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Spatial Filtering

Volume conduction means each EEG sen-

sor picks up a superposition of signals from

all over the brain.

Our goal is to undo this superposition by

spatial filtering, to re-focus on discrimina-

tive signals: a source separation problem.

The most popular method for ERD-based

BCI is the Common Spatial Pattern (CSP)

algorithm which simply finds a spatial filter

s to maximize:
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Unfortunately:

CSP’s objective is a poor predictor of

classifier generalization performance.

The CSP objective’s outlier-sensitivity (see

figure below) leads to the problem of over-

fitting.

Fix 1: Max-Margin

The maximum margin criterion (as used in SVMs) is a proven

lower-bound on generalization performance.

Spatial filtering is introduced into the generalization objective

as an explicit non-linear mapping to band-power features:

ψ(Xi; S) = ln(diag(S>XiX
>
i S))

where S is the spatial filter matrix [s1, s2, . . .]. Maximizing

the margin in the space of these features yields the objective:

λw
>
w +

∑
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max(0, 1 − yi(ψ(Xi; S)>w + b))

This is an unconstrained optimization. We minimize the

objective with respect to w, b, S, using conjugate gradient

(seeded with CSP solutions to avoid local minima). Regular-

ization hyperparameter λ is found by cross-validation.

Fix 2: Max-Evidence

The marginal likelihood or evidence of a probabilistic model with

hyperparameters θ is given by integrating the parameters (e.g. a

classifier’s weight vector w) out of the likelihood for data D:

P (D|θ) =
∫

Pr(D|w, θ)Pr(w|θ)dw

As it is a probability density function, the evidence normalizes over

the space of possible datasets. Maximizing it can be an effective

means of complexity control and hence model selection:

D data space

model too
simple

model too
complex

model just complex
enough for dataset D

We treat spatial filter coefficients S as covariance function hyper-

parameters in a Gaussian Process Classifier (GPC). As in our max-

margin approach, we use a linear function of log filtered variances:

k(Xi, Xj) = 1 + ψ(Xi; S)>ψ(Xj; S)

Since we can compute ∂k/∂S, the Gaussian Process framework

allows us to maximize P (D|S) by a conjugate gradient method.

Again, we use CSP as the seed.

Results
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CSP + SVM
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CSP + GPC

We show binary classification error from 15 imagined movement

subjects: 9 from BCI competitions (Comp 2:IIa, Comp 3:IVa,IVc)

and 6 from the MPI. These were pre-processed to select 0.5–4s after

stimulus presentation and band-pass filtered to 8–25Hz.

The two methods (margin and evidence maximization) perform similarly. Both show consistent improvements

over ordinary CSP, most noticeably when few training trials are available or when initial performance is poor.


