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Spatial Filtering

Volume conduction means each EEG sen-
sor picks up a superposition of signals from
all over the brain.

Our goal 18 to undo this superposition by
spatial filtering, to re-focus on discrimina-
tive signals: a source separation problem.

The most popular method for ERD-based

BCI is the Common Spatial Pattern (CSP)

algorithm which simply finc
S to maximize:
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Unfortunately:

CSP’s objective is a poo

classifier generalization performance.
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The CSP objective’s outlier-sensitivity (see
figure below) leads to the problem of over-

fitting.
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lower-bound on generalization performance.

Fix 1: Max-Margin |

The maximum margin criterion (as used in SVMs) is a proven

Fix 2: Max-Evidence I

The marginal likelihood or evidence of a probabilistic model with

hyperparameters 0 is given by integrating the parameters (e.g. a

classifier’s weight vector w) out of the likelihood for data D:

P(D|6) = | Pr(D]w, 0)Pr(w|@)dw

As it 18 a probability density function, the evidence normalizes over

the space of possible datasets. Maximizing it can be an effective

means of complexity control and hence model selection:

opatial filtering is introduced into the generalization objective

as an explicit non-linear mapping to band-power features:

P(X;; S) = In(diag(S X;X; 5))

where S is the spatial filter matrix [sq, s9, ..

the margin in the space of these features yields the objective:

Mo w + 3 max(0, 1 y(0(X;: 5) w + b))

|. Maximizing

This 1s an unconstrained optimization. We minimize the

objective with respect to w, b, .S, using conjugate gradient Since we can compute 0k/0S, the Gaussian Process framework
(seeded with CSP solutions to avoid local minima). Regular- allows us to maximize P(D|S) by a conjugate gradient method.
ization hyperparameter A is found by cross-validation.

Again, we use CS.

model too
complex

model too

simplef | model just complex
enough for dataset D

D data space

We treat spatial filter coeflicients S as covariance function hyper-
parameters in a Gaussian Process Classifier (GPC). As in our max-
margin approach, we use a linear function of log filtered variances:

k(X X;) = 1+9(X;;8) ¥(X;;9)

P as the seed.
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CSP + SVM

We show binary classification error from 15 1

200 training trials
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subjects: 9 from BCI competitions (Comp 2:1-

and 6 from the MPI. These were pre-processed

a, Comp 3:IVa,IVc)
to select 0.5-4s after

stimulus presentation and band-pass filtered to 8-25Hz.
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CSP + GPC

CSP — optimized optimized €— CSP

The two methods (margin and evidence maximization) per:
over ordinary CSP, most noticeably when few training tria.

orm similarly.

Both show consistent improvements
s are available or when initial performance is poor.



