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Mission
Understanding of biological information processing
How does the brain work?
Approach
Study cognition at three levels of understanding

Biological Hardware in the Physiology Department
system physiology in primates
multi-electrode recordings and brain imaging (fMRI)

Behavior and Algorithms in the Psychophysics Department
perception experiments  (human psychophysics)
behavioral experiments in closed action-perception-loop (VR)

Computational Theory in the Empirical Inference Department
statistical learning theory
computer vision and robotics



Overview

What can we learn from biology
to build intelligent machines?
• from flies to autonomous robots

Object Recognition & Categorization
• How do we interpret the world

through our senses?
with our eyes
with our hands

Machine Recognition
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What can we learn from biology

Insects
Bottom-Up Processing:

very fast, reactive behavior
(almost) no memory
hard-wired reflexes
massive parallel processing:
feed forward processing
task-specific hardware,
adapted to environment
simple sensor fusion

Humans
Top-Down Processing:

cognitive, learned behavior
memory-based computation
learned behavior
massive parallel processing:
many feedback connections
flexible, multi-purpose
hardware 
adaptive sensor fusion
attention
awareness



Insect Inspired Flight Control
Titus R. Neumann

Hard-wired statistical
a priori knowledge about
• environment
• sensors, actuators and 

morphology of agent
Applications:
• robots for restricted space 

and energy consumption
• micro-/nano-robotics
• aerospace

Flies have minimal brain size and
energy consumption
Fast and robust behavior:
• course stabilization
• obstacle avoidance

Minimalistic sensing and 
processing:
• large field integrating neurons
• for roll, pitch and yaw control



Insect inspired flight control
obstacle avoidance & height control



Drosophila Vision
with 642 Photoreceptors



Titus Neumann © MPI  Biol. Cybernetics

Autonomous Vehicles
Obstacle avoidance & height control



Head stabilization in man and fly

Head stabilization with tiny gyrocopes
biker  in Tübingen       fly in a fly flight simulator

R. Hengstenberg, Nature (1998)



Vision in Fly, Man and Machine

Object Recognition
• is poor in flies
• is excellent in humans
• is good and bad in machine vision

good for specific objects
• machine inspection

bad for object categorization
• classify everyday objects (chairs, tables, …)





Shape Changes

By changing the shape of an object
we change the perceived category.



Viewpoint Changes

By changing the viewpoint we can also 
get a change in the perceived category.



Viewpoint Changes

How does the brain disentangle viewpoint 
changes from shape changes?



Object Recognition

In order to recognize objects we need
an adequate representation of objects
in the brain.
Whether this representation is
• image-based (appearance-based)

multiple views with low dimensional features

• or based on structural descriptions (Geons)
relations between 3D parts

is (sometimes passionately) debated.
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Matching
Trans-

formation

Matching

How Does the Brain 
ReCOGnize Objects ?



Our approach to test these models

Test : viewpoint dependency of 
recognition
• view-based models

depend on viewpoint
limited generalization to novel views

• structural models
almost independent of viewpoint
good generalization to novel views

Problem: for familiar objects all views
are already known and therefore useless 
for view generalization experiments
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Paperclips                 Amoebae

Bülthoff & Edelman, PNAS 1992 Edelman & Bülthoff , Vis. Res. 1992

Recognition of unfamiliar objects



Generalization Experiments
Bülthoff & Edelman
PNAS, 89, 60-64, 1992

Generalization: better 
for views spanned by 
the training views than 
for orthogonal axis.
Conclusion:
“This is difficult to 
reconcile with any 
theory except the 
image combination 
approach.”
S. Ullman 1996.

Introduction

Visual Recog.

Models

Demonstration

Haptic Recog.

Experiments

Binding 
Problem

Temporal
Association

Computer 
Vision



Generalization Fields of Paperclips
E. Bricolo
MIT PhD Thesis

stereo
only one test
per target

distractor=
target + noise

10 subjects 25   viewpoints
150 target objects 23% distractor noise
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View-specific Paperclip Neurons
Logothetis, Pauls, Bülthoff, Poggio
Current Biology 4, 401-414 (1994);  5, 552-563 (1995)

Limited Generalization          Symmetric Views
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A View Interpolation Network
Poggio & Edelman
Nature, 343, 263-266, 1990

view angle∑
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Demonstration for
Image-based Recognition

What‘s in this picture? Introduction
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A bit more information
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Image-based Recognition

Recognition is not bottom-up
Recognition is matching to image-like representations
Recognition memory for pictures 
• Roger Shepard (1967):  700 pictures

even after a week still over 90% correct recognition
• Standing, Conezio and Haber (1970) 2500 pictures
• Standing (1973) 10 000 pictures 
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Dalmatian Dog
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Dalmatian Dog
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Dalmatian Dog
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Where is the Dog?

P. Sinha & T. Adelson Perception 26, 667, 1997
Some people have too much top-down processing…
they hallucinate the dog
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Provocative question

All the information for recognition 
is in the image, so why do we 
need 3D structural descriptions 
for recognition?
The answer is:
We don’t, if we use
image-like representations
and
trade memory for computation.
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Experimental Evidence for
Image-based Object Recognition

Psychophysics
• limited generalization to novel views in humans 

despite full 3D information
Physiology
• view-specific neurons in monkeys 

Theory
• learning from examples
• appearance-based computer vision 

More evidence for image-based recognition
• Object Recognition in Man, Monkey & Machine

Tarr & Bülthoff, MIT Press
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Visual and Haptic Recognition
Newell, Ernst, Tjan & Bülthoff
Psychological Science, 12, 37-42, 2001

Visual object recognition
• 2D input
• image-based recognition
• egocentric encoding

Haptic object recognition
• 3D input
• 2D or 3D representation?
• only few reports

Lederman & Klatzky, 1987
Easton, Srinivas &      
Green, 1997

Common representation?
• Cross-modal transfer ?
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Haptic Recognition of
3D Lego™ Objects

Objects made from
identical Lego™ parts
• 6 red bricks (8-dot)
• 32 different objects

Discriminable only by 
the configuration of the 
bricks
• No advantage of color, 

texture or weight for 
vision or haptic

Test in different 
orientations
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Old/new Recognition Paradigm

Learning Session

>> 4 Target Objects
presented sequentially

>> Familiarization time 
30 s for visual learning
60 s for haptic learning

Target Objects
Testing Session

+

Target Objects

Distracter Objects

>> presented in random order
>> unlimited presentation time
>> 12 trials per block



Experimental Design

Rotations 
about vertical-axis

Test angles:
0° and 180°

Testing Conditions

1.    visual - visual (v-v)
2.    haptic - haptic (h-h)

3.    visual - haptic (v-h)
4.    haptic - visual (h-v)

Learning    - Test

}
}

Within
Modal

Cross
Modal



Rotation Around Vertical Axis 
visual-visual & haptic-haptic
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Cross-modal Transfer

* *
*view
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The Visual and Haptic “View”

Main “viewing” direction 
of the hand

Main viewing 
direction of the eyes

Introduction

Visual Recog.

Models

Demonstration

Haptic Recog.

Experiments

Binding 
Problem

Temporal
Association

Computer 
Vision



180°
Rotations Up/Down Change 

Left/Right Change 

Testing the “Haptic View”

180°
Rotations 

Horizontal axis

Up/Down Change 
Front/ Back Change 

Prediction: Whenever rotations involve a front/back
change, the cross modal performance is better. 

Depth axis



Recognition Performance:
Other Axes 

* * * * *
*view

Rotations around 
horizontal axis

Rotations around 
depth axis



Why are our hands linked to the arms
this way         and not this way? 

Human Body Anatomy 



Integration of Information

Recognition becomes 
less 
viewpoint dependent, 
if the visual and haptic 
information is 
integrated into a 
common 
representation with
cross-modal access.

Main viewing 
direction of the eyes

Main “viewing”
direction of the 
hand



The binding problem

Physical similarity can account for 
recognition with small viewpoint 
changes (view-based recognition)
How does the brain know that different 
views of an object belong together?

View 3

View 2
View 1
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Temporal Association Hypothesis 

Temporal similarity can link many views to one 
object identity, because different views of objects 
are usually seen in close succession.

Same or different?
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Rotation with Identity Change
Wallis & Bülthoff
PNAS, 98(8), 4800-4804, 2001
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The temporal association hypothesis predicts that 
morph sequences of a rotating head which 
changes identity from A to B should bind all 
images to one single person.

Fusion via 
temporal 

coherence

Identity 
A+B

A ABAB AB



Tübingen 3D Face Database
Troje, Vetter, Blanz, I. Bülthoff, Knappmeyer, Kleiner
http://faces.kyb.tuebingen.mpg.de
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Morphing of 3D Faces
Correspondence Problem

½ + ½ =

with 3D correspondence

without correspondence



Vector space of 3D faces
Thomas Vetter & Volker Blanz

A Morphable Model can generate new 
faces and facial expressions. 

a1 *            +  a2 *            +  a3 *          +  a4 *              +. . . 

b1 *              +  b2 *          +  b3 *           +  b4 *              +. . .  

=     



Modeling the Appearance of 
Faces 

Face is represented as a point in Face Space
Direction codes for Face Attributes (e.g., Gender)



Learning from Labeled Faces

Fitting a regression function



Background: Morphable 3D Faces
Thomas Vetter & Volker Blanz

From a single image

• Novel expressions
• Novel views

• Synthesis of siblings
• Change of illumination
• Variations of body weight



Synthesis of Faces
Volker Blanz & Thomas Vetter

Face
Analyzer

Input Image

Modeler

Result

Morphable
Face Model

Database

3D Head



Synthetic Actors
Tom Hanks 
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Mona Lisa Variations
Volker Blanz

more female more male more friendly more attractive



Rotation with Identity Change
Wallis & Bülthoff

PNAS, 98(8), 4800-4804, 2001
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The temporal association hypothesis predicts that 
morph sequences of a rotating head which 
changes identity from A to B should bind all 
images to one single person.

Fusion via 
temporal 

coherence

Identity 
A+B

A ABAB AB



Training: with Morph Sequences

36 morph sequences
each image shown for 
300ms and
immediately replaced by 
next image
rotation from left to right 
profile and back
two back and forth 
rotations per sequence

TRAINING
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Testing: Same/Different Task

Match-to-sample testing 
with two groups

Within Group (WG)
faces have been 
seen within a 
morphing sequence

Between Group (BG)
faces have not been 
seen within a 
morphing sequenceProbe

Mask

Probe Target

750ms 150ms

TESTING

Target

150ms150ms

150ms

150ms

Fixate
±

Introduction

Visual Recog.

Models

Demonstration

Haptic Recog.

Experiments

Binding 
Problem

Temporal
Association

Computer 
Vision



Wrong associations

WG faces which have been seen together 
but belong to different persons are 
classified as different (correct rejections) 
less often.
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Temporal association ?

Maybe seeing the intermediate 
morphed faces confused already 
the identity of WG faces.
A further test of the temporal 
association hypothesis compared 
static with dynamic displays
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Sequential
Display
6 sec

Simultaneous
Display
6 sec

Sequential vs. simultaneous
Experiment 2
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No confusion for static displays
Experiment 2

There was no significant effect of 
group (WG or BG) for static displays
F (1,9)=0.133, P=0.724.

The simultaneous appearance and 
scanning of 5 faces was
not sufficient to associate the WG 
faces
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Randomized temporal order
Experiment 3

There was also no significant effect of 
group (WG or BG) for randomized 
display order during training 
F (1,9)=0.044, P=0.839.
The continuous but spatiotemporal 
disrupted presentation rendered training 
ineffectual (compared to the ordered 
spatiotemporal presentation).
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Facial Distortion
Experiment 4

If one sees the frontal view of face A turn 
to the profile view of face B, there will be 
an associated subjective impression of a 
change in identity, and of facial distortion
during rotation.
Conversely, if no such change is detected 
then presumably the frontal and profile 
views must appear to belong to the same 
face.
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Facial Distortion
Experiment 4

Training: with 5 morph sequences.
Testing: with these 5 sequences and
5 new sequences with true appearance of 
5 of the 10 faces seen during training.
Task: Report if heads changed form 
during rotation.
Prediction: Morph sequences perceived 
as single face should appear rigid.
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Facial Distortion
Experiment 4

Original faces are deforming while faces  
from a morphing sequence appear rigid.
The opposite is true for untrained faces.
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Human Recognition Summary

Our psychophysical experiments suggest 
that objects are represented as 
collections of views linked by 

temporal association

View 3

View 2
View 1
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Additional Evidence
for Temporal Associations
Stone 1998, 1999

Studies by Stone 1998,1999
• Subjects learn objects rotating in one direction
• During test, objects are either displayed as 

learned or in reverse order
• Large performance loss for reverse condition

Temporal characteristics form an integral 
part of learned object representations

learn

test
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Further evidence for
temporal association

There is also good evidence for view-
based recognition based on temporal 
association from single cell 
recordings
• (e.g., Miyashita, 1998)

automatic recognition system based 
on temporal association of views
• CogVis project (FP5) 
• PhD project C. Wallraven
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Database of objects

Tracking until feature 
loss > thresh

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Keyframe 1 Keyframe 2

time

Object 1
Keyframe

Keyframe
Keyframe

Keyframe

Online
Learning Object 1

Keyframe
Keyframe

Keyframe
Keyframe

Object 1
Keyframe

Keyframe
Keyframe

Keyframe

Keyframe-based recognition system
Christian Wallraven
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Feature matching
(motivated by Pilu 1997)

Used both for tracking and recognition
Constructs similarity matrix A with:

Modified SVD of A provides a one-to-one mapping 
between features
Tries to find matches maximizing both
• configuration and image similarity
• similarity to learned feature trajectories can be 

incorporated
• Both tracking and recognition is correspondence based

j))NCC(i,1exp(j))dist(i,1exp( 22
NCCdist σσ

−⋅−=ijA
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Original 
images

Keyframes

Feature 
trajectories 

between 
keyframes

Tracked 
features 
between 

keyframes

Keyframes in Motion
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Keyframes as View-Graphs

Properties of keyframes
• Selected in a bottom-up fashion

(assumes no motion model)
• Segments the sequence into temporally 

continuous chunks according to visual events
Capture motion complexity of the sequence

• Forms a directed and connected view-graph
Extensible, view-based representation
Possible to model canonical views
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Keyframes with Local Features

Properties of tracked local features
• In general: provide good compression 
• Access to feature trajectories

Allows analysis of image motion 
Can be used as spatio-temporal matching priors

Both keyframes and tracked features form 
a fingerprint of the sequence
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Keyframes
Consistency

Examples from rendered sequences Introduction

Visual Recog.
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Keyframes
Consistency

MPI Face Database

Car Video Database
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Recognition Results

Tübingen face database 
60 faces, 2 different illuminations, 2 different poses
Recognition rate 98%
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Recognition Results

Training: 100 face sequences
5 keyframes

Testing: with 4 intermediate views which 
are part of the representation

Task: face identification

Spatio-temporal representation wins!!!

Method Rec. error
Images only 37.5%

Features only 14.5%
Features + 
Trajectories

2.0%
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Keyframes
Compression

Examples from video sequences
• Small database of 20 car videos
• Videos taken under un-controlled conditions
• Compression rate over 99%

21 frames 21 frames
only features

720 frames
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Recognition Results

Car Database
• Variations in lighting, size, occlusion in real-world 
• 20 car videos, 50 test pictures with a digital camera 
• Recognition rate 88%
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Keyframes

provide a way of automatically acquiring 
scene representations suitable for 
recognition
main criticism against image-based 
recognition is the storage requirement
• key-frame technique provides a low 

dimensional representation of scenes
• compression rate of over 99%
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Learning multi-modal Object Representations 
through Active Manipulation
Christian Wallraven (MPI), Sajit Rao (DIST)

Self-terminating 
Exploration

“How can 
Proprioception, Vision and Active Control 

make object recognition more robust?”

Object
Recognition

Self-terminating
Learning

Proprioceptive
View-Transition Map
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The Proprioceptive View-
Transition Map (PVTM)

Views

dp

i

j

1 j n
1

n

i

M(i, j) 
<dp> that takes you

from View (i) to (j)

Object representation that links model 
views in proprioceptive space, hand-
centered (= proprioceptive viewing-sphere)
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Learning the PVTM with 
keyframes

Robot performs explorative motor-program for 
any given object to learn the PVTM
Each view of the PVTM is given by a keyframe

External View Keyframes Tracking
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Self-Terminating Learning
Results: Box Example

• 30 sec exploration,
• repeated yaw, roll 4 times
• ~ 750 views
• 90 Keyframes + 
proprioceptive state vectors
• 15 Model Views are 
sufficient to predict
all keyframes

Predicted-Views

Model-Views
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Object Recognition
Comparison of Multi-modal vs Visual-only

Visual matching is sufficient to predict the best model
- but not very discriminatory

Multi-modal matching profile is more “sharply tuned”
– higher on the best match, lower on the distractors

Transition map match appears to be more discriminative
by bringing metric 3D information to bear 

Bricks
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Possible uses of PVTM

From action to views
• Learn and recognize object representations by 

interaction
• Execute movements that take you to 

informative views
From views to action
• Given a view, select an appropriate action 
• Important for manipulation, e.g., inserting an 

object into a hole
Extensions
• Generalizability to other sensory channels
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View-based Computer Vision

Objects can be represented as 
collections of associated views
A view-based computer-vision recognition 
framework motivated by this research was 
successfully implemented and tested
• Feature representation enables full control 

over matching/learning process
• Easily expandable 
• Modeling of various psychophysical 

experiments
• Successful implementation on robotic setup
• Extended to multi-modal representations
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Conclusion

Human and monkey experiments 
suggest that objects are represented 
as collections of views linked by    
temporal association.
Computers can be taught to see if we 
use appearance-based strategies.
The information for recognition is in 
the 2D image.
Artists have known this already for 
quite some time.
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The 2D image not the 3D structure
is the key to recognition

Introduction

Visual Recog.

Models

Demonstration

Haptic Recog.

Experiments

Binding 
Problem

Temporal
Association

Computer 
Vision

Markus RaetzMarkus Raetz



Markus Raetz

One Object –Two Views
Man or Hare ?
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MPI-Raetz

Isabelle Bülthoff



Open Questions

next 10 years:
• face recognition in airport terminals

next 10-20 years:
• Categorization in real world situations 

Turing Test for Recognition
(Chair Award)

next 20-30 years:
• child-like one-shot learning of categories
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