-dominated measures (curvature and perimeter) most adversely. An interesting
extension of this research would be to compare similarity data gathered from human
perception of downsampled object data against computed similarities.

When fit to human haptic data, no single computational measure met the criterion
we had established for perceptual validity. This was due to the fact that the measures we
implemented responded strongly to either shape or texture, while many haptic subjects
relied on both properties to make similarity judgments. Good fits were obtained between
the curvature measure and haptic subjects who were strongly texture-biased, and between
VDP and 2D subtraction and a subject who was strongly shape-biased. Combinations
of features could be used to model the results of haptic subjects who weighted shape
and texture more evenly. Contrary to our expectations, we did not find that measures
computed on 3D data provided better fits to haptic data than measures computed on
2D data, which could be taken as an indicator that 2D features suffice to support haptic
object representations. However, studies using objects with greater 3D variation are
needed to test whether this is indeed the case.

The paper concludes by presenting a two-stage approach to perceptual feature vali-
dation (Paper 3, Figure 11). In contrast to Paper 2, which proposed a similarity-based
approach for validating haptic devices, i.e., systems which provide artificial input to hu-
man senses, this paper shows how the same ideas can be used to validate systems which
perform artificial perception in real-world environments. In the past, computational ob-
ject features have been evaluated based on computational efficiency or in terms of how

well they can discriminate, recognize, or categorize objects. As an alternative criterion,

4For a complete description of the fitting procedure, see Paper 3, Section 2.6.
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we propose that “valid” measures are those which are capable of mimicking human sim-

ilarity judgments on a set of objects.

3.3.1 The Perceptual Feature Toolbox: a collection

of methods for benchmarking psychophysical stimuli

The work presented in Paper 3 has recently generated interest amongst researchers
who would like to use the features we implemented to automatically compute distances
amongst their own stimuli sets. As pointed out in the Methods section, parameters ma-
nipulated in software to vary object properties may not correspond to the dimensions used
by subjects to judge similarity. Furthermore, stimuli created using equidistant steps in a
parameter defined in software cannot be assumed to be perceptually equidistant. Percep-
tual space can, of course, be characterized by MDS analysis of experimentally-measured
similarity data, but this is time-consuming for a large stimulus set and may need to be
repeated after any changes to the stimulus set. An alternative is to identify a computa-
tional measure which generates good fits to a sub-sample of perceptual similarities and
then to process all remaining stimuli using that measure. Similarities can also be easily
recomputed when the stimulus set is modified. To assist researchers in identifying po-
tentially suitable measures, a Perceptual Feature Toolbox (PFT) for MATLAB has been
developed, which currently implements 12 computational features.” It allows researchers
to run multiple features detection algorithms simultaneously over 2D or 3D data sets,
compute similarities, and perform MDS analyses to visualize corresponding similarity
spaces. MDS maps generated by the algorithms can then be fit to those based on human
similarity ratings, as done in Paper 3, to identify the best-fitting measure. Computa-
tional results can also be compared against other kinds of behavioural proximity data,
such as neuronal firing rates, discriminability, naming times, or category decisions (see,
for example, Laws et al. (2003); Kayaert et al. (2005)). Such investigations are central to
understanding the connections between physical quantities available in real-world stimuli

and the information extracted by human perception.

3.4 Outlook: Towards a better understanding

of multimodal similarity

Taken together, the studies presented in this thesis demonstrate that perceptual similar-

ity is not only defined by physical relationships between objects, but also by the specific

5This work was done in collaboration with S. Kannengiesser, F. Steinke, M. Siepmann, and C. Wall-
raven.
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mechanisms used to extract object properties. One of the most compelling examples is
that seeing and touching objects led to different perceptual weighting of object properties.
The sensory modality used to extract object properties appeared to bias the dimensions
of perceptual representation towards the feature it could most readily extract, i.e., shape
in the case of vision and texture in the case of touch. The variability of property weights
across individuals also changed according to modality: greater variability was observed
when exploration was haptic or visuohaptic. Evidence was found that individual differ-
ences in haptic weights remain stable over time.

The existence of differences in visual and haptic similarity judgments raises the fun-
damental questions of how disparate haptic and visual information is merged within a
given individual, and how social consensus is reached amongst individuals with different
biases. With respect to the first question, results from Paper 1 suggested that vision
and touch could feed into similar or even shared representations, with differences be-
ing accounted for by linearly rescaling the map’s dimensions using a modality-specific
factor. In the case of bimodal perception, we found evidence that the rescaling factor
could be a weighted sum of unimodal rescaling factors. These findings demonstrate that
spatial models can be used to characterize modality-based differences in perceptual sim-
ilarity and suggest a simple mechanism for linking mental representations derived from
unimodal and multimodal experience.

To further test the plausibility of linearly-weighted spatial representations for the case
of visuohaptically-perceived objects, the work presented in this thesis could be extended
in several ways. The following paragraphs outline studies on three topics: (1) tests of
whether spatial models are capable of representing a broader range of stimuli explored un-
der more natural conditions; (2) tests of specific models for computing dimension weights;
and (3) a search for the neural underpinnings of multimodal spatial representations.

A first series of experiment should test whether linear spatial models can account for
similarity data measured when objects are explored in a more natural setting, for instance
freely and/or bimanually, and over longer periods of time. A broader range of stimulus

sets also need to be tested, including:

e different viewpoints/rotations/sizes of the same objects;

e objects belonging to the same family, but created using different parameters in the

space;

e objects with the same general structure, but with a larger number of changing

geometrical properties, such as part size, type, number, and configuration;

e completely different classes of visuohaptic objects, including natural classes such as
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shells (Vermeij, 1996).

Second, for dimension reweighting to be a plausible way of combining unimodal sources
of information about objects, one needs to specify a scheme for determining the weights.
One method is to use the modalities’ relative statistical reliabilities, for instance how
reliably each modality can be used to estimate the magnitude of a certain object property
(Ernst and Biilthoff, 2004). Experiments are needed to test for correlation between
reliability estimates and subject-specific dimension weights in similarity space. It would
also be interesting to test whether higher group variability in haptic weights correlates
with overall lower reliability of the haptic system for a given task.

Third, functional magnetic resonance imaging (fMRI) studies could be helpful in
testing whether /how spatial representations of visuohaptic objects are implemented in
the brain. A number of studies have already made significant progress in identifying
areas involved in the convergence of visual and haptic object information (see James
et al. (2006) for a review); here, we suggest how similarity-based approaches presented
in this thesis could be applied to shed further light on this issue. An important first task
would be to design a system which enables automatic, pseudorandom presentation and
exploration of sufficiently large numbers of 3D visuohaptic stimuli in the fMRI scanner,
without causing problematic motion artifacts. As a first study, brain areas activated
during unimodal and multimodal similarity judgments could be localized and compared
to identify areas where unimodal information converges. One could also test for an effect
of property type on activation patterns. Second, similarity ratings could be performed
on objects presented to two different modalities; for trials in which identical stimuli were
presented to different modalities, neural adaptation patterns could be analyzed to identify
brain areas for which the cross-modal stimuli are the “same” or “different” (Grill-Spector
and Malach, 2001). Perceptual maps generated from behavioural and neural data could
be compared and used to determine whether identical objects presented separately to
different modalities are co-located or separated in these spaces.

These extensions would help to further our understanding of how our multiple sen-
sory systems extract information about objects in the world and how this information is
combined when we make similarity judgments. Having this knowledge not only satisfies
our intellectual curiosity about ourselves, but it is also a basic requirement for designing
technologies which are capable of efficiently delivering information through our sensory
channels. As Oviatt (1999) concluded in her overview of human-computer interfaces:
“The development of (robust multimodal systems) will not be achievable through intu-
ition alone. Rather, it will depend on knowledge of the natural integration patterns that

typify people’s combined use of different input modes.”
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Abstract

Similarity has been proposed as a fundamental principle underlying mental object representations and capable of supporting cognitive-level tasks
such as categorization. However, much of the research has considered connections between similarity and categorization for tasks performed using
a single perceptual modality. Considering similarity and categorization within a multimodal context opens up a number of important questions: Are
the similarities between objects the same when they are perceived using different modalities or using more than one modality at a time? Is similarity
still able to explain categorization performance when objects are experienced multimodally? In this study, we addressed these questions by having
subjects explore novel, 3D objects which varied parametrically in shape and texture using vision alone, touch alone, or touch and vision together.
Subjects then performed a pair-wise similarity rating task and a free sorting categorization task. Multidimensional scaling (MDS) analysis of
similarity data revealed that a single underlying perceptual map whose dimensions corresponded to shape and texture could explain visual, haptic,
and bimodal similarity ratings. However, the relative dimension weights varied according to modality: shape dominated texture when objects were
seen, whereas shape and texture were roughly equally important in the haptic and bimodal conditions. Some evidence was found for a multimodal
connection between similarity and categorization: the probability of category membership increased with similarity while the probability of a
category boundary being placed between two stimuli decreased with similarity. In addition, dimension weights varied according to modality in the
same way for both tasks. The study also demonstrates the usefulness of 3D printing technology and MDS techniques in the study of visuohaptic

object processing.
© 2006 Elsevier Ltd. All rights reserved.
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The question of whether similarity can provide a theoretical
basis for general categorization behaviour has been a source of
heated debate in the field of cognitive psychology (Goldstone,
1994; Hahn & Ramscar, 2001). Critics of this idea have argued
that the notion of similarity is vague and context-dependent,
that it cannot explain category coherence, and that it does not
account for the important role of theoretical knowledge in cat-
egorization decisions (Murphy & Medin, 1985). Nonetheless,
similarity has served as the basis for a number of influential mod-
els of categorization (Medin & Schaffer, 1978; Nosofsky, 1992;
Rosch & Mervis, 1975), which have been particularly success-
ful in explaining classification of perceptual stimuli, including
novel, 3D objects (Edelman, 1999). However, much of this work
has been carried out within the context of perception involv-
ing a single modality, usually vision. Considering similarity and
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E-mail address: theresa.cooke @tuebingen.mpg.de (T. Cooke).
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categorization within a multimodal context opens up a num-
ber of important questions: Are the similarities between objects
the same when they are perceived using different modalities or
by more than one modality at a time? Is similarity still able
to explain categorization performance when objects are experi-
enced multimodally?

In a preliminary study (Cooke, Steinke, Wallraven, &
Biilthoff, 2005), we showed how multidimensional scaling
(MDS) techniques can be used to quantify differences in per-
ceptual similarities when objects are perceived using touch and
vision. In that study, subjects saw or touched novel, 3D objects
which varied parametrically in shape and texture and then rated
the similarity between object pairs. Using similarity as a psy-
chological distance measure, MDS was used to visualize stimuli
as points in multidimensional perceptual spaces, as, for exam-
ple, in Shepard and Cermak (1973), Garbin (1988), and Hollins,
Faldowski, Rao, and Young (1993). We found that the relative
importance of shape and texture in these perceptual spaces dif-
fered according to modality: shape alone sufficed to represent

NSY-2236; No. of Pages 12
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the stimuli when perceived visually, while shape and texture
were both required when the stimuli were perceived haptically.

In the present study, we extend this line of research by adding
a second task, free sorting categorization, and including a condi-
tion in which objects are simultaneously both seen and touched.
The categorization task was included in order to test whether a
connection between similarity and categorization could be estab-
lished within this multimodal context. The bimodal condition
was added in order to assess whether multimodal similarity and
categorization would be dominated by one specific modality.
At first glance, vision appears to be the most likely candidate.
Vision is traditionally considered to be the “dominant” modal-
ity (Rock & Victor, 1964). Furthermore, object shape has been
shown to play a special role in category formation (Landau &
Leyton, 1999; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976) and shape is thought to be a particularly salient feature for
vision (Klatzky, Lederman, & Reed, 1987). On the other hand,
recent studies have challenged the notion of ubiquitous visual
capture and have argued in favour of weighted averaging models
(Ernst & Biilthoff, 2004; Guest & Spence, 2003).

The results of this study show an effect of modality on the
relative importance of object properties for both similarity and
categorization tasks. In the bimodal condition, shape and texture
were weighted roughly evenly for both tasks, rejecting the visual
capture hypothesis. The probability of objects being grouped
together in a category increased with similarity, while the prob-
ability of a category boundary being placed between two stimuli
decreased with similarity. In addition, the relative importance of
dimension weights for similarity and categorization tasks var-
ied in the same way as a function of modality. The connection
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between similarity and categorization in the context of visuo-
haptic object processing is discussed in light of these findings.

1. Methods

This section describes the stimulus set, the psychophysical tasks, and the
analysis techniques used in this study.

1.1. Stimuli

A family of 25 novel, 3D objects (Fig. 1) was designed using the graph-
ics package 3D Studio Max (3DS). The “base object” in the family (Fig. 1,
object 1) consists of three parts connected to a centre sphere, specifying its
macrogeometrical structure (“shape”) and a displacement map applied to this
3D mesh, specifying its microgeometrical structure (“texture”). The remaining
family members were created by parametrically varying the macrogeometri-
cal and/or microgeometrical smoothness of the base object. Macrogeometrical
smoothing was accomplished by applying a mesh relaxation operator which
locally averages angles in the mesh in five linearly increasing steps (before
application of the texture displacement). Microgeometrical smoothing was per-
formed by linearly decreasing the amount of mesh displacement allowed by the
application of the texture map in five steps. It is important to understand that the
specific values of these parameters are only meaningful within 3DS. In addi-
tion, one cannot assume that equidistant changes in a software parameter yield
perceptually equidistant changes in object properties.

Once an object is created in 3DS, it can either be rendered into a 2D image
or printed into a solid 3D model. Printing is performed by a rapid prototyping
machine (Dimension 3D Printer, Stratasys, Minneapolis, USA). The manu-
facturing process involves a head which deposits filaments of heated plastic
such that the model is built up layer by layer. The final result is a hard, white,
opaque, plastic model. In our case, models weighed about 40 g each and mea-
sured 9.0 £ 0.1 cm wide, 8.3 £ 0.2 cm high, and 3.7 £ 0.1 cm deep. It took 2—4 h
to print each object. The same set of 3D models was used in all experiments
described below.

e
.
>

Microgeometry

Fig. 1. Stimuli: novel, 3D objects ordered according to shape (macrogeometry) and texture (microgeometry).
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Fig. 2. Experimental setup: top view of subject participating in the visuohap-
tic exploration condition. She follows the object’s contour with her right index
finger, repeats this for a second object, and then rates their similarity. The exper-
imenter (shown on the right) records her response.

1.2. Similarity rating task

Thirty naive subjects (16 men and 14 women) were paid €8 per hour to
participate in the experiments. The first task was to rate the similarities between
pairs of objects on a scale between 1 (low similarity) and 7 (high similarity).
Ten subjects explored the objects visually only, 10 subjects explored the objects
haptically only, and 10 subjects explored the objects using both modalities simul-
taneously. All subjects in the haptic and bimodal conditions were right-handed.
The same experimental setup was used in all conditions (Fig. 2). Subjects used a
chin rest placed 30 cm away from the stand on which the objects were presented;
the height of the chin rest was set such that the centre of the object was aligned
with the line of sight. An opaque curtain hung between the subjects and the stand
and could be slid back and forth along a rod to hide or reveal the objects. A piece
of black sheet metal (30 cm x 30 cm) was mounted on the back of the stand so
that when the curtain was open, subjects saw the object on a black background.
A set of grooves and a section of rubber tubing on the mount piece ensured that
the objects were securely held in place in exactly the same upright position on
every trial.

In the visual condition, the experimenter placed the first object on the stand,
slid the curtain over to reveal the object, waited for 3-5 s, slid the curtain back
to cover the object, replaced the first object by a second object, uncovered the
second object, and waited for the subject’s response. In the haptic condition,
the curtain was left in place while subjects explored the objects. Subjects were
instructed to follow the contour of the objects with their right index finger. The
contour-following procedure was selected because it has been shown to allow
haptic extraction of both global shape and local texture properties (Lederman
& Klatzky, 1993). Before the experiment, subjects practiced the procedure until
they could trace the contour comfortably in 5 s or less. Subjects in the bimodal
condition performed the same contour-following procedure while viewing the
objects. In the visual condition, the presentation time of the first stimulus was set
by the experimenter, whereas in the haptic and bimodal conditions it depended
to a certain degree upon the subject’s exploratory movements. The presenta-
tion time of the second stimulus was determined by the timing of the subject’s
response in all three conditions. In general, we strove to maintain presentation
times of 3-5 s for all conditions.

The experiment consisted of 3 blocks of 325 randomized trials (each object
was compared once with itself and once with every other object resulting in
25+ (25 x 24)/2=325 trials) and the order of appearance of stimuli was ran-
domized over blocks. Each trial took about 20-30s and the similarity ratings
experiment ran for approximately 2h per day for five consecutive days. The
experiment began with a number of practice trials to help subjects become accus-
tomed to the task. After the practice session, subjects were asked to write down
their criteria for each value on the rating scale (e.g., “I say 7 whenever the objects

are exactly the same”). On each of the subsequent days of the experiment, sub-
jects were asked to read what they had written to ensure consistency over the
course of the experiment.

1.3. Debriefing questionnaire

Immediately after the similarity ratings experiment, subjects filled out a form
in which they were asked to describe the objects (“How do the objects look?”
in the visual condition, “How do the objects feel?”” in the haptic condition, and
both questions in the bimodal condition), to explain how they had performed
the similarity judgments, and to describe how they would group the stimuli into
categories.

1.4. Free sorting categorization task

After having filled out the questionnaire, subjects performed a free sorting
categorization task. We chose a free sorting task because of its relative simplicity
and the ecological relevance of spontaneous categorization, also referred to as
category construction (Milton & Wills, 2004). We designed the task to make it
as close to the similarity task as possible. Using the same setup, stimuli were
shown one at a time in random order and subjects explored the stimuli using the
same exploratory procedure which they had used before. They were asked to
assign a category number to each object, using the groups they had described in
their questionnaire responses. The stimuli were repeatedly cycled through until
the subject assigned the same category number to each object twice in a row.

1.5. Analysis techniques

1.5.1. Analysis of similarity data

A multidimensional scaling technique was used to analyze the similarity
data. MDS techniques take pair-wise proximities data for a set of objects (human
similarity ratings in this case) and return the coordinates of the objects in a
multidimensional space which best explains the proximity data. We used the
individual differences weighted Euclidean distance model implemented as part
of the ALSCAL MDS package in SPSS (Carroll & Chang, 1970; Young & Harris,
2003), with proximity data considered to be ordinal measurements (i.e., non-
metric) and untying of tied proximities allowed. This particular technique was
chosen because it allows for comparison of individual subject data and because
the dimensions of the resulting spaces are uniquely specified, allowing for clearer
interpretation (Borg & Groenen, 1997; Cox & Cox, 2001). The algorithm takes as
input a set of individual subject similarity data and, for a specified dimensionality,
returns a single underlying stimulus configuration together with a set of subject-
specific weights. The weights specify how the underlying configuration should
be scaled along each dimension to best fit each subject’s similarity data. In
addition, the SPSS implementation provides a goodness-of-fit measure, Young’s
S1 Stress, which is the normalized difference between the fitted distances and
the observed proximities.

It is important to note that the weighted individual differences MDS model
we used carries with it the following assumptions: (1) that the appropriate metric
for the psychological similarity space is Euclidean' and (2) that each set of indi-
vidual subject data included in the analysis can be modeled by linear stretching
of the centroid configuration, as specified by the individual subject weights. If
these assumptions hold true, one expects low stress values for the overall MDS
solution. Although establishing a threshold for acceptable values of stress is
notoriously controversial, Monte Carlo studies suggest that stress values below
0.2 are indicative of an output configuration which provides a good fit to the
similarity data (Cox & Cox, 2001).

! There is no general consensus on the most appropriate general psychological
similarity metric for haptically perceived stimuli. We were aware of the possi-
bility that subjects’ psychological metric could be non-Euclidean and tried to fit
the similarity data using a city-block metric (Garner, 1974). We did not find a
significant decrease in fit error compared to using a Euclidean metric and thus
felt that the more intuitive Euclidean approach was preferable, especially given
that our stimulus dimensions may not be strictly separable.
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1.5.2. Analysis of categorization data

In the free sorting task, our observations consisted of: (1) the category mem-
bership which the subject assigned to each stimulus, (2) the total number of
categories created by the subject, and (3) the number of repetitions of the free
sorting task that was required before the subject provided the same categoriza-
tion twice in a row. In addition to these raw measures, we calculated a measure
of the relative importance of texture as compared to shape in the categorization
task. The measure we chose relies on the assumption that subjects perceived the
shape-based and texture-based adjacencies in the stimulus map, which indeed
turned out to be the case (see Section 3). Subjects’ free sorting categories were
superimposed on the stimulus map (Fig. 1). When this is done, the boundaries
between categories cross a certain set of adjacencies in the map. Each boundary
separates two neighbours either on the basis of a difference in shape or on the
basis of a difference in texture. We used the proportion of separations based
on differences in texture as our measure of the relative importance of texture
compared to shape for categorization.

1.5.3. Analysis of the relationship between similarity and categorization

We computed two basic measures of correlation between similarity and cat-
egorization data. First, for each value on the similarity scale (1-7), we created
groups of stimulus pairs which had received that particular rating. We then
divided each group into two subgroups according to whether subjects had placed
the two objects into the same category or into different categories. For the second
measure, we selected those pairs of stimuli which are neighbours along either
the shape or texture dimension and computed the probability of subjects setting
a category boundary between these neighbours as a function of their perceptual
similarity.

1.5.4. Analysis of subject questionnaires

Questionnaires were read and scored independently by three judges (two
authors and one external judge). We evaluated which object properties subjects
mentioned when (1) describing the object, (2) describing how they made simi-
larity judgments, and (3) describing how they would categorize the objects. For
each of these points, we evaluated whether the subject had made at least one
reference to the attributes shape, texture, material properties, colour, or tempera-
ture. We additionally distinguished between references to global shape and part
shape. A reference to part shape was defined as the explicit mention of one of

o«

the objects’ parts (“leg”, “centre ball”’), while a reference to global shape was
defined as the use of holistic shape term such as “star-like” or a reference to
part configuration, such as “three ends which extend from a ball-shaped center”.
When subjects mentioned a configuration of parts, we counted this as both a
reference to global and part shape.

2. Results and discussion

This section presents the results of the similarity rating and
free sorting categorization tasks, the debriefing questionnaires,
as well as results obtained by comparing data from the similarity
and categorization tasks.

2.1. Results of similarity rating task

2.1.1. Number of underlying perceptual representations

A critical question for this study is whether allowing for sepa-
rate, modality-specific stimulus representations provides a better
explanation of the data than a single, multimodal representa-
tion which combines information from touch and vision. Recall
that the weighted individual difference MDS model makes
the following assumption: the data under consideration can be
explained by a single underlying map and a set of dimension
weights which are individually adjusted for each subject (see
Section 2). The better this assumption holds true for a given
data set, the lower the MDS stress will be. Here, we use this

macrogeometry
w
:

microgeometry

Fig. 3. Perceptual stimulus map: map derived by MDS using similarity data
from all modality conditions.

idea to evaluate whether (1) a single, multimodal representation
with individual weights or (2) three, modality-specific represen-
tations provide better fits to our data by comparing stress values
from (1) a global MDS computed over all similarity data and
(2) three separate MDS solutions, one for each set of modality-
specific similarity data. The stress for a two-dimensional MDS
solution using grouped similarity data from all modality condi-
tions was 0.167. Using modality-specific similarity data sets,
stress values were 0.157 (visual), 0.168 (haptic), and 0.160
(bimodal). Since stress values were below 0.2 in all cases, all
two-dimensional solutions provided good fits to the respective
sets of similarity data (see Section 2). The similarity amongst
these stress values indicates that positing a single, multimodal
representation of the stimuli provides an equally good explana-
tion for our data as positing three separate representations.

2.1.2. Dimensionality of the underlying perceptual
representation

Two perceptual dimensions were recovered in all MDS anal-
yses, i.e., increasing the dimensionality of the spaces did not
produce substantial decreases in stress. This shows that subjects
recovered a two-dimensional representation using visual, hap-
tic, and visuohaptic exploration. Subjects’ descriptions of how
they made similarity judgments (Fig. 7) confirmed that they per-
ceived the two dimensions as “shape” and “texture”. Although
several additional object properties (such as material, colour,
and temperature) were mentioned when describing the objects,
only shape and texture properties were mentioned when subjects
explained how they made similarity judgments.

2.1.3. Topology of the underlying perceptual representation
The stimulus configuration resulting from the two-
dimensional MDS solution computed over all similarity data
is shown in Fig. 3. This topology was qualitatively very similar
to the topologies recovered with modality-specific MDS anal-
yses. Ordinal adjacency relationships between the stimuli were
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Fig. 4. Relative weight of shape and texture in similarity judgments. Population mean (left) and individual subject data (right). Error bars represent standard error.
The relative weight is calculated as the angle that the weight vector in MDS subject space makes relative to the shape axis. Overlapping individual data points are
vertically shifted for better visualization. V, visual; VH, visuohaptic; H, haptic; *, significant difference; n.s., not significant.

preserved, demonstrating that subjects were able to recover the
ordering of shape and texture variations in the stimuli, i.e., the
adjacency relationships between neighbours in the map. This
was also true of maps derived from separate analyses of individ-
ual subject similarities: there was perfect recovery of the ordinal
relationships in 22/30 cases and recovery with one exception
in 5/30 cases. As we have previously discussed (Cooke et al.,
2005), this is a non-trivial task given the high dimensionality of
the measurement spaces involved. To fully appreciate this, one
need only consider the difficulty of recovering these relation-
ships using computational methods, which we demonstrated in
the aforementioned study.

Itis also of note that the perceptual distances between stimuli,
reflected in the MDS map, deviate from the distances between
stimuli in the space defined by the manipulation of software
parameters, in which stimuli lie on a rectangular grid (see Sec-
tion 2). This provides an important reminder that the perceptual
distances between stimuli cannot be assumed to vary linearly
with the distances defined by manipulating parameters in a soft-
ware program, an issue often neglected in the growing number of
studies involving parametrically controlled stimuli (e.g., stimuli
created using morphing techniques).

2.1.4. Modality-based analysis of dimension weights

The subject weights provided by the individually weighted
MDS can be visualized as vectors connecting each subject to
the origin of a two-dimensional weight space. Because the sum
of squared weights is constrained to a constant value, we sim-
ply calculated the angle between each subject vector and the
shape axis of this weight space as a single variable which rep-
resents the relative weighting of shape and texture dimensions
(Fig. 4). The mean weights for the 10 subjects in the visual
condition (M =0.16zr rad, S.E.=0.017 rad) and for the 10 sub-
jects in the haptic condition (M =0.27rrad, S.E.=0.027 rad)
were found to be significantly different (z[14] =6.0, p <0.001).
The mean weights for the 10 subjects in the visual condition

and the 10 subjects in the bimodal condition (M =0.257x rad,
S.E.=0.03rrad) were also found to be significantly different
(#7[10.6] =2.9, p=0.01) using a two-sample, two-tailed #-test for
independent samples with unequal variances. No significant dif-
ference in mean weights was found for the haptic and bimodal
conditions (¢[13.8]=0.57, p>0.1). These results show a clear
effect of modality on the relative weighting of stimulus dimen-
sions for similarity judgments. Note that the mean tradeoff value
in the bimodal condition (M = 0.257x rad) lay between the values
obtained in the unimodal conditions (0.167 rad for vision and
0.27m rad for touch), although statistically speaking, there was
no difference between the bimodal and haptic weights.

Next, we tested the hypothesis that the weights came from a
distribution with a mean of 0.25x rad, representing equal impor-
tance for shape and texture properties in the subjects’ similarity
judgments. A single-sample #-test rejected the hypothesis for
the visual condition (#[9] =10, p <0.001), but not in the haptic
(#9]1=1.0, p>0.1) or bimodal conditions ({9]=0.1, p>0.1).
Taken together, these results show that shape dominated texture
when similarity judgments were performed visually, while shape
and texture were equally important when similarity ratings were
performed either haptically or bimodally.

The individual data (Fig. 4, right) shows that all visual
subjects were indeed shape-dominated, while haptic subjects
were quite evenly distributed around 0.25z rad (equal shape
and texture weight). In the bimodal condition, 6/10 subjects
weighted shape and texture quite evenly. However, two sub-
jects weighted shape much more heavily than texture, and two
subjects weighted texture much more heavily than shape. One
explanation for the wide range of weights observed overall in
the bimodal condition is that the involvement of two modalities
requires an integration of information from touch and vision to
occur and that this integration process varies across subjects.
For example, the reliability of shape/texture estimates may vary
from subject to subject (e.g., as a function of relative expertise
or familiarity with a given modality). Another possibility is that



+ Model

6 T. Cooke et al. / Neuropsychologia xxx (2006) xxx—xxx

A s sy IO IS S I |

Minimum Possible

Number of Iterations

\ VH H

Number of Categories
=)
1

\ VH H

Fig. 5. Performance of free sorting categorization. Number of repetitions of free sorting task needed until all stimuli were categorized the same way twice in a row
(left) and number of categories created by subjects in each modality condition (right). Error bars represent standard error.

the integration process leads to a conflict between shape/texture
weights dictated by the haptic and visual systems and that sub-
jects attempt to resolve the conflict by making a conscious
decision about the relative feature weights.

2.2. Results of free sorting categorization task

2.2.1. General task measures

Fig. 5 (left) shows that subjects in all modality conditions
performed the free sorting task with a very high degree of con-
sistency, rarely requiring more than the minimum number of two
iterations through the stimuli in order to provide the same cate-
gorization twice (visual condition: M =2.1 iterations, S.E.=0.2
iterations; bimodal condition: M = 2.3 iterations, S.E. = 0.3 itera-
tions; haptic condition: M =2.4 iterations, S.E. =0.3 iterations).
As shown in Fig. 5 (right), there was a noticeable effect of

texture dominatedf 1
100%

n.s. n.s.

aqual weightl—=— miien mermurm i msrer -——-}_———-
50% I

% Texture-Based Category Boundaries

shape dominate
0%

modality on the number of categories created by subjects: sub-
jects in the bimodal condition created more categories (M = 8.3
groups, S.E.=1.6 groups) than subjects in unimodal conditions
(visual: M=4.7 groups, S.E.=0.7 groups; haptic: M =5 groups,
S.E.=0.5 groups). This could be due to a combinatorial effect of
having redundant or conflicting information available from the
two modalities. We also observed a tendency for subjects to use
dimension-based rules to construct their categories: half of our
30 subjects appeared to use rules along a single dimension, while
8 subjects combined rules along both shape and texture axes;
categories constructed by the remaining 7 subjects could not be
well-described using combinations of unidimensional rules.

2.2.2. Modality-based analysis of dimension weights
As a measure of the relative importance of texture compared
to shape, we calculated the proportion of category boundaries

|
W ©e0----00 -80 0 -0-----
|

shape dominated equal weight texture dominated
0% 50% 100%
% Texture-Based Category Boundaries

Fig. 6. Relative weight of shape and texture in categorization. Population mean (left) and individual subject data (right). Error bars represent standard error. The
relative weight is calculated as the percentage of the total number of category boundaries which separated stimuli on the basis of texture differences. Overlapping
individual data points are vertically shifted for better visualization. V, visual; VH, visuohaptic; H, haptic; *, significant difference; n.s., not significant.
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based on texture differences between stimuli, shown in Fig. 6
(see Section 2). The mean proportion of texture-based bound-
aries for the 10 subjects in the visual condition (M=26%,
S.E.=10%) and for the 10 subjects in the haptic condition
(M=55%, S.E.=8%) was found to be significantly different
(#f[17.5]1=2.2, p=0.04; two-sample, two-tailed #-test for inde-
pendent samples with unequal variances), indicating that sub-
jects in the visual condition relied more on shape in their
categorization decisions than subjects in the haptic condition.
No significant difference was found between the mean propor-
tion of texture-based boundaries used in the visual condition
and in the bimodal condition (M =38%, S.E.=8%) nor was a
significant difference found between the bimodal and haptic con-
ditions (visual-bimodal: #[17.3] = 0.98, p > 0.1; bimodal-haptic:
f[18]=1.4, p>0.1). Thus, there was no statistical evidence in
favour of more “visual-like” or more “haptic-like” use of stim-
ulus dimensions in bimodal categorization, however the mean
weight for bimodal categorization (38% texture-based bound-
aries) lay between the values obtained in the unimodal conditions
(26% for vision and 55% for touch).

Next, we tested the hypothesis that weights came from a dis-
tribution with a mean of 50%), i.e., that subjects based category
boundaries equally often on shape and texture differences. A
single-sample #-test rejected this hypothesis for the visual condi-
tion (#[9] =2, p=0.04), but not for the haptic (#[9]=0.6, p>0.1)
or bimodal conditions (1[9] = 1.4, p>0.1). Strikingly, this is the
same pattern which we observed for the similarity tradeoff val-
ues: shape dominated texture for visual categorization while
shape and texture were roughly evenly weighted for both hap-
tic and bimodal categorization. There was a large amount of
individual variation in the relative importance of shape/texture

V: Similarity

for categorization across all modalities (Fig. 6). However, 7/10
haptic subjects weighted texture as heavily or more heavily than
shape, 9/10 visual subjects weighted shape as or more heavily
than texture, and 6/10 bimodal subjects exhibited fairly equal
weighting of the two properties, a pattern which supports the
outcome of the 7-test. The remaining variation could be due to
the measure we computed, to the design of the free sorting task,
or to intrinsic modality effects. Further studies involving differ-
ent categorization tasks are needed to disentangle these factors.

2.3. Results of subject questionnaires

Fig. 7 shows the frequency with which subjects mentioned
various object features when describing the objects (left col-
umn) and when explaining how they performed similarity ratings
(centre column) and free sorting (right column). When subjects
were asked to describe the objects, the frequency with which
they mentioned various object features depended on modality.
Shape was mentioned by 10/10 subjects in the visual condition
(V), 9/10 subjects in the visuohaptic condition (VH), and 3/10
subjects in the haptic condition (H); texture was mentioned by
5/10 subjects (V), 10/10 subjects (VH), and 9/10 subjects (H);
material properties were mentioned by 1/10 subjects (V), 2/10
subjects (VH), and 5/10 subjects (H); colour was mentioned by
4/10 subjects (V), 2/10 subjects (VH), and 0/10 subjects (H).

Interestingly, although subjects described the objects using
a variety of features, they only mentioned shape and texture
when asked to explain how they had performed the similarity
and categorization tasks. For haptic subjects, there was a par-
ticularly striking difference in that 10/10 subjects mentioned
shape for the similarity task and 9/10 subjects mentioned shape
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Fig. 7. Verbal mention of object properties for object descriptions, similarity judgments, and categorization. Shape responses include references to both global and
part shape properties. Two haptic subjects also mentioned temperature when describing the objects. V, visual; VH, visuohaptic; H, haptic.
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Fig. 8. Verbal mention of global shape (left) and part shape (right) for object descriptions, similarity judgments, and categorization. V, visual; VH, visuohaptic; H,

haptic.

for the categorization task, even though only 3/10 mentioned
it when describing the objects. One explanation could be that
spontaneous description better reflects intrinsic modality fea-
ture biases (i.e., texture and material properties for haptics),
whereas descriptions of features for similarity and categoriza-
tion are more strongly influenced by the experimental task and
stimulus set.

To help identify which aspects of the stimulus geometry play
a role in the perceptual dimension “shape”, we separated the
subjects’ references to shape into two categories: part shape and
global shape (see Section 2). Global shape (Fig. 8, left) was men-
tioned more often by visual than by haptic subjects for all tasks
(description: 9/10 (V) and 1/10 (H); similarity: 9/10 (V) and
4/10 (H); categorization: 7/10 (V) and 5/10 (H)). This could be
explained by differing amounts of effort involved in extracting
global shape in the two conditions: in particular, the contour-
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following procedure causes haptic extraction of global shape
to be slow and memory-intensive. Allowing subjects to enclose
the objects, for example, would have provided a quicker, albeit
cruder estimate of global shape (Lederman & Klatzky, 1993)
and might have increased the mention of global form. Interest-
ingly, bimodal subjects’ mention of global shape falls between
the values for visual and haptic conditions (description: 7/10
(VH); similarity: 7/10 (VH); categorization: 5/10 (VH)). Part
shape (Fig. 8, right) was consistently mentioned by subjects in
all modality conditions when describing how categorization was
performed (8/10 (V), 9/10 (VH), and 8/10 (H)), which is consis-
tent with the recognized importance of part information in basic
level categorization (Tversky & Hemenway, 1984) and with the
importance of part information in haptic categorization by blind
and sighted children (Morrongiello, Humphrey, Timney, Choi,
& Rocca, 1994).
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Fig. 9. Similarity and categorization. Left: histogram showing the number of stimulus pairs placed in the same category (grey) and the number of stimulus pairs
placed in different categories (white) as a function of pair-wise similarity. Right: mean probability of subjects (all modality conditions, N=30) placing a category
boundary between adjacent stimulus pairs as a function of pair-wise similarity. Error bars represent standard error.
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2.4. Results on the connection between similarity and
categorization

Fig. 9 (left) shows the number of stimulus pairs which were
placed into either the same or different categories, sorted by
similarity. The highest frequency of stimulus pairs being placed
in different categories occurs for similarity ratings of 3 and 4,
while the highest frequency of stimulus pairs being placed in the
same category occurs for similarity ratings of 6. Note that the
decrease in same-category occurrences for a similarity value of
7 and the decrease in different-category occurrences for similar-
ity values of 1 and 2 are due to the relative infrequency of these
similarity values; the relative proportion of different-category to
same-category occurrences is indeed a monotonically decreas-
ing function of similarity.

Fig. 9 (right) shows the mean probability of subjects setting
a category boundary between shape or texture neighbours in the
stimulus map as a function of their perceptual similarity. Note
that the fact that subjects consistently recover ordinal shape and
texture structure in the stimulus set justifies the use of these
adjacency relationships in the calculation of this measure. Here,
we observe that the probability of subjects violating such an
adjacency relationship decreases monotonically as a function of
similarity. Again, the large amount of variance in the measure
at a similarity value of 1 is due to the fact that adjacent stimulus
pairs were rarely rated with a similarity of 1.

A further connection between similarity and categorization
is that modality had the same effect on the relative weight of
stimulus dimensions in both tasks. Shape was weighted more
heavily than texture when similarity and categorization were
performed visually, whereas shape and texture were weighted
roughly evenly when the tasks were performed either haptically
or bimodally (Figs. 4 and 6).

3. General discussion
3.1. Modality-dependent weighting of stimulus dimensions

‘We found that the relative importance of shape and texture for
judging similarities between objects and for creating categories
of objects varied systematically according to modality. For both
similarity and categorization, shape dominated texture in the
visual condition, while texture and shape were evenly weighted
in the haptic condition. In the bimodal condition, we found tex-
ture and shape to be weighted evenly on average for both our
similarity and categorization tasks. This finding is in agreement
with Klatzky et al. (1987), in which subjects were instructed to
sort wafers varying in shape, texture, size, and hardness based
on their similarity. Substance dimensions (hardness and texture)
were most salient after haptic exploration while saliency was
evenly distributed across dimensions when subjects used both
touch and vision. When subjects were explicitly instructed to use
visual imagery to compare the objects after haptic exploration,
shape became overwhelmingly dominant.

The results of this study replicate our previous results on uni-
modal shape and texture weights in similarity judgments (Cooke
et al., 2005); together, these studies provide clear evidence that

the perceptual modality used to interact with objects has an effect
on object representations. The fact that we obtained the same pat-
tern of similarity-based weights as in our previous study despite
differences in the experimental conditions (e.g., stimuli in the
previous visual condition were 2D images presented on a com-
puter monitor, with shorter presentation times; haptic stimuli lay
flat on a table instead of upright) indicates that the weight pat-
tern we obtained is robust against these variations. Interestingly,
Lakatos and Marks (1999) reported that local shape initially
played an important role relative to global shape in haptic simi-
larity ratings of 3D objects but that the importance of local shape
decreased when exploration time was increased. Variables such
as exploratory procedure, exploration time, and viewpoint need
to be systematically manipulated in order to characterize the
sensitivity of modality weights to such factors.

3.2. Convergence of stimulus representations

Positing a single, multimodal stimulus representation with
modality-dependent weights provided the same goodness-of-fit
to our similarity data as three, modality-specific representa-
tions. This suggests that the modalities make use of similar
(or even perhaps common) object representations for the pur-
poses of judging similarity. The idea that object information
coming from touch and vision converges or at least overlaps in
a multimodal object representation agrees with evidence from a
number of visuohaptic processing studies using brain imaging
techniques (e.g., Amedi, Jacobson, Hendler, Malach, & Zohary,
2002; Amedi, Malach, Hendler, Peled, & Zohary, 2001; Forti
& Humphreys, 2005; James et al., 2002; Pietrini et al., 2004),
and psychophysics (e.g., Easton, Greene, & Srinivas, 1997;
Easton, Srinivas, & Greene, 1997; Norman, Norman, Clayton,
Lianekhammy, & Zielke, 2004; Reales & Ballesteros, 1999).
Elucidating the computational principles which govern multi-
modal integration is an important area of current research (Ernst
& Biilthoff, 2004). Early studies of visuohaptic integration pro-
posed that vision simply dominated touch when both modalities
were available (Rock & Victor, 1964). In this study, we did not
find evidence for visual capture for similarity and categoriza-
tion tasks. Instead, our results in the bimodal condition appear
to be more compatible with weighted averaging models of mul-
tisensory integration. In one such model (Ernst & Banks, 2002),
the bimodal estimates of stimulus properties are weighted by the
reliability of the unimodal estimates. A variant of our experiment
in which the reliability of unimodal estimates is manipulated in
the bimodal condition (e.g., by having subjects wear gloves, blur-
ring the visual stimulus, or showing different stimuli in haptic
and visual conditions) could be used to test whether this model is
capable of predicting integration effects for similarity judgments
and category construction.

3.3. Connection between similarity and categorization in a
multimodal setting

In this study, we were able to establish a connection between
similarity and categorization: similarity was lower for pairs
which subjects placed in different categories and higher for pairs
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which subjects placed in the same category. In addition, when we
made use of the fact that subjects perceived nearest-neighbour
adjacencies in the stimulus set (e.g., between two objects which
differ only in terms of one step along either the shape or texture
dimensions), the probability of crossing such an adjacency with
a category boundary decreased as a function of the perceptual
similarity between the objects. We also found that the relative
weight of shape and texture varied with modality in the same
way for our similarity and categorization tasks. One explanation
for this could be that modality-specific biases affect both tasks
(or the representations upon which they operate) in a uniform
fashion. Modality-specific biases towards features can arise due
to a number of factors, including the relative discriminability of
features, the relative reliability of feature value estimates, direct-
ing of attention, past experience, and ecological validity (Ernst
& Biilthoff, 2004; Guest & Spence, 2003; Lederman, Summers,
& Klatzky, 1996). The effects of modality bias in determining
the relative weights of features in object representations may
co-exist or compete with the effects of top—down category learn-
ing (Goldstone & Steyvers, 2001; Nosofsky, 1986; Sigala &
Logothetis, 2002).

Despite the connection we found between performance in
similarity and categorization tasks, we were not able to demon-
strate a strong relationship between the two. We hypothesized
that a strong connection between similarity and categorization
might enable us to predict subjects’ free sorting categories using
the clusters of stimuli in their individual similarity-based stim-
ulus spaces. However, this proved to be more difficult than
expected. In several cases, subjects categorized the stimuli based
on rules which corresponded to unidimensional decision bound-
aries along shape or texture levels. Although these decision
boundaries were compatible with the configurations recovered
from the subjects’ similarity data in a certain number of cases,
they clearly contradicted subjects’ similarity-based stimulus
representations in several other cases. This result was surpris-
ing to us given the large amount of evidence that perceptual
categorization is intrinsically related to perceptual similarity
(Goldstone, 1994; Hahn & Ramscar, 2001).

The tendency for subjects to sort according to unidimensional
rules as opposed to similarity could have been an artifact of the
free sorting task, as pointed out by one of our reviewers. A num-
ber of studies in the cognitive psychology literature (e.g., Ahn
& Medin, 1992; Imai & Garner, 1965; Medin, Wattenmaker, &
Hampson, 1987), have reported the use of single-feature rules in
free sorting tasks. Interestingly, Regehr and Brooks (1995) found
that when stimuli were presented all at once (the traditional
“array procedure” for free sorting), subjects used unidimen-
sional rules, but when stimuli were presented sequentially and
matched to standards of Categories A and B (present at all times),
subjects suddenly began sorting according to similarity. A recent
study showed that the match-to-standards procedure only led to
similarity-based sorting for a perceptually simple stimulus set (a
sequence of line drawings of basic geometrical shapes) whose
dimensions were spatially separated (Milton & Wills, 2004).
For a more perceptually complex stimulus set (schematic butter-
flies) with spatially co-located features, subjects again resorted
to unidimensional rules. These results are consistent with our

findings considering that our 3D object stimuli are “percep-
tually complex” and vary in terms of shape and texture, two
features which are spatially co-located. However, it is impor-
tant to note that our task was neither a match-to-sample nor a
classical array procedure; rather, subjects had to construct their
categories and then sequentially assign stimuli to them. This
may have imposed a significant working memory load which is
not present in the other tasks. One study of memory-based cat-
egory construction found that although sensitivity to similarity
relationship was observed in perceptual sorting, subjects pre-
ferred to sort according to single dimensions in memory-based
tasks (Wattenmaker, 1992). Thus, the memory requirements of
our task may have been another factor which encouraged the
use of unidimensional rules. A final factor could be that our
stimuli only varied along two dimensions; it has been shown
that subjects tend to classify using similarity when objects vary
simultaneously along many dimensions, but prefer unidimen-
sional rules when objects vary along fewer dimensions (Smith,
1981). Further studies are needed to disentangle the effects of
stimulus dimensions and task design on category construction
and to determine whether, under certain circumstances, catego-
rization can be predicted from similarity in a multimodal setting.

3.4. A new approach to the study of visuohaptic processing

This study makes use of a novel combination of computer
graphics, 3D printing technology, and MDS techniques pre-
sented in Cooke et al. (2005). In recent years, studies of visual
perception have profited from advances in computer graphics
and virtual reality, but studies of haptic perception have been
hampered by the lack of adequate haptic presentation devices
and the paucity of techniques available to easily create artificial,
controlled three-dimensional stimuli. For example, stimuli have
been made by precision-cutting (Klatzky et al., 1987; Lakatos &
Marks, 1999), casting (Norman et al., 2004), moulding by hand
(Forti & Humphreys, 2005; James et al., 2002), or manually
assembling toy bricks (Forti & Humphreys, 2005; Newell, Ernst,
Tjan, & Biilthoff, 2001). The technique used here facilitates the
production and reproduction of novel, 3D objects and allows for
a high degree of control over object properties. In addition, the
combination of parametrically-varying stimuli and MDS tech-
niques allows for intuitive visualizations and quantification of
relative differences in feature weights. Another advantage of this
approach is that it can be used to generate stimulus maps and
dimension weights using any kind of proximity data gathered on
parametrically varying stimuli. For example, maps and dimen-
sion weights generated by computational models of the visual
system can be tested against those provided by human viewers,
as we have demonstrated in Cooke et al. (2005), and the same
could conceivably be done to evaluate computational models
of the haptic system and/or models of visuohaptic perception.
Given its broad potential applicability, the method offers a valu-
able tool for research in multisensory processing.

4. Summary and outlook

This study provides clear evidence that the perceptual modal-
ity used to interact with objects affects the representations used
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for similarity judgments and categorization. The relative impor-
tance of shape and texture varied systematically according to
modality for both our similarity and categorization tasks: shape
was more important than texture when tasks were performed
using vision only, whereas texture and shape were roughly
equally important when tasks were performed either haptically
or bimodally. We were able to model these differences as a
modality-dependent rescaling of a single map, suggesting simi-
lar or perhaps even common multimodal representations.

The study also demonstrates a connection between similar-
ity and categorization within a multisensory context. The same
basic modality effects on dimension weights were observed for
similarity and categorization tasks; in addition, the probability
of within-category membership increased with perceptual simi-
larity, while the probability of a category boundary being placed
between neighbouring stimuli decreased with similarity. The
lack of a stronger connection between similarity space and cat-
egory structure was discussed in relation to the free sorting task
which may have encouraged the use of unidimensional rules;
additional studies involving are required to test this hypothesis.

Further work is needed to generalize these results by apply-
ing the same methodology to new stimulus sets which vary,
for example, in terms of part—whole configuration or in terms
of the scales at which macrogeometrical and microgeometrical
manipulations are applied. Systematic variation of exploratory
procedures and viewpoint will also be important steps towards
the goal of understanding the cognitive consequences of multi-
sensory object perception.

Acknowledgements

The authors wish to thank Fiona Newell and Douglas Cun-
ningham for helpful conversations, Michael Renner and Martin
Breidt for technical assistance with stimulus production, as well
as Karin Bierig and Bianca Arsene for their role in running the
experiments. Informed consent was obtained from all subjects
who participated in the experiments.

References

Ahn, W., & Medin, D. (1992). A two-stage model of category construction.
Cognitive Science, 16(1), 81-121.

Amedi, A., Jacobson, G., Hendler, T., Malach, R., & Zohary, E. (2002).
Convergence of visual and tactile shape processing in the human lateral
occipital complex. Cerebral Cortex, 12, 1202-1212.

Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-
haptic object-related activation in the ventral visual pathway. Nature
Neuroscience, 4(3), 324-330.

Borg, 1., & Groenen, P. (1997). Modern multidimensional scaling. Springer.

Carroll, J., & Chang, J. (1970). Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of “Eckart—Young”
decomposition. Psychometrika, 35, 283-319.

Cooke, T., Steinke, F., Wallraven, C., & Biilthoff, H. (2005). A
similarity-based approach to perceptual feature validation. In APGV
2005—Symposium on applied perception in graphics and visualization.

Cox, T., & Cox, M. (2001). Multidimensional scaling (2nd ed.). Chapman &
Hall.

Easton, R., Greene, A., & Srinivas, K. (1997). Transfer between vision and
haptics: Memory for 2-d patterns and 3-d objects. Psychonomic Bulletin
& Review, 4(3), 403-410.

Easton, R., Srinivas, K., & Greene, A. (1997). Do vision and haptics
share common representations? Implicit and explicit memory within and
between modalities. Journal of Experimental Psychology. Learning, Mem-
ory, and Cognition, 23(1), 153-163.

Edelman, S. (1999). Representation and recognition in vision. MIT Press.

Ernst, M., & Banks, M. (2002). Humans integrate visual and haptic infor-
mation in a statistically optimal fashion. Nature, 415, 429-433.

Ermnst, M., & Biilthoff, H. (2004). Merging the senses into a robust percept.
Trends in Cognitive Science, 8(4), 162—-169.

Forti, S., & Humphreys, G. (2005). Cross-modal visuo-tactile matching in
a patient with a semantic disorder. Neuropsychologia, 43(11), 1568—
1579.

Garbin, C. (1988). Visual-haptic perceptual nonequivalence for shape infor-
mation and its impact upon cross-modal performance. Journal of Exper-
imental Psychology. Human Perception and Performance, 14(4), 547—
553.

Garner, W. (1974). The processing of information and structure. Maryland:
Lawrence Erlbaum Associates.

Goldstone, R. (1994). The role of similarity in categorization: Providing a
groundwork. Cognition, 123, 125-157.

Goldstone, R., & Steyvers, M. (2001). The sensitization and differentiation of
dimensions during category learning. Journal of Experimental Psychology.
General, 130(1), 116-139.

Guest, S., & Spence, C. (2003). Tactile dominance in speeded discrimination
of textures. Experimental Brain Research, 150(2), 201-207.

Hahn, U., & Ramscar, M. (Eds.). (2001). Similarity and categorization.
Oxford University Press.

Hollins, M., Faldowski, R., Rao, S., & Young, F. (1993). Perceptual dimen-
sions of tactile surface texture: A multidimensional scaling analysis.
Perception Psychophysics, 54(6), 687-705.

Imai, S., & Garner, W. (1965). Discriminability and preference for attributes
in free and constrained classification. Journal of Experimental Psychology,
69, 596-608.

James, T., Humphrey, G., Gati, J., Servos, P, Menon, R., & Goodale, M.
(2002). Haptic study of three-dimensional objects activates extrastriate
visual areas. Neuropsychologia, 40, 1706-1714.

Klatzky, R., Lederman, S., & Reed, C. (1987). There’s more to touch than
meets the eye: The salience of object attributes for haptics with and
without vision. Journal of Experimental Psychology. General, 116(4),
356-369.

Lakatos, S., & Marks, L. (1999). Haptic form perception: Relative salience of
local and global features. Perception & Psychophysics, 61(5), 895-908.

Landau, B., & Leyton, M. (1999). Perception, object kind, and object naming.
Spatial Cognition and Computation, 1, 1-29.

Lederman, S., & Klatzky, R. (1993). Extracting object properties through
haptic exploration. Acta Psychology, 84, 29-40.

Lederman, S., Summers, C., & Klatzky, R. (1996). Cognitive salience of
haptic object properties: Role of modality-encoding bias. Perception, 25,
983-998.

Medin, D., & Schaffer, M. (1978). Context theory of classification learning.
Psychological Review, 85(3), 207-238.

Medin, D., Wattenmaker, W., & Hampson, S. (1987). Family resemblance,
conceptual cohesiveness, and category construction. Cognitive Psychol-
ogy, 19(2), 242-279.

Milton, F.,, & Wills, A. (2004). The influence of stimulus properties on
category construction. Journal of Experimental Psychology. Learning,
Memory, and Cognition, 30(2), 407-415.

Morrongiello, B., Humphrey, G., Timney, B., Choi, J., & Rocca, P. (1994).
Tactual object exploration and recognition in blind and sighted children.
Perception, 23(7), 833-848.

Murphy, G., & Medin, D. (1985). The role of theories in conceptual coher-
ence. Psychological Review, 92(3), 289-316.

Newell, F., Ernst, M., Tjan, B., & Biilthoff, H. (2001). Viewpoint dependence
in visual and haptic object recognition. Psychological Science, 12(1),
37-42.

Norman, J., Norman, H., Clayton, A., Lianekhammy, J., & Zielke, G. (2004).
The visual and haptic perception of natural object shape. Perception &
Psychophysics, 66(2), 342-351.



+ Model

12 T. Cooke et al. / Neuropsychologia xxx (2006) xxx—xxx

Nosofsky, R. (1986). Attention, similarity, and the identification—categoriza-
tion relationship. Journal of Experimental Psychology. General, 115(1),
39-57.

Nosofsky, R. (1992). Similarity scaling and cognitive process models. Annual
Review of Psychology, 43, 25-53.

Pietrini, P., Furey, M., Ricciardi, E., Gobbini, M., Wu, W., Cohen, L., et
al. (2004). Beyond sensory images: Object-based representations in the
human ventral pathway. Proceedings of the National Academy of Sciences
of the United States of America, 101, 5658-5663.

Reales, J., & Ballesteros, S. (1999). Implicit and explicit memory for visual
and haptic objects: Cross-modal priming depends on structural descrip-
tions. Journal of Experimental Psychology. Learning, Memory, and Cog-
nition, 25(3), 644—663.

Regehr, G., & Brooks, L. (1995). Category organization in free classification:
The organizing effect of an array of stimuli. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 21(1), 347-363.

Rock, 1., & Victor, J. (1964). Vision and touch: An experimentally created
conflict between the two senses. Science, 143, 594-596.

Rosch, E., & Mervis, C. (1975). Family resemblances: Studies in the internal
structures of categories. Cognitive Psychology, 7, 573-605.

Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. (1976).
Basic objects in natural categories. Cognitive Psychology, 8, 382—439.
Shepard, R., & Cermak, G. (1973). Perceptual-cognitive explorations of a
toroidal set of free-form stimuli. Cognitive Psychology, 4, 351-377.
Sigala, N., & Logothetis, N. (2002). Visual categorization shapes feature

selectivity in the primate temporal cortex. Nature, 415, 318-320.

Smith, L. (1981). Importance of the overall similarity of objects of adults’ and
children’s classifications. Journal of Experimental Psychology. Human
Perception and Performance, 7(4), 811-824.

Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal
of Experimental Psychology. General, 113(2), 169-197.

Wattenmaker, W. (1992). Relational properties and memory-based category
construction. Journal of Experimental Psychology. Learning, Memory, and
Cognition, 18(5), 1125-1138.

Young, F., & Harris, D. (2003). ALSCAL. In SPSS 12.0 command syntax
reference (pp. 100-116). Chicago, IL: SPSS.



Multidimensional Scaling Analysis of Haptic
Exploratory Procedures

THERESA COOKE

and

CHRISTIAN WALLRAVEN

and

HEINRICH H. BULTHOFF

Max Planck Institute for Biological Cybernetics

Previous work in real and virtual settings has shown that the way in which we interact with
objects plays a fundamental role in the way we perceive them. This paper uses multidimensional
scaling (MDS) analysis to further characterize and quantify the effects of using different haptic
exploratory procedures (EPs) on perceptual representations. In Experiment 1, twenty subjects
rated similarity on a set of nine novel, 3D objects varying in shape and texture after either
following their contours, laterally rubbing their centers, gripping them, or sequentially touching
their tips. MDS analysis was used to recover perceptual maps of the objects and relative weights of
perceptual dimensions from similarity data. Both the maps and relative weights of shape/texture
properties were found to vary as a function of the EP used. In addition, large individual differences
in the relative weight of shape/texture were observed. In Experiment 2, 17 of the previous
participants repeated Experiment 1 after an average of 105 days. The same patterns of raw
similarity ratings, perceptual maps, dimension weights, and individual differences were observed,
indicating that perceptual similarities remained stable over time. The findings underscore the role
of hand movements and individual biases in shaping haptic perceptual similarity. A framework for
validating multimodal virtual displays based on the approach used in the study is also presented.

Categories and Subject Descriptors: H.5.1 [Information Interfaces and Presentation]: Multimedia Information
Systems—Artificial, augmented and virtual systems, evaluation/methodology; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Haptic I/O, evaluation/methodology

General Terms: Measurement, Design, Reliability

Additional Key Words and Phrases: haptic, exploratory procedure, shape, texture, similarity,
multidimensional scaling

1. INTRODUCTION

This study investigates how the way in which we interact with objects changes the way we
perceive them. More specifically, it addresses how haptic exploratory procedures (EPs) af-
fect the perception of object similarities. A number of validation studies have been carried
out in the haptic virtual reality community, but many have focused on optimizing device
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parameters. However, given the tight coupling between perception and action in haptics, it
is critical to understand how the action parameters of a system’s user affect the perceptual
outcome. There is a large body of work by Klatzky & Lederman concerning the role of
EPs in real-world object recognition and classification (see [Lederman and Klatzky 1993]
for a review). In virtual environments, Klatzky & Lederman have also studied the effects
of exploratory factors and tool parameters [Klatzky et al. 2003]. The present paper repre-
sents an extension of Klatzky & Lederman’s work on exploratory procedures in which the
perceptual effects of changing EPs are visualized and quantified using a multidimensional
scaling (MDS) framework, recently developed for studies of crossmodal human perception
and validation of computer vision algorithms [Cooke et al. 2005; Cooke et al. 2006]. In
this paper, we also discuss how the MDS framework can be used as a tool for comparing
and benchmarking perception in real and virtual environments.

In Experiment 1, twenty participants haptically explored pairs of novel, 3D objects
which varied in shape and texture (Figure 1) and rated the similarity between pairs of
objects. Each participant explored the objects using four different EPs. Three of the
EPs provided access to both shape and texture information (contour-following (CF), se-
quential exploration of object tips (TP) and enclosure or gripping (GR)), while the fourth
EP, lateral rubbing motion along the surface (LM), provided access to texture information
only. Similarity data were analyzed using MDS, resulting in perceptual maps of stimuli
and individual-specific dimension weights. Maps resulting from the use of different EPs
were compared to test whether a change in haptic exploratory procedure affected partici-
pants’ perceptual representation of the objects. The results show that using different EPs
to explore a set of objects does indeed affect representations, but also that there are large
individual differences, specifically in the relative weights of object properties. In Exper-
iment 2, we sought to test the stability of these results over time. Participants in the first
experiment returned after several months to repeat the experiment. Consistent patterns
of raw similarity, perceptual maps, and individual weights were observed, indicating that
perceptual similarities remained stable over time.

The paper is organized as follows: we first review related work on exploratory proce-
dures, then describe the methods used to carry out and analyze results of the psychophys-
ical experiments. Results and their relevance for haptic interface design are discussed.
Finally, we present a framework for applying similarity-based methods to study human
perception in real and virtual environments and to validate haptic devices.

2. RELATED WORK ON EXPLORATORY PROCEDURES

[Lederman and Klatzky 1987; 1993] carried out seminal work on exploratory procedures,
classifying typical hand movements into six types (lateral motion, pressure, static contact,
holding, enclosure, and contour following) and characterizing each type based on factors
such as compatibility with other EPs and execution speed. Of particular interest for this
study is their demonstration that the choice of EP determines the nature of the informa-
tion which can be extracted about an object. For each EP, they estimated EP-to-property
weightings which represent the extent to which an object property can be extracted using
a given EP. For instance, lateral motion, a back-and-forth rubbing motion of the fingers
over a surface, is best-suited for extracting texture, but provides little or no shape informa-
tion. Enclosing objects in the hand provides information about global shape and texture,
but little exact shape information. Contour-following provides access to texture and global
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Fig. 1. Stimuli: The stimuli consisted of 9 novel, 3D objects varying in terms of microgeometry (’texture”) and
macrogeometry (“shape”). Objects were created with 3D modelling software and manufactured in plastic using
a 3D printer. Along the microgeometry axis, the objects’ bumpy texture gradually becomes smoother. Along the
macrogeometry axis, sharp angles in objects’ meshes are relaxed.

shape, while also providing the most information about an object’s exact shape.

The effect of using two different exploratory procedures to judge similarities amongst
a set of objects was examined in [Lakatos and Marks 1999]. Subjects explored 16 geo-
metric objects varying in local and global geometry, using either a contour-following or
an enclosure procedure and then rated the similarity between pairs of objects. Ratings
were comparable in both conditions and the authors concluded that neither EP (contour-
following or enclosure) was exclusively associated with a differential emphasis on local
versus global shape. However, they found an effect of exploration time on the weighting
of local vs. global shape: subjects were biased towards local shape for exploration times
of 1s and 4s, but this effect decreased significantly for exploration times of 8s and 16s, i.e.,
global shape became more important for judging similarity when more time was provided
for exploration.

The role of exploratory procedures (or modes of interaction) has also been addressed in
haptic perception involving haptic devices. In [Dostmohamed and Hayward 2005], users
interacted with a virtual fingerpad display using one of four modes (one or two finger,
active or semi-active exploration). They found that curvature discrimination varied as a
function of interaction mode: active, two-finger exploration offered higher sensitivity than
active one-finger exploration and one/two-finger semi-active exploration.

In this study, we demonstrate how multidimensional scaling (MDS) techniques together
with a parametrically-varying stimulus set can be used to gain further insight into the per-
ceptual consequences of changes in exploratory procedures. MDS refers to a family of
algorithms which operate on proximity data taken between pairs of objects. The output
is a configuration of objects embedded in a multidimensional space. Psychologists have
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used MDS to explore perceptual representations of visually and haptically explored ob-
ject sets e.g., [Shepard and Cermak 1973; Garbin and Bernstein 1984; Hollins et al. 1993;
Bergmann et al. 2006; Cooke et al. 2006]. The technique has also found a large following
in domains such as marketing [Carroll and Green 1997] and knowledge mapping [Chen
2003] because it allows for the identification of important psychological dimensions of
stimulus variation (e.g., dimensions along which buyers differentiate amongst competing
products) and quantification of perceptual distances between stimuli (e.g., how “closely-
related” one field of research is to another). In cognitive psychology, the inputs usually
consist of human similarity ratings taken over a set of objects; the output configuration
is then interpreted as a map of the objects in a psychological space which explains the
similarity data [Borg and Groenen 2005].

MDS analysis provides the following types of information about the psychological rep-
resentation of stimuli:

(1) how many dimensions of variation in the stimuli are apparent to the participants;

(2) whether these dimensions correspond to properties which were deliberately being ma-
nipulated;

(3) whether one or more unexpected perceptual dimensions were also apparent to the par-
ticipants;

(4) the relative weights of the psychological dimensions;

(5) interstimulus distances in the psychological space.

The goals of this paper are to use MDS to gain new, quantitative insight into the specific
question of how exploratory procedures shape the perceptual representation of objects and
the more general question of how MDS approaches can be applied to study human percep-
tion in both real and virtual environments.

3. METHODS

This section describes the stimuli used in the experiments, the experimental procedure, and
MDS analysis.

3.1 Stimuli: Novel 3D Objects

A family of nine novel, 3D objects (Figure 1) was used in the experiments. The objects
were designed in the 3D graphics software package 3D Studio Max (3DS) and manufac-
tured using a 3D printer (Dimension 3D Printer, Stratasys, Minneapolis, USA). The printed
3D models were made of hard, white, opaque plastic (acrylnitrile butadene styrene). The
objects were 9.0 +/- 0.1 cm wide, 8.3 +/- 0.2 cm high, and 3.7 +/- 0.1 cm deep and weighed
about 40 g.

Each object consisted of three parts connected to a center sphere, defining the object’s
macrogeometry (‘“‘shape”), plus a displacement map applied to the 3D mesh, defining the
object’s microgeometry (“texture”). The displacement map was made up of repeated con-
ical elements with base widths of 3mm, peak widths of 2mm, maximum height of 2mm
from the surface of the object, and inter-element spacing of 3-5mm. As such, the texture
can be considered as a “macrotexture” encoded by SAI mechanoreceptors [Klatzky and
Lederman 2003]. Variations amongst the objects were generated by smoothing object ge-
ometry at two scales, microgeometrical and macrogeometrical. Microgeometrical smooth-
ing was achieved by decreasing the amount of displacement of 3D vertices caused by the
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displacement map. Macrogeometrical smoothing was accomplished via the 3DS “Relax”
operator, which moves vertices towards a local average 3D position, thereby gradually re-
ducing sharp angles in the macrogeometry. This resulted in changes in macrogeometry at
a scale of about 1 cm?. Macrogeometrical changes at this scale can be extracted via SAI
mechanoreceptors [Srinivasan and LaMotte 1991], by integrating local changes in curva-
ture across the duration of finger motion [Pont et al. 1999], and by using kinesthetic cues
in muscle spindles generated during exploration [Klatzky and Lederman 2003].

Note that manipulations created input dimensions corresponding to parameters in the
3D software package, but this does not imply that these dimensions will necessarily be re-
covered in the perceptual output space. Revealing the dimensions which are important for
human perception is precisely one of the reasons for performing MDS analysis of human
similarity ratings.

3.2 Experiment 1: Haptic Similarity Ratings with Naive Participants

Twenty naive, right-handed subjects (10 men, 10 women) were paid 8 Euros per hour
to participate in the experiment. Their task was to rate the similarities between pairs of
objects on a scale between 1 (low similarity) and 7 (high similarity) after exploring them
haptically. The same experimental setup was used in all conditions (Figure 2). Subjects
used a chin rest placed 40 cm away from a stand on which the objects were mounted. The
height of the chin rest was set such that the centre of the object was aligned with the line
of sight. A set of grooves and a section of rubber tubing on the mount piece ensured that
the objects were securely held in place in exactly the same upright position on every trial.
A black metal sheet stood between the subjects and the stand to obstruct their view of the
objects.

On each trial, the experimenter placed the first object on the stand, verbally instructed
the subject to start the exploration, counted to three using a stopwatch as a metronome,
and removed the object after 3s. The presentation time of 3s was chosen because it was
the minimum amount of time that subjects needed to perform the longest of the procedures
(contour-following) in a pilot experiment. The experimenter then replaced the first object
by a second object, instructed the subject to begin exploration, and removed the object
after 3s. The experimenter then waited for the subject’s response. Before the experiment,
subjects were sequentially presented with the two pairs of objects in the outermost corners
of the space, allowed to palpate each one in their hand for about 5s and told that these were
the largest differences they would encounter in the experiment.

The experiment consisted of four blocks of 45 randomized trials (each object was com-
pared once with itself and once with every other object resulting in 9 + (9-8)/2 = 45 trials)
and the order of appearance of stimuli was randomized over blocks. In each of the four
blocks, subjects explored the objects using a different procedure. The order of procedures
was randomly selected for each subject. The following procedures were used:

—contour-following (CF), which provides information about a broad range of object prop-
erties (texture, hardness, temperature, weight, volume, global shape, and exact shape),
while being specialized for the extraction of exact shape [Lederman and Klatzky 1993];

—enclosure/gripping (GR), which also provides information about a wide range of object
properties except exact shape, is relatively quick to perform, and is compatible with
almost all other EPs (e.g., you can apply pressure to test an object’s hardness while
gripping);
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—Ilateral motion (LM), a side-to-side rubbing restricted to the objects’ centres; lateral mo-
tion is known to be particularly well-suited to extraction of an object’s texture - by re-
stricting exploration to the objects’ centers, we expected to remove the ability to detect
changes in local shape;

—tip-touching (TP), a brief (1s) contact of each of the three object tips which we expected
to focus subjects’ attention on changes in shape.

Each exploration trial took about 20-30 seconds and the experiment ran for approxi-
mately two hours. At the end of the experiment, subjects were asked to write a short
description of the objects, to describe the properties they had used to judge similarity using
each EP, and to comment on whether they found any particular EP easier or harder to per-
form than the others. Just before leaving the experimental room, they viewed the objects
for a few minutes.

3.3 Experiment 2: Haptic Similarity Ratings with Experienced Participants

Seventeen of the original participants in Experiment 1 returned on average 105 days after
their initial visit (SE=4 days, MIN=69 days, MAX=130 days). Of the three remaining par-
ticipants in Experiment 1, two could not be reached to repeat the experiment and one was
excluded because he had not viewed the objects at the end of Experiment 1. Experiment 2
was conducted using the same protocol as Experiment 1, with three notable differences: 1)
in Experiment 2, participants had had prior experience with the similarity rating task and
the EPs; 2) in Experiment 2, participants had had prior haptic experience with the objects;
3) in Experiment 2, participants had had brief visual exposure to the objects (at the end of
Experiment 1). After Experiment 2, subjects were asked to rate the similarity of their expe-
rience in Experiment 2 as compared to Experiment 1 on a scale between 1 (very different)
and 5 (exactly the same) and explain their rating.

3.4 MDS Analysis of Similarity Data

Human similarity matrices were analyzed using two variants of MDS, both implemented
in the SPSS ALSCAL MDS package [Carroll and Chang 1970; Young and Harris 2003].!
The first variant we used was replicated MDS (RMDS), which allows for the simultaneous
analysis of several similarity matrices simultaneously; for a given dimensionality, it returns
a single map and a goodness-of-fit measure, Kruskal’s STRESS, a normalized difference
between the fitted distances and the observed proximities. Although establishing a thresh-
old for acceptable values of stress is often debated, Monte Carlo studies have demonstrated
that stress values below 0.2 indicate that the output configuration fits the similarity data
well [Cox and Cox 2001, p.79]; another common heuristic is to look for a sharp drop in
stress values, the so-called “statistical elbow” in the plot[Cox and Cox 2001, p.88]. RMDS
was used to analyze all the similarity matrices gathered using a given EP; maps and stress
values were computed for 1-4 dimensional solutions. The second MDS variant that was
used is called weighted MDS (WMDS), often referred to as individual differences scaling
(INDSCAL). WMDS takes in one input matrix of similarities per subject and returns a
“base” map of stimuli together with a set of weights for each subject, which specify how
the dimensions of the base map should be stretched in order to best fit the individual data.

IFor all analyses, the distance metric was taken as Euclidean, proximities were taken as ordinal measurements
(i.e., non-metric), and untying of tied proximities was allowed.
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Fig. 2. Experimental setup for haptic similarity ratings. The experimenter places the objects on a mount placed
behind an opaque curtain. The participant haptically explores the object using one of four exploratory procedures.

Low stress for a WMDS model indicates that the input matrices can be modelled by lin-
early rescaling a single underlying map. As input to WMDS, we used similarity matrices
gathered from all EP conditions and all subjects. This allowed us to test whether the model
of a base map and individual weights could account for our data and, if so, to compare
weights across participants and EPs.

3.5 Analysis of Debriefing Questionnaires

For Experiment 1, we computed statistics from debriefing questionnaires concerning 1)
salient object properties and 2) the ease of judging similarity using each EP.

The mention of object properties was tallied for two questions: 1) a question asking sub-
jects to describe the objects overall and 2) questions asking subjects to describe how they
made similarity judgments using each EP. For each question, we tallied the number of times
each subject had made at least one reference to object shape, texture, or other property (e.g.,
material, colour, temperature). We also distinguished between references to global shape
and references to local shape. References to part width, shape, or corner sharpness were
counted as references to local shape, while references to holistic shape terms such as “star-
like” were counted as references to global shape. When subjects mentioned a configuration
of parts, such as “three ends which extend from a ball-shaped center”, we counted this as
both a reference to global and part shape. When subjects simply referred to “shape”, this
was counted as an “unspecified shape property”.

Statistics on the ease of judging similarity for a given EP were computed by counting the
number of subjects who said that judging similarity was “easiest” or “easier” with a given
EP, as well as by counting the number of subjects who said that the task was “hardest” or
“harder” with a given EP. Some subjects provided an overall ranking of the four EPs from
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easiest to hardest; in this case, the score for easier/easiest was increased by one for the first
two EPs and the score for harder/hardest was increased by one for the second two EPs.?

4. EXPERIMENT 1: RESULTS AND DISCUSSION

We first discuss the results of performing RMDS analysis of EP-specific similarity data,
then turn to the results of WMDS analysis performed using all similarity data.

4.1 Experiment 1: EP-specific RMDS Analysis

RMDS solutions were computed separately over the set of 20 subject-specific similarity
matrices gathered using each EP. This was done for output dimensionalities of one through
four. Stress values are shown in Table I and corresponding maps are shown in Figure 3
(top row).

For the LM procedure, stress fell below 0.2 for a one-dimensional solution. From visual
inspection of the corresponding map, this single dimension corresponded to texture varia-
tion (all stimuli with the same texture level project to the same point in space and stimuli
are ordered according to texture level). The fact that texture alone sufficed to explain simi-
larity data in this condition was expected since lateral motion was restricted to the objects’
centres, which were extended areas of low curvature offering little object-specific shape
information. The dominance of texture was confirmed by the fact that this was the only
property mentioned by subjects when describing what they had felt while performing this
EP (Figure 4, left). In addition, subjects said that judging similarity was easiest using this
EP (Figure 4, right), with the reasons being that similarity only had to be judged on the
basis of a single dimension (particularly given the 3s time limit) and that the EP itself was
easy to perform.

For the other EPs (TP, CF, and GR), stress only fell below 0.2 for two-dimensional
RMDS solutions. From visual inspection of the corresponding maps, it can be seen that
the dimensions corresponded to the texture and shape dimensions manipulated in the input
stimulus space. Thus, subjects were able to perceive these manipulations and to recover
ordinal relationships amongst the objects in that space, as was also shown for an extended
set of 25 objects [Cooke et al. 2006]. Note that this ability of the human haptic perceptual
system is quite remarkable given the high dimensionality of the measurement space. How
did subjects themselves label these two dimensions of stimulus variation? In the question-
naires, they mentioned using variations in both shape and texture to judge similarity using
TP, CF, and GR (Figure 4, left). Most references to shape concerned local shape proper-
ties such as the sharpness of corners, the part width, or tip surface area, although when
using GR and CF, a few subjects did make use of global shape terms such as “Gesamt-
form” (shape of the whole). There was an interesting difference between the 2D maps
obtained using these EPs: in the contour-following and tip-touching maps, the three shape
rows were relatively equidistantly spaced, whereas in the gripping map, there was a larger
separation between the bottom row (objects with sharp edges in the macrogeometry) and
the middle row (objects with slightly rounded edges) than between the middle row and the
upper row (objects with even more rounded edges). This could be related to decreased
saliency of exact shape properties when gripping as opposed to contour-following or tip-
touching (pulling the top two rows together) [Lederman and Klatzky 1993]. Alternatively,

2Some subjects focused their answer on the comfort of performing the EP as opposed to the ease with which
similarity could be judged; these answers were not included here.
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EP 1D Stress | 2D Stress | 3D Stress | 4D Stress
CF 0.33 0.17 0.14 0.11
GR 0.33 0.19 0.15 0.12
LM 0.15 0.10 0.10 0.07
TP 0.40 0.18 0.13 0.11

Table . RMDS stress: Experiment 1. For each EP, the first stress value to fall below 0.2 has been bolded.

it could reflect a cognitive, categorical separation between sharp and smooth objects which
becomes more salient through gripping (pushing the bottom row away from the top two
rows).

In summary, the RMDS analysis showed that subjects were able to recover the full di-
mensionality as well as ordinal relationships in the input space when using CF, GR, and
TP; when using LM, subjects still recovered ordinal relationships in the input space, but
only along the texture dimension. Questionnaire data confirmed that the dimensions of
the perceptual output space could be labelled as shape and texture. Next, a WMDS anal-
ysis was used to compute comparable relative weights of these properties for similarity
judgments using the four different EPs.

CF (n=20) GR (n=20) LM (n=20) TP (n=20)
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Fig. 3. Configurations recovered using RMDS on EP-specific similarity data. Top row: Experiment 1. Bottom
row: Experiment 2. Note that for LM, the 1D MDS solution is shown. 2D solutions are shown for all other EPs.

4.2 Experiment 1: Global WMDS Analysis

A 2D WMDS solution was computed using all 80 similarity matrices (4 EPs x 20 subjects).
This yielded a stress value of 0.16, indicating that the model of a single underlying 2D map
with individually-adjusted weights provides a good fit to the data.
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EP 1D Stress | 2D Stress | 3D Stress | 4D Stress
CF 0.31 0.16 0.12 0.10
GR 0.35 0.19 0.15 0.10
LM 0.09 0.04 0.04 0.03
TP 0.34 0.17 0.13 0.11

Table II. RMDS stress: Experiment 2. For each EP, the first stress value to fall below 0.2 has been bolded.

60 20

Il Global Shape [l Sim. Task "Easier" or "Easiest"
Il | ocal Shape 181 Il Sim. Task "Harder" or "Hardest"f
Il Unspec. Shapej
I Texture 161 1

Il Vaterial
CF GR

Fig. 4. Debriefing questionnaire. Left: Object properties mentioned by subjects when describing the objects in
general and when describing what they felt using each EP. Right: Frequency with which subjects said that the
similarity task was either “easier/easiest” and “harder/hardest” using a given EP. (“Unspecified shape”: subject
used the word shape without specifying whether they were referring to local or global shape.)
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Fig. 5. Experiment 1: Weights per EP (left) and correlation between weights (right). For weight plot, total box
height is twice the standard error (n=20); total whisker height is twice the standard deviation.

Figure 5 (left) shows the relative weight of the two dimensions for all subjects as a
function of EP3 (TP: M=0.56, SE=0.04, CF: M=0.63, SE=0.03; GR: M=0.66, SE=0.05;
LM: M=0.92, SE=0.01).

3WMDS returns one weight per dimension, however these weights are constrained to lie on a circle in the 2D
case. Therefore, we report a single value representing the relative weight of the two dimensions. It is calculated as
the arc tangent of each point in the weight space, with 1 representing maximum weight of the first dimension and
0 representing maximum weight of the second dimension. For TP, GR, and CF, the first dimension corresponds
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Mean Values of WMDS Weights For TP, CF, and GR, mean relative weights ranged from
0.56 to 0.66. These values agree with subjects’ reports of having used both shape and
texture to judge similarity (Figure 4, left) and with the finding from RMDS analysis that
two dimensions are needed to account for similarity data in these three conditions. A two-
sided T-test was carried out to test the hypothesis that relative weights in the GR, CF, and
TP conditions came from distributions with equal means; the null hypothesis was not re-
jected (GR-CF: p>0.5, CF-TP: p=0.18, GR-TP: p=0.1). Therefore, when using any one of
the three EPs which enabled extraction of both shape and texture, subjects weighted shape
and texture in the same way on average. For the LM condition, a mean weight value of
0.92 was found, which corresponds with the finding that a single dimension corresponding
to texture sufficed to explain similarity data.

One surprising aspect of this analysis was that there was no significant difference be-
tween mean weights in the CF and TP conditions. We had assumed that shape was not
optimally extracted in the CF condition and designed the TP procedure to facilitate the
extraction of differences in the objects’ shape, expecting that this would result in a greater
reliance on shape in judging similarity. There may be two explanations for the ineffective-
ness of this manipulation:

(1) We were correct to assume that CF extracts shape information sub-optimally in this
context, but the new procedure we designed did not further facilitate shape extrac-
tion. One reason could be that it was more difficult to perform, as evidenced by high
difficulty ratings given to the TP procedure (Figure 4). The difficulty may have been
related to the EP’s discontinuous nature, making the physical movement more difficult
to execute and perhaps also causing spatial disorientation (one subject reported getting
“an incomplete, superficial impression” and “missing the centre of the object” while
using this EP).

(2) Alternatively, shape information may already have been optimally extracted by contour-
following and was not affected by the modifications made to create the TP procedure.
This could be tested by increasing the relative amount of shape variation in the stimu-
lus set and checking whether the use of shape increases by the same amount for both
EPs.

Variability in WMDS Weights Interestingly, the WMDS analysis revealed a large amount
of variability in the weights used by different subjects. The maximum absolute difference
in weights was 0.56 for TP, 0.54 for CF, and 0.73 for GR. We first investigated whether
variability could be linked to gender: although men did show a trend towards stronger
shape bias than women (men: M=0.59, SE=0.07; women: M=0.72, SE=0.05), the dif-
ference was not statistically significant (two-sided, two sample T-test at 95% confidence
level, p=0.14). To test whether biases could be related to an individual-specific but EP-
general factor, we tested the Pearson correlation between tradeoff values for each pair of
EPs. As shown in Figure 5 (right), significant correlations were found between all pairs
of EPs for which both shape and texture could be extracted. Thus, it appears that when
EPs allow for both properties to be extracted, individuals tend to weight the two proper-
ties similarly across EPs. If this is indeed the case, an interesting question is whether these

to texture and the second to shape. For LM, the first dimension corresponds to texture; no label can be attributed
to the second dimension, which likely corresponds to noise.
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subject-specific weights vary over time. To test this, we carried out Experiment 2, in which
subjects repeated Experiment 1 after an interval of several months.

5. EXPERIMENT 2: RESULTS AND DISCUSSION

We proceed by first presenting the RMDS analysis of EP-specific similarity data and then
discussing the results of the WMDS analysis performed over data gathered using all EPs.

5.1 Experiment 2: EP-specific RMDS Analysis

Stimulus maps (Figure 3, bottom row) as well as stress values (Table 1I) were computed
using RMDS analysis of EP-specific similarity data. For LM, stress values dropped below
0.2 for a one-dimensional solution; using the output map, this dimension was labelled as
texture. For the other EPs, stress values showed that two dimensions were required to
explain similarity data. The maps show that these two dimensions correspond to texture
and shape. An additional degree of perceptual separation between objects with sharp-edged
macrogeometry (bottom row) and smooth-edged macrogeometry (top two rows) appeared
when subjects gripped the objects.

5.2 Experiment 2: Global WMDS Analysis

A 2D WMDS solution was computed using all 68 similarity matrices (4 EPs x 17 sub-
jects). This yielded a stress value of 0.15, indicating that the 2D WMDS model provides
a good fit to the data. Figure 6 (left) shows the relative weights of the two dimensions
for all subjects as a function of EP (TP: M=0.55, SE=0.03, CF: M=0.63, SE=0.04; GR:
M=0.62, SE=0.04; LM: M=0.93, SE=0.01). Large variability in weights was observed
for TP (MAX-MIN=0.33), CF (MAX-MIN=0.52), and GR (MAX-MIN=0.61). Signifi-
cant correlations were found between individual weights for CF-GR, CF-TP, and GR-TP,
but not for CF-LM, GR-LM or TP-LM (Figure 6, right), indicating that subjects weighted
shape and texture similarly across EPs which allowed for extraction of both properties.

6. EXPERIMENTS 1 VS. 2: RESULTS AND DISCUSSION

Subject Reports When subjects were asked to rate the similarity between their experiences
during the two experiments on a scale between 1 (very different) and 5 (exactly the same),
the mean rating was 3.3 (SE=0.25). In justifying their ratings, subjects stated that the
experimental protocol was identical, but that their experiences differed somewhat in that
they were already familiar with the protocol at the outset of Experiment 2 and had prior
knowledge about the objects before beginning Experiment 2.

Raw Similarity Ratings The mean signed difference in raw similarity ratings taken over
all trials was -0.014 with a standard deviation of 1.4. A paired T-test did not reject the hy-
pothesis that the two samples of similarity ratings (17 subjects x 4 EPs x 45 judgments per
EP = 3060 judgments) came from distributions with equal means (p=0.65, t(3059)=0.45).
Taken together, these results show that subjects did not systematically shift their ratings
upwards or downwards.

RMDS Maps For each EP, similar stimulus maps were generated in both experiments
(Figure 3, top vs. bottom rows). In both experiments, stress values showed that a single
dimension corresponding to texture sufficed to explain similarity ratings performed based
on LM, whereas two dimensions were required for the other EPs. All EPs led to relatively
equidistant spacing along the texture dimension. CF and TP led to equidistantly-spaced
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objects along the shape dimension, whereas GR led to increased separation between the
bottom and top two rows. The stability of these maps indicates that on an EP-by-EP basis,
similar perceptual representations of the objects resulted from both experiments.

Population WMDS Weights To test whether the population mean of weights had changed
between experiments, we carried out paired T-tests on the two matched samples of 17
weights calculated for each EP. No significant differences in the means were found for any
EP. Furthermore, the large variability in weight distributions observed for TP, CF, and GR
in Experiment 1 was also observed in Experiment 2. These results suggest that the overall
distributions of weights remained stable over time.

Individual WMDS Weights To assess the amount of change in subject weights across
the experiments, we first calculated signed differences in relative weights for each EP. For
each subject, we tested whether the mean difference taken over the four EPs was different
from 0. We found no significant differences for any subject, showing that no individual
systematically changed their weights in one direction or another; in other words, no subject
became more shape or texture-biased overall. Second, we computed absolute differences in
relative weights for each subject and each EP and plotted the values in a histogram (Figure
7). Absolute differences of less than 0.2 were observed in 64 of 68 cases (17 subjects
x 4 EPs), indicating that individual, EP-specific weights were quite consistent across the
two experiments. Furthermore, the same correlations amongst weight pairs were found in
the two experiments, i.e., in both experiments, individuals tended to use the same relative
weight across EPs (Figure 6, right). Taken together, these results point to a notable degree
of stability in individual weights over time.

Grip Position as a Source of Variability in Weights As noted above, individual variability
was particularly marked in the GR condition. By photographing subjects’ grip position in
Experiment 2, we were able to correlate subjects’ weights in the GR condition with grip
position. Figure 8 shows examples of subjects whose selected grip contacted 0, 1, 2, or 3 of
the objects’ tips. The number of object tips contacted was found to be significantly corre-
lated with relative weight in the GR condition (Figure 9). Although we did not photograph
grip positions in Experiment 1, subjects reported using the same grip in both experiments;
thus grip position may account for both inter-subject variability and consistency in weights
over time in the GR condition.

7. GENERAL DISCUSSION

Experiment 1 showed that the choice of exploratory procedure led to differences in the sub-
jects’ haptic similarity judgments; using MDS analysis, perceptual maps of stimuli were
visualized and differences in relative property weights were quantified. Both interstimu-
lus distances (as seen in the maps) and relative shape/texture weights varied as a function
of EP and a large degree of individual variability in weights was observed. Experiment 2
replicated these results and showed that both population and individual weights were stable
after several months.

In this section, we discuss potential sources of intersubject variability and intrasubject
stability in haptic similarity ratings and present a framework for applying MDS techniques
to the study of human perception in real and virtual environments.

7.1 Intersubject Variability in Object Property Weights

In both experiments, we observed high variability in the way different subjects weighted
shape and texture properties when both properties were made available by the selected
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Fig. 6. Experiment 1 vs. 2: Weights per EP (left) and correlation between weights (right). For Experiment 1,
only data from the 17 subjects who also participated in Experiment 2 is plotted for comparison. In the weight plot
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Fig. 7. Experiment 1 vs. 2: Histogram of absolute change in individual subject weights

EP. By photographing the way subjects gripped the objects, we were able to correlate
variability in the GR condition with the number of tips contacted while gripping. But
what could explain variability in the tip-touching and contour-following conditions? We
hypothesize two possible sources:

(1) Variability could be due to an individual execution bias arising from subtle, but sys-
tematic differences in the way subjects perform the EPs (e.g., differences in pressure
and velocity which were not measured in the current experiments). Differences in
EP execution could then lead to differences in the relative amount of shape/texture
information being extracted from the objects. Hand forces and dynamics need to be
recorded in order to test this hypothesis.

(2) Variability could be due to an individual cognitive bias arising from individual prefer-
ences and/or experience, such as an internal prior on the relative reliability of property
estimates ([Ernst and Biilthoff 2004]) or a difference in a priori cognitive saliencies
of the two features [Lederman et al. 1996]. This cognitive bias could then cause an
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Fig. 8. Experiment 2: Variation in number of tips contacted while gripping. From left to right: 0, 1, 2, and 3
object tips contacted. Top and bottom rows show different viewpoints of same subject’s grip.
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Fig. 9. Experiment 2: Weights in GR condition versus number of tips contacted during gripping.

internal reweighting of raw shape/texture information used to judge similarity. In our
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experiments, the use of a cognitive bias may have been favoured by the relatively high
level of reported difficulty for TP and CF (Figure 4, right), especially given the 3s lim-
itation on exploration time. In addition, the presence of a cognitive bias may also have
led to systematic differences in EP execution. For example, [Riley et al. 2002] found
that different perceptual intentions led to subtle differences in movement dynamics in
an exploratory wielding task. The existence of such a bias could be tested by investi-
gating whether individual subjects retain personal shape/texture biases when judging
similarity on different sets of objects or over longer exploration times. It would also
be interesting to test whether individual biases converge when two participants are al-
lowed to communicate, as is the case with discrepant definitions of perceptual concepts
[Barsalou 1999].

7.2 Intrasubject Stability in Object Property Weights

Even though different subjects used different property weights to judge similarity, indi-
vidual subject weights remained quite consistent over the two experiments. One possible
explanation for this is that during the first experiment, subjects built up and stored infor-
mation about the objects and task in long-term memory, and that this information strongly
influenced their performance in the second experiment. This information could pertain to
the objects themselves (encoding structural models [Biederman 1987], view-based models
[Biilthoff and Edelman 1992; Newell et al. 2001], or similarity relationships amongst ob-
jects [Edelman 1999]), to the experimental context, and/or to the dynamics of exploratory
actions [Wippich et al. 1994]. On the other hand, if prior experience played a negligible
role, stability could be explained by the fact that both experiments involved the same inputs
being processed by the same perceptual system, and thus yielded the same output. This
explanation is in line with the idea that detailed stimulus information is not stored in rep-
resentations, but rather that “the world serves as an external memory store” [Simons 1996;
O’Regan and Noe 2001] and would explain the fact that we obtained consistent results
even after several months. If this hypothesis holds, subjects’ performance should remain
consistent even when performance on implicit and explicit tests for memory of objects,
hand dynamics, and experimental context is poor.

7.3 An MDS Framework for Comparative and Validation Studies

Here, we place the study within a more general framework for MDS-based studies of hu-
man perception in real and virtual environments, illustrated in Figure 10. The perceptual
process begins with the extraction of features from a set of real or virtual objects. Prox-
imity data (e.g., similarity ratings) are then derived from these features. Note that in this
paper, we have used human similarity ratings as proximity data, but proximities can also be
computed directly based on physical object properties or derived from interaction parame-
ters such as hand or tool dynamics. MDS is then used to 1) construct maps of the objects
in perceptual spaces and 2) to compute relative dimension weights. Comparing these data
provides an opportunity to visualize and quantify differences in:

(1) perception under different real-world conditions (e.g., using different EPs, as done in

this study);

(2) perception under different virtual reality conditions (e.g., using two different rendering
algorithms);

(3) perception in a real-world vs. a virtual environment (e.g., to assess haptic fidelity).
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The results of all three types of studies can be used to optimize the parameters of virtual
environments, as indicated by the dotted lines in Figure 10. Note that the framework is not
only applicable to haptic interfaces, but also to interfaces for other modalities, as well as
multimodal interfaces.

MDS Compared to Other Approaches The MDS approach presented here addresses a
growing need for tools which allow for 1) validation of haptic/multimodal displays relative
to real-world perception and 2) comparison and benchmarking of different displays, algo-
rithms, and usage patterns. A number of studies have already applied paradigms developed
in the field of experimental psychology to the problem of interface validation. Several stud-
ies have measured the speed, accuracy, or forces exerted by a human user during a task and
tested how similar these are under real-world and virtual conditions, e.g., [Tan et al. 1994;
Greenish et al. 2002; Unger et al. 2003]. Magnitude estimation tasks have also been used
to characterize the perception of virtual object properties (e.g., roughness), as a function
of environment parameters (e.g., probe type [Klatzky et al. 2003; Jansson and Pieraccioli
2004]). Other groups have measured the discriminability of object properties (e.g., curva-
ture) and used this as a metric [Lawrence et al. 1996; Pao and Lawrence 1998; Srinivasan
et al. 1999; Webster et al. 2005]. Finally, some studies have begun to use metrics based on
performance of more cognitive tasks such as object recognition, categorization, and simi-
larity judgments [Tan et al. 2000; Greenish et al. 2002; Salada et al. 2002]. Nevertheless,
validation methods for haptic technologies are in the early stages of development and there
is still a need for robust measures which provide insight into complex, cognitive human
experience of virtual environments, while at the same time being easy and quick to use.

We suggest that an ideal validation paradigm includes the following attributes:

(1) The paradigm provides robust statistics, i.e., a set of statistics and corresponding
measures of confidence, which allow differences between real-world and virtual ex-
periences to be quantified and allow for benchmarking of different virtual experi-
ences/systems.

(2) The paradigm offers insight into cognitive aspects of virtual experiences, i.e., metrics
and/or visualizations that reveal how cognitive-level processes such as learning and
coping strategies, meanings, and representations are affected by changes in the haptic
environment. This may involve a shift towards higher-level similarity, recognition, cat-
egorization, semantic, and memory tasks [Swindells et al. 2005].* Cognitive metrics
also need to be flexible enough to extend to multimodal interactions.

(3) The paradigm is easy fo use in a general sense, i.e., the method used to gather data
is easy to understand, straightforward to implement on a wide range of systems, and
can be carried out quickly. The analysis procedure required to transform raw measures
into the desired metrics should also be easy to implement or acquire and quick to carry
out.

MDS approaches provide a partial answer: they offer quantitative measures (interstim-
ulus distances, stress as a measure of dimensionality, and dimension weights) and they
offer insight into higher-level stimulus representations. One drawback, however, is that
pairwise similarity data are time-consuming to gather; different proximity measures such

“As noted by [Garbin 1990], attributes that enable objects to be discriminated may not be those which play the
most important role in their perceptual representation, although poorly discriminable properties likely do not play
an important perceptual role.
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as same/different judgements or confusion errors, as well as techniques for analyzing in-
complete data sets may offer a solution to this (for an overview of various approaches,
see [Borg and Groenen 2005, Chapter 6]). Secondly, data analysis requires several fitting
and optimization steps, however standard implementations are available in packages such
as MATLAB and SPSS. Third, output dimensions are not labelled; if dimensions do not
match hypotheses, further studies must be performed to label them. Despite these draw-
backs, the flexibility and generalizability of MDS make it a powerful tool for investigating
human perception in both real and virtual environments.
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Fig. 10. A framework for validation and comparative studies using MDS. Features are
extracted from interactions in real or virtual environments and proximity data are derived
from operations on these features. MDS is used to construct perceptual maps and compute
relative dimension weights. Results are compared to evaluate perception 1) under different
real-world scenarios (e.g., to characterize human perception), 2) under different virtual
reality scenarios (e.g., to benchmark different technical systems), and 3) in real-world vs.
virtual scenarios (e.g., to validate a particular technical system).

8. SUMMARY AND OUTLOOK
8.1 Summary of Psychophysical Findings

This paper shows how MDS techniques can be used to obtain rich, quantitative charac-
terization of haptic EPs and their effects on how objects are perceived. The results of
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Experiments 1 and 2 showed that subjects were able to extract both shape and texture vari-
ations in the stimulus set, but that the perceptual distances between the objects, as well as
the relative perceptual weight of shape and texture dimensions, varied systematically ac-
cording to the EP used. Restricting exploration to lateral motion on the objects’ centers led
to similarity judgments based solely on texture, as expected. When objects were explored
using contour-following, tip-touching, or gripping, subjects used both shape and texture
properties to judge similarity. The relative importance of the two properties varied sub-
stantially from subject to subject. When the same subjects repeated the experiment several
months later in Experiment 2, similarities, maps, and weights remained stable over time.
Intersubject variability in the gripping condition was found to correlate with differences in
grip style, but further work is needed to identify the source of variability when subjects use
tip-touching or contour-following.

8.2 Implications for Haptic Interface Design

We conclude by highlighting four aspects of this work which are relevant for haptic inter-
face design.

(1) Variability Due to Exploratory Procedure Our results provide a clear demonstration
that the way in which we interact with objects can change how we perceive them:
changing the EP affected the number of dimensions used to judge similarity as well
as interstimulus distances in perceptual space (Figure 3). For haptic engineers, this
finding underscores the importance of carefully specifying the way users are expected
to interact with the device to ensure that the mode of interaction provides access to
task-relevant dimensions and that, when needed, it leads to the desired set of similarity
relationships amongst the objects being manipulated by the user.

(2) High Intersubject Variability We found high variability in property weights used by
different subjects when they used exploratory procedures which allowed for the ex-
traction of more than one object property. Even though subjects were presented with
exactly the same objects and interacted with them under careful human supervision,
perceptual similarities differed. In this study, lateral motion yielded the most consis-
tent stimulus representation across subjects - one dominated by texture differences -
and thus it could be regarded as the “safest” EP to allow in a haptic environment. Of
course, it was also highly limited in that it did not allow for shape information to be
extracted. On the other hand, the EPs that did allow for shape to be extracted were
associated with high between-subject variability in the relative perceptual weight of
shape versus texture. For haptic engineers, this finding underscores the need to select
modes of interaction with the lowest intersubject variability possible (e.g., by minimiz-
ing the number of perceptual dimensions being extracted) while still providing access
to all necessary stimulus dimensions. Furthermore, if a single perceptual representa-
tion is required, user-specific calibration may be required to compensate for individual
differences.

(3) Low Intrasubject Variability Property weights for single subjects changed little across
the two experiments, even though the tests were separated by several months on av-
erage. Thus, although individual subjects weight properties very differently from one
another, their weighting appears to remain stable over time. For haptic engineers, this
finding suggests that calibration to compensate for individual differences may only
need to be repeated at intervals of several months or longer.
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(4) MDS as a Tool for Haptic Interface Design We have outlined several ways in which
haptic engineers might use MDS techniques to test how variations in device parame-
ters or human-device interaction affect high-level, cognitive representations of objects
being displayed. MDS can also be used as a validation technique by comparing data
gathered in real versus virtual environments, or by having similarity judged on a mixed
set of real and virtual objects as done in [Leskovsky et al. 2006]. Given the flexibil-
ity of MDS approaches, we believe they offer a valuable tool for haptic researchers
investigating human perception in both real and virtual environments.
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Object feature validation using visual and haptic
similarity ratings

Theresa Cooke, Sebastian Kannengiesser, Christian Wallraven, and Heinrich H. Biilthoff
Max Planck Institute for Biological Cybernetics, Tubingen, Germany

The perceived similarity between objects may well vary according to the sensory modality /modalities
in which they are experienced, an important consideration for the design of multimodal interfaces.
In this study, we present a similarity-based method for comparing the perceptual importance of
object properties in touch and in vision and show how the method can also be used to validate
computational measures of object properties. Using either vision or touch, human subjects judged
the similarity between novel, 3D objects which varied parametrically in shape and texture. Sim-
ilarities were also computed using a set of state-of-the art 2D and 3D computational measures.
Two resolutions of 2D and 3D object data were used for these computations in order to test for
scale dependencies. Multidimensional scaling (MDS) was then performed on all similarity data,
yielding maps of the stimuli in both perceptual and computational spaces, as well as the rela-
tive weight of shape and texture dimensions. For this object set, we found that visual subjects
accorded more importance to shape than texture, while haptic subjects weighted them roughly
evenly. Fit errors between human and computational maps were then calculated to assess each
feature’s perceptual validity. Shape-biased features provided good overall fits to the human visual
data; however, no single feature yielded a good overall fit to the haptic data, in which we observed
large individual differences. This work demonstrates how MDS techniques can be used to evaluate
computational object features using the criterion of perceptual similarity. It also demonstrates a
way of assessing how the perceptual validity of a feature varies as a function of parameters such
as the target modality and the resolution of object data. Potential applications of this method
for the design of unimodal and multimodal human-machine interfaces are discussed.

Categories and Subject Descriptors: 1.4.7 [Image Processing and Computer Vision]: Feature Measurement—
Feature representation, size and shape, texture; H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems—Artificial, augmented and virtual systems, evaluation/methodology; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Haptic I/O, evaluation/methodology

General Terms: Experimentation, Human Factors, Measurement
Additional Key Words and Phrases: similarity, multidimensional scaling, perception, vision, touch,
haptic, features, validation, shape, texture

1. INTRODUCTION

The design of effective and efficient multimodal displays requires an understanding of how
humans make use of their different senses to build up representations of their surroundings.
Models of human visual object processing have proposed that the visual system extracts
object features or properties from images projected onto the retina [Marr 1982]. These fea-

e-mail: theresa.cooke @tuebingen.mpg.de

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

(© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY, Pages 1-24.



tures are then used as the basis for representing objects in the brain [Biilthoff and Edelman
1992; Ullman 1996]. Inspired by this, a similar approach has been taken in the field of
computer vision: a set of computational measures are extracted from 2D images of objects
(or scenes) and used to create artificial representations of objects for automated recon-
struction, recognition, or categorization tasks [Riesenhuber and Poggio 1999; Ullman et al.
2002]. Work in this field has given rise to a large number of feature extraction algorithms,
including biologically-inspired filters (Gabor jets) which mimic the response of cells in
visual cortex [Jones and Palmer 1987] and algorithms derived from statistical optimization
procedures [Ankerst et al. 1999]. These computational measures have been evaluated in a
variety of ways, e.g., based on their performance in machine vision tasks. Biological plau-
sibility has mainly been assessed at a relatively low level (e.g., by matching receptive field
properties). In this paper, we propose a new method for validating computational mea-
sures based on the high-level, cognitive criterion of object similarity. Similarity is thought
to underlie a number of cognitive processes, including both categorization [Rosch et al.
1976] and recognition [Edelman 1999]. The similarity-based criterion we propose is as
follows: a good feature is one which, for a set of parametrically-defined objects, generates
similarity-based stimulus configurations akin (in one or more respects) to those derived
from human similarity ratings.

Most perceptual validation of computational object features has been carried out in re-
lation to visual perception. However, a feature’s perceptual validity may well vary as a
function of sensory modality used to perceive the objects, e.g., [Klatzky et al. 1987]. The
method presented in this paper provides a solution to this problem by enabling validation
to be performed relative to any sensory modality. For the haptic modality, measures com-
puted on 3D objects are particularly interesting, e.g., [Nefs and Kappers 2003], and a large
number of such measures have been proposed in the 3D graphics literature [Funkhouser
et al. 2003]. However, there have been few studies which have assessed these measures
relative to the haptic modality using a high-level, cognitive criterion such as similarity.
Knowledge of which 3D computational measures correlate with high-level human stim-
ulus representations derived from haptic perception would not only help in the design of
more realistic artificial haptic systems (for example, [Acosta et al. 2002]) and reduce the
heavy demands of haptic rendering [Salisbury et al. 2004], but could also play an important
role in elucidating the computational mechanisms of the human haptic system.

Our method can be situated in the context of a framework connecting the development of
artificial representational systems and advances in our understanding of human represen-
tational systems (Figure 1). Physical objects constitute the input to both types of systems,
which use various sensors to measure object properties (photoreceptors, mechanorecep-
tors, etc.). For artificial systems, the way these properties are extracted depends on the
sensor and the computational algorithm applied to the measured quantities. For humans,
it is a function of sensory modality. In both human and artificial systems, the extracted
properties can then be used (either directly or indirectly) to embed objects in a represen-
tational space or “map.” With the appropriate tools, these representational spaces can be
compared at either the unimodal or at the multimodal level. Comparing a map derived from
human unimodal perception (e.g., from pure visual exposure to the objects) to a map de-
rived using a computational measure (e.g., pixel-wise differences between images) allows
for unimodal validation of computational measures. Two human unimodal maps can also
be compared to identify modality-dependent differences in human object processing. The

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



I
— o Inputtoartificial | [} | Artificial visual || _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 vision system representation [
1 I
1 Unimodal validationt 1
1 I
1 Input to human f\ .| Human visual :
: visual system U representation I
1 A |
1 v
" Cue combination . Cue combination
H Multimodal Artificial
. . uman lidation ificia
Physical Modality-dependent : i ;
object(s) differences multlmodgl ey multlmodgl
: representation representation
| Cue combination Cue combination
I v t
1 - |
" Input to human ﬂ ,| Human haptic I
| haptic system V) representation "
1 1
I Unimodal validationt Human system
1 = = T = Artificial system
L o) Inputto artificial |_ [} _| Artificial haptic O~ Feature extraction
haptic system representation = = = = €==P Validation / analysis opportunity
. |:I Focus of this paper

Fig. 1. A framework for studying human and artificial uni/multimodal object representations.

same approach can be applied at the multimodal level to test hypotheses about human cue
combination and to validate approaches to artificial cue combination (e.g., in the design of
visuotactile interfaces for telemedecine).

The method presented in this paper connects perceptual and artificial systems at the
level of unimodal representations. We derive maps of our stimuli based on human visual
and haptic similarity measures, and from similarity measures using a set of computational
methods which we wish to perceptually validate. We first show how our method can be
used to compare human haptic and visual stimulus maps. Then, we demonstrate how the
method can be used to evaluate the perceptual validity of the computational measures by
comparing the human maps against those derived from the computational measures.

2. METHODS
2.1 Stimuli

The stimuli consist of a family of novel, 3D objects (Figure 2), created in the graphics
package 3D Studio Max 6.0. This software provides full control of object properties such
as size, shape, and texture, allowing them to be varied in defined steps. The family begins
with a family “prototype” (see Figure 2, object 1), which consists of: 1) three parts con-
nected to a center sphere, defining the object’s macrogeometry and 2) a displacement map
applied to the 3D mesh, specifying the object’s microgeometry. The other family members
are generated by two manipulations. The first manipulation increases the smoothness of
the object’s microgeometry (or “texture”) by decreasing the amount of mesh displacement
caused by the displacement map. The second manipulation increases the smoothness of the
object’s macrogeometry (or “shape”) by moving mesh vertices towards a local average, re-
moving sharp angles in the global shape. Note that from a haptic rendering perspective,
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two distinct sets of force-rendering algorithms would be needed to convey these two kinds
of variations: geometric-dependent rendering algorithms for shape variations and surface
property-dependent rendering algorithms for texture variations [Salisbury et al. 2004].

The displacement map applied to the objects consisted of triangular-shaped elements
with a base width of 3mm, a peak width of 2mm, and a maximum height of 3mm from
the surface of the object; texture elements were spaced 3-5 mm apart. The scale of this
pattern qualifies it as a macrotexture, the properties of which are known to be encoded
by SAI mechanoreceptors [Klatzky and Lederman 2003]. The displacement manipulation
simultaneously reduced element height and increased the peak width of elements; inter-
element spacing remained constant. Increasing element width has been shown to decrease
perceived roughness [Sathian et al. 1989]. In previous work with this stimulus set [Cooke
et al. 2005; Cooke et al. 2006], subjects consistently described the objects as varying in
“texture,” and often referred to their “roughness” or “bumpiness.”

The macrogeometrical manipulation applied to the objects averages out sharp angles
in the mesh. In previous studies, subjects consistently referred to this manipulation as
a change of “shape.” Since the sharpest angles are located at the objects’ extremities
(maximum surface area of roughly 1 cm?), the mesh relaxation affects these areas much
more than the rest of the object (and thus has a more localized character than the evenly-
distributed texture manipulation). It has been shown that SAI mechanoreceptors from a
single finger are capable of curvature estimates for angles which fall onto the same re-
gion of the skin [Srinivasan and LaMotte 1991]. In addition to static cues, changing local
curvature gradients created during object exploration can also provide macrogeometrical
information [Pont et al. 1999]. Finally, kinesthetic cues to macrogeometry are provided by
systematic changes in finger joint and wrist angles during object exploration.

Objects created using these variations can be plotted in a 2D space whose dimensions
correspond to microgeometry and macrogeometry (Figure 2). The 3D models were printed
out (Dimension 3D Printer, Stratasys, Minneapolis, USA) into hard, white, and opaque
objects, measuring 9.0 +/- 0.1 cm wide, 8.3 +/- 0.2 cm high, and 3.7 4+/- 0.1 cm deep and
weighing about 40 g.

2.2 Visual similarity ratings

Ten subjects with normal or corrected-to-normal vision were paid 8 Euros per hour to rate
the similarities between photographs of the objects presented at 75 Hz on a Sony Trinitron
217 monitor with a resolution of 1024 x 768 pixels. Photographs of the objects were
displayed using the Psychtoolbox extension for MATLAB [Brainard 1997] on a Macintosh
G4 computer. The photographs were taken such that the three object parts were aligned
with the image plane (referred to as “frontal view”). This viewpoint was chosen in order to
provide the best possible match to the viewpoint presented in the haptic task (see below).
The image size was 7.6 x 7.6 degrees of visual angle (set to be approximately the same
size as if the object were being held at arm’s length). Subjects had never seen or touched
the objects before. They were seated approximately 60 cm from the monitor in a dimly-lit
room. A fixation cross appeared for 500 ms and then each of the objects appeared for 500
ms, separated by a 500 ms interstimulus interval. At the end of each trial, subjects had to
rate the similarity of the objects on a scale between one (low similarity) and seven (high
similarity). A set of practice trials enabled the subjects to become familiar with the task.
Response time was unlimited. There were six experimental blocks of 325 randomized trials
(each object was compared once with itself and once with every other object, yielding 25
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Fig. 2. Stimuli varied parametrically in terms of microgeometry (texture) and macrogeometry (shape).

+ (25-24)/2 = 325 trials.) The order of appearance of stimuli in each pair was randomized
over the blocks. The total experiment lasted about two hours. At the end of the experiment,
subjects were asked to write a short description of how they had judged similarity amongst
the objects.

2.3 Haptic similarity ratings

Ten right-handed subjects were paid 8 Euros per hour to rate the similarities between the
objects after exploring them haptically. None of the subjects had participated in the visual
experiment, or had seen or touched the stimuli before. Subjects sat in front of a table, facing
an opaque curtain through which they placed their right hand. They were instructed to keep
their eyes closed during the experiment (subjects in a pilot study had reported that they
were better able to concentrate on the task with their eyes closed). Behind the curtain, the
experimenter presented two objects, one after the other. The objects were always presented
in the same fixed position, face up on the table. Subjects were given up to ten seconds to
trace the contour of each object, after which they rated the similarity between the objects
on a scale from one (low similarity) to seven (high similarity). The contour-following
procedure was chosen because it has been shown to allow for haptic extraction of a wide
range of object properties, including local texture and global shape [Lederman and Klatzky
1993]. In the ten seconds provided, even untrained subjects had sufficient time to trace the
object’s contour twice. A set of practice trials allowed the subjects to become familiar with
the task. The full experiment consisted of three blocks of 325 randomized trials spread
out over five two-hour sessions on consecutive days. The order of appearance of stimuli in
each pair was randomized over blocks. At the end of the experiment, subjects were asked
to write a short description of how they had judged similarity among the objects.
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2.4 Computational similarity measures

We implemented nine computational similarity measures: five operating on 2D photographs
of the objects and four operating on the objects’ 3D mesh geometry. The photographs used
to compute similarity values were the same images presented in the human visual similarity
experiment.

Given the basic 2D nature of visual input and the 3D nature of haptic input, we hypoth-
esized that 2D measures could provide better fits to maps derived from visual similarities,
while 3D measures could provide better fits to maps derived from haptic similarities. Hu-
man performance in visual object recognition tasks has been successfully explained by
2D view-based models [Biilthoff and Edelman 1992]. At the same time, however, the
human visual system is capable of extracting and using 3D object properties from 2D
images, such as in the case of shape-from-shading [Blake and Biilthoff 1991] and shape-
from-texture [Todd et al. 2004]; thus we were also compared object maps based on human
vision against maps generated from 3D features.

Fewer studies have examined the question of feature dimensionality for haptic object
representations. A number of neuroimaging and psychophysical studies have emphasized
the role of the visual cortex in the mediation of high-level tactile object representations
(e.g., [Deibert et al. 1999]), while other studies have argued for more independent repre-
sentations [Reed et al. 2004]. Our approach to this issue is to test whether 2D features
correlate equally well with vision and haptics, or whether 3D features provide better corre-
lations with haptics than with vision, which would support the idea of greater representa-
tional independence. In order to investigate these questions, object representations derived
from human visual and haptic similarity ratings were compared against maps derived from
the following 2D and 3D computational measures:

(1) 2D image subtraction A simple pixel-wise subtraction between RGB images of two
objects was performed. We took the mean absolute difference over all pixels and RGB
channels as the dissimilarity between the two objects.

(2) 2D edge detection Canny edge detection was performed on each image using MAT-
LAB’s edge detection algorithm, resulting in binary edge images (pixel value set to 1
if the pixel location is found to belong to an edge and O if not). The mean pixel-wise
difference between two edge images was taken as the dissimilarity. Edge detection has
been suggested as an important step in models of human vision [Marr 1982].

(3) 2D Gabor jets The images were filtered with Gabor jets [Nestares et al. 1998] and the
pixel-wise difference in the filter response images was computed. The Gabor jet filter
has been proposed as a biologically-plausible model for receptive fields in early visual
cortex [Jones and Palmer 1987] and has recently been successfully applied in models
of object and motion recognition [Giese 2004]. Here, we used a variant which applies
Gabor filtering in four orientations using both even and odd channels. A response
image was generated for each orientation by summing and squaring the even and odd
responses. Pixel-wise difference images were computed at each orientation and the
final dissimilarity between two images was computed as the mean over all pixels and
all orientations.

(4) 2D Visual Difference Predictor In addition to the first three relatively straightforward
2D measures, we generated similarity data using two more elaborate measures: the Vi-
sual Difference Predictor (VDP) and the Structural Similarity (SSIM) measure. These
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are industry standards for computing image differences and thus serve as a bench-
marks for comparing the performance of the other 2D measures [Cadik and Slavik
2004]. The VDP [Daly 1993; Mantiuk et al. 2005] incorporates a model of low-level
human visual processing, including the visual system’s non-linear adaptive response
to light, its contrast sensitivity function, and a masking function which models varia-
tions in sensitivity related to image content. As our computed measure, we took the
total number of pixels which the VDP detected as different in the two images with a
probability of at least 95%.!

(5) 2D Structural Similarity Like the VDP, the SSIM [Wang et al. 2004] takes properties
of the human visual system into account and computes an index of structural difference
between two images after removing differences in average luminance and contrast. 2

(6) 3D subtraction Mean Euclidean distance between all 3D vertex coordinates of two
object meshes was computed; point-by-point subtraction was possible because the
meshes were in correspondence. This measure is the 3D equivalent of our 2D image
subtraction measure.

(7) 3D perimeter Object perimeter was measured along a cross-section taken parallel to
the frontal view and the difference was taken for each pair of objects. Although
perimeter can be measured in 2D or 3D space, we refer to it here as a 3D measure
because of the special role it could play in haptic feature extraction, particularly given
that in this experiment, participants explored the objects by following their contours.

(8) 3D curvature A stable, reliable curvature estimate was obtained by fitting an implicit
surface representation to the object and extracting curvatures from it [Steinke et al.
2005]. To estimate an object’s “bumpiness,’ the absolute value of the mean curvature
was averaged over the whole surface.

(9) 3D shape A measure based on 3D shape histograms was implemented, inspired by
[Ankerst et al. 1999]. 3D space is partitioned in the radial direction (into shells),
which are further subdivided to create bounded sectors (the bound of the outermost
shell is determined by the size of the largest object). For each object, we counted
the number of vertices populating each sector, thereby creating a 3D shape histogram
for that object. As a dissimilarity measure, we took the mean absolute sector-wise
difference in vertex count between two object meshes.

Scale variation To demonstrate how our method can be used to quantify the effects of
changing the parameters used for computing object features, we chose to vary the reso-
lution of object data. Selecting the scale of resolution at which to compute features is
an important problem in computer vision [Lindeberg 1994]; the size of stimuli relative to
sensory receptors is also a fundamental issue for both visual and haptic perception [Koen-
derink 1984; Klatzky and Lederman 2003]. For 2D images, data at the finer scale of
resolution were 600x600 pixel images (presented in the visual similarity experiment) and
data at the coarser scale consisted of the same images downsampled to 38x38. For 3D ob-
ject data, meshes at the finer scale consisted of the 4728 vertices constituting the original

IThe VDP can be seen either as a single computational measure or as a combination of several measures; in the
latter case, our evaluation of the VDP can be considered to be an evaluation of this particular combination of
measures.

2A MATLAB implementation of the SSIM was downloaded from http://www.cns.nyu.edu/ lcv/ssim/
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models and data at the coarser scale consisted of the same models downsampled to 296
vertices, which remained in correspondence.

2.5 MDS analysis of similarity data

Similarity data were analyzed using a multidimensional scaling (MDS) technique. Per-
forming multidimensional scaling analysis of similarity ratings (or other kinds of proxim-
ity data) is a standard approach used in cognitive psychology to explore the psychological
structure in a data set [Borg and Groenen 1997]. Human and computational similarity data
were analyzed using a non-metric MDS algorithm implemented in MATLAB. Non-metric
MDS uses the ranks of the pair-wise distances as input, as opposed to their precise val-
ues. Because of this, the relationship between the similarity data and the distances in the
output configuration may be non-linear. The algorithm returns the stress value (Kruskal’s
stress formula 1), which is used to determine the appropriate dimensionality of the out-
put configuration. Stress values below 0.2 are generally accepted as an indication that the
dimensionality of the output space is sufficient to faithfully represent the input distance
information [Cox and Cox 2001]. We also calculated the proportion of variance in the
similarity data accounted for by the output configuration of a given dimensionality, which
we refer to as RSQ. The optimal number of dimensions needed to represent the objects can
be determined by looking for either a sharp drop in the stress plot or a plateau in the RSQ
plot. Here, we used the RSQ to estimate the perceptual importance of each dimension in
the output maps: the RSQ for the 1D solution was taken as the weight for the first dimen-
sion and the additional increase in RSQ for the 2D solution was taken as the weight for
the second dimension. MDS also returns the coordinates of each object in the output space
(though the scaling and rotation of the configuration is not determined). The non-metric
MDS technique we used does not provide an interpretation of the dimensions: they must
be interpreted by visual inspection of the output configuration.

2.6 Validation of computational measures

To assess the perceptual validity of the computational measures, stimulus maps derived
from these measures using MDS were fit to the stimulus maps derived from human sim-
ilarity ratings. Errors in these fits were used to quantify the correspondence between the
computational measure and human perception. Map fitting was performed using the Pro-
crustes function in MATLAB. This function determines a linear transformation (transla-
tion, reflection, orthogonal rotation, and symmetric scaling) of the points in a matrix Y
which minimizes the sum of squared distances to points in a second matrix X, i.e., it com-
putes
inin {|Z—=X||:Z=bYT + ¢}

,1,C
where b is a scaling factor, T is an orthogonal rotation and reflection matrix, and c is
a translation component. The returned minimum value is normalized by the scale of X
which makes it possible to express the fit error as a percentage value and compare it across
data sets with different scales.
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3. RESULTS AND DISCUSSION

3.1 Visual similarity ratings

Similarity data Mean visual similarity ratings for the twenty-five objects are shown in
Figure 3 (left). Similarity between pairs is distinctly higher when both objects come from
either the set 1-15 or the set 16-21 than when one object comes from the set 1-15 and one
comes from the set 16-21. Within these two sets, similarity varies according to texture
level (e.g., decreasing similarity between object 1 and objects 2, 3, 4, and 5).
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Fig. 3. Mean human visual similarity ratings (left) and mean human haptic similarity ratings (right).
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w
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microgeometry microgeometry

Fig. 4. Perceptual stimulus maps based on mean human visual similarity ratings (left) and mean human haptic
similarity ratings (right).

MDS analysis Performing MDS allows these patterns in the similarity matrices to be
more intuitively visualized as distances in a perceptual space. In order to determine the
appropriate dimensionality of the output space, one needs to consider the stress value of
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the corresponding MDS solution. For mean visual similarity ratings, the stress for a one-
dimensional solution was 0.14, indicating that one perceptual dimension is sufficient.

Dimension labels were interpreted by visual inspection of the output configuration (Fig-
ure 4, left): the map’s most important dimension of variation corresponds to shape, while
the second dimension corresponds to texture. Despite the high dimensionality of the vi-
sual measurement space, subjects were on average able to recover this low-dimensional
variation in the stimulus set (see General Discussion).

In addition to the stress values, the dominance of shape can be seen from the RSQ
weights for individual subjects (Figure 5, left). The mean shape weight across subjects
was 0.85 (std. err. = 0.03), while the mean weight of the second dimension was 0.06 (std.
err. = 0.01). Using a two-tailed t-test for independent samples with equal variances, the
mean shape weight was found to be significantly different from the mean texture weight
(t(18)=23.6, p<0.01). The greater importance of shape was also reflected in subjects’ de-
scriptions of how they judged similarity: 9 out of 10 subjects mentioned the word “shape”
or global shape properties (e.g., geometric descriptions of parts), while 6 out of 10 subjects
mentioned the word “texture” or texture-related properties (e.g., bumpiness).

Despite the dominance of shape, most subjects were able to recover the structure of the
stimulus set along the texture dimension. Another interesting feature of the map is the
emergence of two stimulus clusters along the shape dimension, suggesting a connection
between similarity judgments and category structure (see General Discussion).

e o o 9
o N o ©

R? explained by dimension
o o
N v

o
w

R? explained by dimension

o
N

o
e

I shape
I texture

o

Subject Subject

Fig. 5. Dimension weights for subjects in the visual (left) and haptic (right) similarity ratings experiments.

3.2 Haptic similarity ratings

Similarity data In contrast to the visual data, there is no sharp change in similarity visible
in the matrix (3, right). Rather, similarity decreases relatively smoothly with shape change
(e.g., stimulus 1 compared to 6, 11, 16, and 21). Similarity also varies smoothly as a
function of texture change, even when two very different shapes are compared (e.g., object
1 compared to 21-25).

MDS analysis When subjects provided similarity ratings after touching the stimuli, MDS
stress computed over mean similarity data was 0.37 for a one-dimensional solution, indi-
cating that a single dimension is insufficient to explain the data. Stress dropped to 0.1 for
a two-dimensional solution, indicating two dimensions are sufficient. Plotting the output
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Similarity Measure 1D Stress | 2D Stress
2D Subtraction 0.09 0.03
2D Edge Detection 0.34 0.21
2D Gabor Jet 0.17 0.10
2D VDP 0.12 0.03
2D SSIM 0.13 0.04
3D Subtraction 0.10 0.05
3D Shape Histogram 0.10 0.04
3D Perimeter 0 0

3D Curvature 0 0

11

Table I. Stress for features computed on finer scale object data for 1D and 2D MDS solutions. Values > 0.2

(bolded) indicate that the dimensionality of the output configuration is insufficient to explain similarity data.

Similarity Measure 1D Stress | 2D Stress
2D Subtraction 0.09 0.03
2D Edge Detection 0.15 0.08
2D Gabor Jet 0.11 0.04
2D VDP 0.07 0.04
2D SSIM 0.10 0.03
3D Subtraction 0.10 0.04
3D Shape Histogram 0.08 0.05
3D Perimeter 0 0

3D Curvature 0 0

Table II. ~ Stress for features computed on coarser scale object data for 1D and 2D MDS solutions.

stimulus configuration (Figure 4, right) enabled us to interpret these perceptual dimensions
as texture and shape. Ordinal relationships in the stimulus set were recovered along both
dimensions - a remarkable feat given the complexity of the haptic measurement space.

On average, shape and texture played equal roles in haptic similarity judgments. The
mean shape weight across subjects was 0.45 (std. err. = 0.1) and the mean texture weight
was also 0.45 (std. err. =0.1). Using a two-tailed t-test for independent samples with equal
variances, the mean shape weight was not significantly different from the mean texture
weight (t(18)=-0.1, p=0.94). This agrees with the fact that all subjects in this experiment
mentioned both shape-related and texture-related properties when explaining how they had
made their similarity judgments. There was, however, a large amount of variation in the
way individual subjects weighted shape and texture, from texture dominance, to rough
equality between shape and texture, to shape dominance. This finding makes it particularly
interesting to try fitting haptic and computational stimulus maps to ascertain whether the
variation can be explained by specific computational mechanisms.

3.3 Computational similarity measures

In this section, we present the results of the MDS analysis on the similarities computed
using the nine computational measures on the two sets of object data (fine and coarse).
The data are comprised of stress values for one and two dimensional solutions (Tables I and
IT), plots of the two dimensional object maps (Figures 6 and 7), and relative shape/texture
weights (Figure 8).

Results using higher-resolution object data For all measures except 2D edge detection,
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Fig. 6. Stimulus maps derived by MDS analysis of computed similarity data using finer resolution object data

MDS stress fell below the threshold of 0.2 for a one-dimensional solution, implying that
one dimension sufficed to explain similarity data derived using these measures (Table I).
For 2D subtraction, 3D subtraction, VDP, SSIM, and 3D shape histograms, this one di-
mension corresponded to shape. The dominance of shape over texture for these measures
can also be seen from the RSQ weights (Figure 8). For the remainder of the discussion,
these measures will be referred to as “shape-dominated measures.” For 3D curvature and
3D perimeter, the single dimension required corresponded to texture. In the case of 2D
edge detection, two dimensions were required (although texture was weighted much more
strongly than shape). One-dimensional stress for the Gabor jet was 0.17 and although shape
was technically sufficient to explain computed similarities using Gabor jets, the MDS map
shows that the measure is indeed sensitive to texture changes, especially for the bumpiest
objects (Figure 6).

MDS maps for the shape-dominated and Gabor jet measures exhibit a larger difference
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Fig. 7. Stimulus maps derived by MDS analysis of computed similarity data using coarser resolution object data

between the bottom three and top two rows of stimuli than, a gap which was also observed
in human visual maps. Although they are shape-dominated, these measures are also sensi-
tive to texture differences amongst the objects. However, relative to human maps, they are
more sensitive to differences between the bumpiest objects and less sensitive to differences
between smooth objects.

The 2D and 3D subtraction maps are quite similar to one another. This is explained
by the fact that the 2D images used in this experiment capture most of the variation in
the 3D objects. The shape manipulation affects sharp angles in the macrogeometry (such
as tips and joints), most of which are visible from the selected 2D view. Had we taken
photographs of our stimuli from a viewpoint in which some of these parts were occluded,
the maps generated by 2D and 3D subtraction would have differed more. Although texture
changes occur over the whole object and are therefore not limited to the frontal view, they
have a smaller net effect on 3D vertex positions and pixel values. This also explains the

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



14

Fine Scale Coarse Scale

o o
N @
:

o
o)
:

R? explained by dimension
o o o o
N w D al

o
[

' [lshape
I shape AF Il texture
Bl texture Ml other

0
CUR PER EDG SIM VDP SUB3 GAB SUB2 SHA CUR PER EDG SUB3 SIM SUB2 SHA GAB VDP

Fig. 8. Dimension weightings based on RSQ for features computed at a finer scale (left) and a coarser scale
(right). (CUR: 3D curvature estimate; EDG: 2D edge detection; GAB: 2D Gabor jets; SUB3: 3D subtraction;
PER: 3D perimeter; SHA: 3D shape histograms; SIM: 2D Structural Similarity; SUB2: 2D subtraction; VDP:
2D Visual Difference Predictor)

absence of strong texture-related modulation in maps based on global 2D/3D differences.

In contrast, the maps derived from perimeter and curvature show that these measures
are not sensitive to changes in object shape for the finer dataset; both features are solely
responsive to variations in object texture. The perimeter measure is particularly sensitive
to the differences between the most highly-textured objects and the rest. The curvature
measure yields a map with more regular spacing between texture levels.

Results using lower-resolution object data Using lower resolution object data had a large
effect on curvature, perimeter, and edge measures, as can been seen from the maps (Figure
7). At the coarser scale, the perimeter and curvature measures are no longer able to recover
texture variation in the stimuli; although their similarity data can be explained using a
single dimension (Figure 8), it is not clear how this dimension can be interpreted. The
edge measure responds more regularly to shape when computed on the downsampled data,
though the map is still quite noisy. Lowering resolution also had a noticeable effect on the
Gabor jet map, whose hypersensitivity to the highest texture level was reduced. On the
other hand, lowering resolution had lesser effects on the shape-dominated measures. The
VDP and shape histogram measures lost some of their ability to separate texture levels. No
major effects were observed for 2D subtraction, 3D subtraction, or SSIM.

3.4 Perceptual validation of computational measures

In order to assess the perceptual validity of a computational measure, we verified how well
the stimulus configuration generated from the measure compared to the configuration gen-
erated from human similarity ratings. This was done by fitting the computational maps to
the individual visual/haptic human maps, using the fit error as the goodness-of-fit measure,
as described in section 2.6.

The fit error enables us to make a relative assessment of goodness-of-fit, i.e., we can
say that the fit obtained with one measure is better or worse than another; however, it
does not provide an absolute criterion. To determine such a criterion, we reasoned that a
given measure can be deemed to fit the human data well and thus “perceptually valid” to a
certain extent (see General Discussion) if the mean error in fitting the computational map
to all individual maps is statistically equivalent to the mean error obtained by fitting each
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individual subject map to all other individual maps. We refer to the procedure of fitting
each individual map to all the other individual maps as “cross-fitting” the individual data
and refer to the resulting error as the “cross-fitting error.” To test whether a measure met
our criterion, we performed a two-tailed t-test between the cross-fitting errors and the fit
errors generated by each measure (5% confidence level, assuming independent samples
and equal variances).

Cross-fitting results Fitting maps derived from individual visual similarity data led to
a cross-fitting error of 24% with standard error of 2%. With individual haptic data, we
obtained a mean cross-fitting error of 19% with standard error of 2%. Lower cross-fitting
error in the haptic condition was related to the fact that maps recovered from individual
haptic subject data were more regular than those recovered from individual visual subject
data (7/10 haptic maps had 3 or fewer violations of ordinal relationships compared to only
2/10 visual maps). This likely stemmed from differences in experimental settings across
conditions; notably, visual stimuli were presented on a computer screen in a darkened
room, whereas haptic stimuli were presented by an experimenter in a naturally-lit room.
In a follow-up study in which experimental conditions were equated for visual and haptic
similarity judgments [Cooke et al. 2006], ordinal relationships were recovered equally well
using either modality.

Fit between computational measures and human visual perception Several measures
met our criterion for perceptual validity: the 2D measures of image subtraction, VDP, and
SSIM, as well as the 3D measures of mesh subtraction and shape histograms provided
mean fit errors which were not significantly different from mean visual cross-fitting error
(all p’s > 0.4) when computed using finer resolution object data (Figure 9). Gabor jets
provided a slightly worse fit. The 3D curvature, edge and perimeter measures provided
poor fits to visual data, regardless of the scale of object data. For coarse resolution data,
the loss of sensitivity to texture differences resulted in slightly worse fits for VDP and shape
histograms, and a noticeable improvement in the fit for the Gabor jet measure. The fit also
improved for the edge measure, which responded more regularly to shape when computed
at a coarser scale. Although we have used mean fit error over all subjects to define our
criterion for perceptual validity, it is also informative to consider how each measure fits
individual subjects (Figures 9 and 10, right). For the visual subjects, we see a consistent
pattern of fits across subjects, with shape-dominated measures consistently outperforming
other measures.

Fit between computational measures and human haptic perception All of the compu-
tational measures we implemented yielded fit errors which differed significantly from the
mean haptic cross-fitting error, i.e., none of the features tested met our criterion for per-
ceptual validity relative to the haptic modality for either data set (Figures 9 and 10, left).
However, good fits were found in individual cases. When curvature was computed using
higher resolution data, it provided good fits to subjects 1 and 2, who were the most texture-
dominated. The VDP and 2D subtraction measures provided good fits to subject 10, who
was the most shape-dominated of the haptic subjects. The Gabor jet and subtraction mea-
sures also fit this subject well for the coarse data set. The worst fits were obtained for
subjects for whom both shape and texture were important. One reason for this is that all
the measures we tested are either shape or texture dominated. Thus one way of modelling
our data would be to use a combination of these measures. On the other hand, a more
sophisticated 3D measure which we have not included may be capable of modelling our
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Fig. 9. Fits between computational measures and human maps when features are computed using finer resolution
object data. Mean fit over all subjects (left) and fits to individual subjects (left). Fits relative to visual data (top)
and haptic data (bottom). Error bars represent standard error. * = significant difference compared to mean cross-
fitting error (IND); n.s. = not significant. In the right-hand figures, the dashed red line is drawn at one standard
error away from the mean cross-fitting error. (CUR: 3D curvature estimate; EDG: 2D edge detection; GAB:
2D Gabor jets; SUB3: 3D subtraction; PER: 3D perimeter; SHA: 3D shape histograms; SIM: 2D Structural
Similarity; SUB2: 2D subtraction; VDP: 2D Visual Difference Predictor)

data; further 3D features need to be tested in order to investigate this possibility.

4. GENERAL DISCUSSION
4.1 Effect of modality on perceptual similarity

Visual similarity In visual similarity judgments, shape was the dominant perceptual dimen-
sion, whereas texture variation played a lesser role. This finding agrees with the idea that
shape is a key determinant of similarity relationships between objects [Edelman 1999]. It
is also consistent with the notion that the extraction of global form is one of the visual sys-
tem’s areas of expertise [Klatzky and Lederman 2003]. Distinct clusters of stimuli based
on shape appeared in the visual similarity map, hinting at the formation of shape-based
categories in similarity space. This observation is interesting given debate surrounding
the question of whether similarity relationships form the basis for perceptual categoriza-
tion [Hahn and Ramscar 2001] and coincides with evidence for a special role of shape in
the formation of category structure. For instance, young children have been shown to use
shape as a basis for naming generalization, ignoring other properties such as size and tex-
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Fig. 10. Fits between computational measures and human maps when features are computed using coarser
resolution object data. Mean fit over all subjects (right) and fits to individual subjects (left). Fits relative to visual
data (top) and haptic data (bottom). Error bars represent standard error. * = significant difference compared to
mean cross-fitting error (IND); n.s. = not significant. In the right-hand figures, the dashed red line is drawn at one
standard error away from the mean cross-fitting error. (CUR: 3D curvature estimate; EDG: 2D edge detection;
GAB: 2D Gabor jets; SUB3: 3D subtraction; PER: 3D perimeter; SHA: 3D shape histograms; SIM: 2D Structural
Similarity; SUB2: 2D subtraction; VDP: 2D Visual Difference Predictor)

ture [Landau et al. 1998]. Models of visual object categorization have also been developed
on the basis of shape primitives [Biederman 1987] as well as on the basis of similarity re-
lationships amongst shape primitives [Edelman 1999]. An interesting question is whether
shape also plays a special role in category formation when objects are first experienced
through touch. We have recently found evidence that both shape and texture dimensions
are capable of determining spontaneous category structure in vision as well as in touch
[Cooke et al. 2006]. In addition, we found that the relative importance of shape/texture in
determining category structure was the same as the relative weight in judging similarities
(shape was more important than texture for vision, while for haptics, shape and texture
were roughly equally important).

Haptic similarity When subjects touched the objects, they weighted the relative impor-
tance of shape and texture differently than when they saw the objects: instead of shape
dominating their similarity judgments, both shape and texture were important. Given that
local material properties are thought to be more accessible to the haptic system than global
geometric properties [Klatzky and Lederman 2003], one might have expected haptic sim-
ilarity ratings to be more strongly affected by texture differences. [Klatzky et al. 1987]
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found that haptic free sorting of wafer shapes based on similarity was performed preferen-
tially on the basis of material properties as opposed to geometrical properties. However,
in a follow-up study [Lederman et al. 1996], in which stimuli were fully 3D and shape
variation was no longer limited to the edges, geometric properties played a more important
role than material properties in haptic similarity judgments. This result indicates that the
distribution of geometrical features (e.g., 2D vs. 3D shape information) has an influence
on the relative weights of object properties. In our stimulus set, shape information is 3D,
but most variation in shape features can be captured in the frontal 2D plane [Cooke et al.
2005]. In light of the two aforementioned studies, it could be that this “2 1/2 D” distribution
of shape features contributed to the even weighting of shape and texture properties in this
experiment. Experiments involving stimuli with controlled variations in the distribution of
shape features would be required to test this hypothesis.

Another difference between our study and [Lederman et al. 1996] is that subjects freely
explored the objects and used a variety of different hand movements, whereas subjects in
this experiment were restricted to contour-following. Although contour-following allows
for the extraction of both shape and texture properties, it is thought to be optimal for ex-
tracting precise shape information. We are currently investigating how controlled variation
in exploratory procedure affects relative property weightings for this stimulus set.

Differences and commonalities in haptic and visual similarities We found a larger amount
of individual variation in the dimension weights derived from haptic similarity data than in
those derived from visual similarity data. This may have arisen due to differences in explo-
ration time: in the visual condition, viewing time was controlled by a software program and
was kept constant (500ms) for all subjects, whereas in the haptic condition, subjects were
allowed to explore the object for up to 10s. Actual exploration time varied from individual
to individual and was as short as 3s per object. [Lakatos and Marks 1999] found that that
local and global geometrical properties had comparable effects on haptic similarity ratings
for short exploration times (0.5s to 4s), but that the role of global properties increased with
exploration time. This suggests that subjects who took longer to explore the objects may
have been more shape-biased than those who used shorter exploration times. However, in
a follow-up study [Cooke et al. 2006], in which exploration times were kept between 3
and 5s, we found the same pattern of dimension weights: visual subjects were consistently
shape-dominated, while haptic subjects exhibited variable weights, with shape and texture
being equally weighted on average. One remaining explanation is that since subjects have
less experience with haptic similarity ratings, they tend to invoke cognitive strategies and
rules more often when access is provided via touch instead of vision, which in turn leads
to greater variability in dimension weights.

Despite the differences we found between visually and haptically-derived representa-
tions, there were also important commonalities. In both visual and haptic conditions,
subjects were able to extract the two kinds of parametric variation which were used to
create the stimuli. These two stimulus variations, which we initially referred to as changes
in “macrogeometry” and “microgeometry” were consistently referred to by subjects as
changes in “shape” and “texture.” The fact that subjects were able to extract systematic
variation along these two dimensions is a non-trivial ability given the high-dimensionality
of the visual and haptic measurement spaces. For instance, assuming gaze fixation, the
visual measurement space might be approximated by the number of pixels in the images
of the stimuli. The haptic measurement space might be approximated by the 3D forces
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exerted on the finger plus the relevant joint angles and positions, taken over the course of
the contour-following procedure. Furthermore, the two stimulus manipulations may have
had non-linear effects on measurements of object data. In spite of this, maps derived from
mean human similarity data exhibit clear, regular responses to the two stimulus manipu-
lations and ordinal relationships present in the stimulus set are recovered. Understanding
how the visual and haptic systems deliver such close results despite large differences in
the anatomical structure of receptors and pathways which convey object information to the
brain is a key motivation for our work.

4.2  Similarity-based feature validation

In this paper, we have proposed a criterion for feature validity based on the fit error between
maps based on the fit between computational and human similarity measures. However, as
discussed above, the results of our human experiments indicate that perceptual similarity
between objects can vary as a function of the modality used to experience the objects.
Therefore, feature validity, when based on perceptual similarity, depends on the modality
assumed to be used for perception. This underscores the importance of specifying the
modality (or combination of modalities) to be used when evaluating feature validity.

Visual feature validation Several of the features we implemented met our criterion for
perceptual validity relative to the visual modality (2D/3D subtraction, 3D shape histograms,
VDP and SSIM). These results are in accordance with those reported in [Watson et al.
2001]. The strong performance of the VDP and SSIM, which is are industry standards
for assessing image differences, is to be expected. In this sense, they can also be consid-
ered benchmarks against which the performance of the other measures can be compared.
Surprisingly, the much simpler subtraction-based measures yielded comparable stimulus
maps and fit errors. One apparent difference between the shape-dominated measures and
the human visual data lies in their response to texture changes: the human data (Figure
4) do not exhibit the same hypersensitivity to high texture levels observed in some of the
computational maps (Figures 6 and 7).

The fact that the 3D subtraction map met our criterion for perceptual validity could be
taken as an indication that the human visual system reconstructs 3D geometry from 2D
images; however, as pointed out earlier, 2D and 3D subtraction measures likely yielded
similar results on our stimuli since most of the variation among stimuli occurs in the image
plane. A stronger test of whether 3D measures are indeed perceptually valid for the visual
modality would require the use of a stimulus set in which variation occurs in depth.

Perimeter and curvature measures provided poorer fits to human visual maps. This is
mainly due to the insensitivity of these measures to changes in shape. This result shows
that the visual system does not rely solely on curvature or perimeter estimates (at least not
as we have implemented them) to judge similarities. This is not as trivial as it may seem:
it is indeed possible to extract object perimeter from 2D images and, since perimeter can
also be extracted in the haptic modality, it could serve as a convenient feature for sharing
information between vision and touch. Curvature can also be extracted from 2D images;
in fact, the visual system could use shading-related changes in pixel intensities to estimate
both local curvature (texture-from-shading [Todd et al. 2004]) and global curvature (shape-
from-shading [Blake and Biilthoff 1991]). Our findings do not rule out the possibility that
the visual system uses these features, but they indicate that neither perimeter nor curvature
(as we computed them) is sufficient to explain our human visual similarity data.

Haptic feature validation None of the measures we tested met our criterion for per-
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ceptual validity relative to the haptic modality. This is due in part to the strong shape or
texture bias of the measures we implemented, which meant that good fits were not obtained
for subjects with intermediate shape/texture weightings. Although identifying such a fea-
ture would help to address this problem, one would still need to account for intra-subject
variability in haptic similarity judgments. For this, it may be necessary to implement an
individually-adjusted combination of features.

At the individual subject level, good fits were obtained for subjects who were strongly
biased either towards shape or texture. A surprising finding was that despite the fact that
subjects explored the objects via a contour-following procedure, the map based on the
perimeter measure did not yield good fit values for either of the two scales we tested. Pos-
sible explanations for this could be that subjects do not compute perimeter during contour
following, or that it is computed but not used to judge similarity, e.g., because the estimate
is not statistically reliable [Ernst and Banks 2002].

Finally, contrary to our expectations, we did not find that measures computed on 3D data
provided generally better fits to haptic data than measures computed on 2D data. Studies
involving objects with greater 3D variation are needed to further test whether 2D features
are indeed sufficient to model haptic object representations.

4.3 Variation of object scale

In this study, we computed features using object data at two different scales and looked for
differences in fits to human data caused by this variation. For our object set, the main ef-
fect of presenting coarser data was to make it more difficult for measures to recover texture
variation. This had little effect on fits to human visual data, since the recovery of shape in-
formation is the critical factor in determining a good fit. For edge detection, downsampling
the data led to a better recovery of shape variation and fit error was lower in the coarse than
in the fine condition. Texture-dominated measures (curvature and perimeter) were strongly
affected by downsampling; the measures no longer captured texture variation in the stimuli
and, as a result, fits to texture-dominated haptic subjects worsened. The fact that our cur-
vature measure was strongly affected by downsampling object data is interesting in light of
findings that human haptic curvature estimation is also scale-dependent [Louw et al. 2000;
Nefs and Kappers 2003]. Further studies are needed to systematically investigate how the
scale of object data affects perceptual similarity judgments and compare this to the sensi-
tivity of computed measures. In turn, this type of knowledge can help to design effective
haptic, visual, and multimodal interfaces. More generally, we have demonstrated how our
method can be used to assess the sensitivity of features to computational parameters (in
this case, data resolution). We envisage that this procedure could be performed iteratively
in an optimization setting, e.g., to find the resolution of object data for which feature X
provides the best fit to human data.

4.4  Summary of findings and outlook

In this work, we have shown how a similarity-based approach can be used to assess the
perceptual validity of features relative to a specific sensory modality. With the example
of scale variation, we also showed how the method can be used to assess the sensitivity
of features to changes in the way they are computed. This work is just a first step, how-
ever, towards developing a rigorous test of perceptual validity. In particular, our stimulus
set only contained 25 objects, meaning that the fits between computational and perceptual
maps were based on relatively few data points. Another limitation is that we limited our
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study to a single stimulus class. That having been said, we were able to provide a “plau-
sibility test” for perceptual validity for a set of standard 2D and 3D features. We found a
number of perceptually plausible features for the visual condition, with the critical factor
being the features’ ability to recover shape variation in the stimulus set. The features we
tested did not provide good overall fits to the haptic data, although good fits were found
for individuals who were particularly biased toward either shape or texture variation in
the stimuli. A more sophisticated 3D feature or an individually-adjusted combination of
features may be required to model our haptic data.

Although similarity-based methods have already been applied to compare perception
in different modalities (e.g., [Garbin 1988]), our combination of similarity measures and
parametrically-related stimuli differentiates our approach and allows us to compare how
different computations or modalities recover high-level, topological relationships in the
stimulus set. In addition to the rich qualitative information contained in the MDS maps,
the method provides two important quantitative metrics: 1) weightings of the dimensions
which span the output space generated by a given modality or computational measure and
2) a goodness-of-fit measure between two stimulus configurations in the output space.

We suggest that the method can be used for three distinct purposes:

(1) First, it can be used to visualize and quantify changes in human similarity-based repre-
sentations of objects when different or multiple modalities are used to explore objects.
The effects of varying, adding, or removing stimulus properties as well as the effects
of stimulus-independent manipulations (e.g., changes in viewpoint or illumination) on
the structure of human object representations can be studied. The method also makes
it possible to identify object properties which are important for unimodal perception,
but are not good predictors of multimodal perception.

(2) Second, the method can be used to visualize and quantify how well a computed ob-
ject feature is able generate human-like stimulus maps and to compare the relative
performance of different features on a given set of object data.

(3) Third, the method makes it possible to assess the sensitivity of features to changes in
inputs (e.g., resolution) or algorithm parameters. The method offers a criterion which
can used to optimize such parameters relative to human perception.

The next step in our work is to develop more rigorous tests of perceptual validity, which
can be added as a second stage once perceptual plausibility has been established using
the method presented in this paper (Figure 11). This second stage of perceptual validity
testing has two important components: 1) a test of generalization to a larger number of
more complex stimulus classes (left-hand boxes) and 2) a test of generalization to a larger
number of points within each stimulus space (right-hand boxes). A rigorous evaluation of
perceptual validity which incorporates these components should provide substantial benefit
for developing efficient artificial representations of objects and also help to elucidate the
computational mechanisms underlying human perception.
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Fig. 11. A two-stage model for perceptual feature validation. The first stage involves a less demanding, but
relatively straightforward plausibility test. In the second stage, perceptual validity is tested more rigorously by
testing whether goodness-of-fit holds for a larger number of points in the stimulus space and to more complex
stimulus classes.
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