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Abstract. Small molecules in chemistry can be represented as graphs.
In a quantitative structure-activity relationship (QSAR) analysis, the
central task is to find a regression function that predicts the activity of
the molecule in high accuracy. Setting a QSAR as a primal target, we
propose a new linear programming approach to the graph-based regres-
sion problem. Our method extends the graph classification algorithm by
Kudo et al. (NIPS 2004), which is a combination of boosting and graph
mining. Instead of sequential multiplicative updates, we employ the lin-
ear programming boosting (LP) for regression. The LP approach allows
to include inequality constraints for the parameter vector, which turns
out to be particularly useful in QSAR tasks where activity values are
sometimes unavailable. Furthermore, the efficiency is improved signifi-
cantly by employing multiple pricing.

1 Introduction

Nowadays we are facing a problem of screening a huge number of molecules in or-
der to testify, e.g., if it is toxic to human or it has an effect on HIV virus, etc. Such
bioactivities or chemical reactivities are measured by laborious experiments, so
selecting small number of good candidates for the later synthesis is important. A
quantitative structure-activity relationship (QSAR) analysis, a process to relate
a series of molecular features with biological activities or chemical reactivities,
is expected to decrease a number of expensive experiments. The conventional
QSAR analysis manipulates chemical data in a table in which molecules are
defined by individual rows and molecular properties (descriptors) in binary or
real values are defined by the associated columns. The prediction model is then
built to be consistent to the structure-activity relationship. Our approach use
subgraphs as molecular properties instead of conventional descriptors. Since we
know that simple subgraphs are already included in conventional descriptors,
and believe that enriching subgraph features would contribute to make a better
prediction model.
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A graph is a powerful mathematical framework which can deal with many
real-world objects. Several approaches based on kernel methods have been pro-
posed [1-6], which all consider molecules as graphs and tried defining distance
measures between molecules. However, these kernel methods lack interpretabil-
ity, because the feature space is implicitly defined and it is difficult to figure out
which features played an important role in prediction.

We take the boosting approach, which works in a feature space explicitly
defined by substructure indicators [7]. Therefore, it is rather easy to show the
substructures contributed to activity predictions, which may lead to new findings
by chemists. Though the number of possible subgraphs in graph database are
exponentially large, the recent advance of graph mining algorithms [8-12] sug-
gests a way to handle them. The graph boosting method by Kudo et al. [7] has
to be modified in several ways for QSAR applications. First of all, the original
classification algorithm should be modified to a regression algorithm, because
the activity is real-valued. Very recently, Kadowaki et al.[13] used the graph
boosting in a SAR task, where the problem is to predict a chemical compound
is active or not. However, the activity values are continuous and they are not
obviously separated into active/non-active categories. Second, in publicly avail-
able databases, the activity values are not always available, because, if some
compounds are obviously inactive, they do not bother to measure the activity.
Therefore, for many compounds, one knows that their activities are low, but the
actual values are not available. We need a mechanism to take those unusual data
into account. Finally, in AdaBoost, only one substructure is found by the search
of the whole pattern space. So, if one needs d substructures for good accuracy,
the graph mining has to be done d times. For more efficiency, it is desirable that
multiple substructures are derived by one mining call.

Among several boosting algorithms for regression [14], we found the linear
programming (LP) boosting proposed by Demiriz et al. [15] is most appropriate
for our task. One reason is that the linear programming allows to include in-
equality constraints which are useful for incorporating the compounds with low
activities. Another reason is that it is possible to obtain multiple structures by
one graph mining call, because the LP boost always updates all the parameters
whereas AdaBoost updates one parameter at a time. Finally, in the LP boost,
the optimality of the solution can be evaluated by the duality gap, whereas, in
AdaBoost, it is not obvious when to stop the iteration and it is hard to figure
out the distance from the current solution to the optimal one.

In this paper, we will describe how the LP boost can be combined with the
graph mining algorithm to yield an efficient graph regression algorithm. In ex-
periments using Endocrine Disruptors Knowledge Base (EDKB), our method is
favorably compared with the marginalized graph kernels [1] that are successfully
applied to chemical data recently [5]. We also illustrate the speed up achieved
by reducing the number of mining calls.
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2 Graph Preliminaries

In this paper, we deal with undirected, labeled and connected graphs. To be
more precise, we define the graph and its subgraph as follows:

Definition 1 (Labeled Connected Graph). A labeled graph is represented
in a 4-tuple G = (V,E,L,1), where V is a set of vertices, E CV XV is a set
of edges, L € R is a set of labels, and 1 : V UE — L is a mapping that assigns
labels to the vertices and edges. A labeled connected graph is a labeled graph such
that there is a path between any pair of vertices.

Definition 2 (Subgraph). Let G' = (V/,E', L',)lI') and G = (V, E, L,1) be la-
beled connected graphs. G' is a subgraph of G (G' C G) if the following conditions
are satisfied: (1)V' CV, (2)E' C E, (3)L' C L, and (4)I' C 1. If G’ is a subgraph
of G, then G is a supergraph of G’.

To apply a machine learning method to graphs, one has to represent a graph as a
feature vector. One idea is to represent a graph of a set of paths as in marginalized
graph kernels (MGK) [1]. MGK and similar methods are recently applied to
the classification of chemical compounds [4,5]. Although the computation of
kernels (i.e., the dot product of feature vectors) can be done in polynomial time
using the path representations, paths cannot represent structural features such
as loops and often end up with poor results (e.g., [16]). Therefore, we employ
the substructure representation (Figure 1), where the feature vector consists of
binary indicators of patterns (i.e., small graphs). Now our central issue is how to
select patterns informative for regression. We will adopt the boosting approach
to solve the problem as described in the next section. In chemoinformatics, it is
common that a set of small graphs (i.e., fingerprints) is determined a priori, and
the feature vector is constructed based on them [17]. However, we do not rely
on ready-made fingerprints to search for unexplored features and to make our
method applicable to any graph regression problem in other areas of science.

(o,...,0,1,0,...,0,1,0,...)

5
Gl

Fig. 1. Substructure representation of a graph. Each substructure is restored in the
corresponding position in a vector.
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3 Graph Regression by Linear Programming

When a graph is represented as a vector of binary indicators of all possible
substructures, the dimensionality becomes too large for conventional regression
methods such as ridge regression. In this work, we employ a regression method
based on the LP (linear programming) boosting [15, 18], because it greedily
selects features in learning and can avoid computational problems in a systematic
way. In feature selection, we need to search for the best feature in the whole
pattern space. To perform the search efficiently, we adopted a data structure
called DFS code tree [12] as will be described in the next section. A QSAR
problem is basically considered as a graph regression problem, where graph-
activity pairs are given as the training data, and the activities of test graphs
are predicted by the learned regression function. However, one problem is that
the activity is measured only for the chemicals that are suspected to be active.
For apparently inactive chemicals, nobody bothers to measure their activities.
Thus, in the database, we have a set of chemicals with real-valued activities
and a set of chemicals known to be inactive but the actual activity values are
not available. The latter examples are called “clearly negative data”. In the
following formulation, those examples appear as inequality constraints of the
weight vector.

Let x € R? be a feature vector. Given the training examples {x;,y;},
and clearly negative examples {)’(k}fczl, our objective is to learn the regression
function

d
fx) =) aja;.
j=1

where o is a weight parameter. The objective function to minimize is as follows:
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where z is a predetermined negative constant, C' is the regularization parameter
and |- |¢ is the e-insensitive loss [19], and |- - - |4+ is the hinge loss, namely |¢|4 =
t(t>0), 0(t<0). We used the Ll-regularizer to force most of the weights to
be exactly zero in solution. Even if the dimensionality is large, the number of
non-zero weights is kept small by this regularizer. The solution is obtained by
solving the following linear programming.
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where ¢,&; are slack variables for over-estimation and under-estimation, re-
spectively, and &}, is for clearly negative example. Let uj‘, u; ,vx be the Lagrang

multipliers for the constraints (2), (3) and (4), respectively. Setting u; = u —u;,
the dual of the above problem is written as

i g

l

vk — Y i+ ey |u (5)
1 i=1 i=1

min 2z
u,v
k=
m l
st =1 <Y ww— Y opTry <1, j=1,---.d (6)
i=1 k=1
—C<u; <C,i=1,....,m (7)
0<vs <C, k=1,...,1 (8)

Instead of the primal problem, we will solve the dual problem and recover the
solution for e from the Lagrange multipliers of the dual problem [15, 18].

When the number of features d is extremely large, it is computationally
prohibitive to solve the dual problem directly. Such a large scale problem is
typically solved by the column generation (CG) algorithm [15, 18], where one
starts from a restricted problem with a small number of constraints and necessary
constraints are added one by one. At each step, the restricted LP problem is
solved, and the solution at step ¢ is used to select the constraint added in step
t+1. The procedure continues until the convergence, or we can trade the accuracy
with the computational time by stopping it before convergence. In our case, the
problematic part is (6), so the column generation is performed with respect to
the constraints in (6).

The efficiency of the CG algorithm depends crucially on the pricing step,
where the importance of each constraint is evaluated using an intermediate so-
lution. Here we select the constraint which is violated the most.

m l
j* = argmax | Zul:r” - kaikj\. 9)
J i=1 k=1

If the maximum value is below or equal to 1, the column generation is stopped.
It is also possible to add multiple constraints at a time. For example, one can
sort the constraints based on the score (9), and take the top ¢ constraints. This
technique is called multiple pricing [20] and we will actually adopt it for reducing
the number of searches.

When the substructure representation of a graph is employed, the number
of all constraints is extremely large, thus we need a specialized machinery to
obtain the maximally violated constraint. Since each constraint corresponds to
a pattern, the search (9) is formulated as a graph mining problem as explained
below.
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4 Weighted Substructure Mining

Graph mining algorithms such as gspan efficiently enumerate the set of patterns
that satisfy a predetermined condition [12]. Denote by G = {G;}*, a graph
database including [ clearly negative examples (n = m+1), and let 7 = {T}}7_,
be the set of all patterns, i.e., the set of all subgraphs included in at least one
graph in G. There are many variations of graph mining, but the most common
one is the frequent substructure mining, where the task is to enumerate all
patterns whose support is more than s,

Sprea =151 Q1T € Gi) = s} (10)

On the other hand, what we need now is the weighted substructure mining to
search for the best pattern in terms of the score

Z wi(2mij — 1)

i=1

; (11)

j* = arg max
J

where x;; is defined as x;; := I(T; C G;), the weight for a training example is

w; = U; — % >, ug, and the weight for a clearly negative example is w; =
1 l

—Vi + 7 D ey Vk-

The key idea of efficient graph mining is to exploit the anti-monotonicity,
namely the frequency of a pattern is always smaller than or equal to that of its
subgraph. In frequent substructure mining (10), one constructs a tree-shaped
search space (i.e., DFS code tree) where each node corresponds to a pattern
(Figure 2). The tree is generated from the root with an empty graph, and the
pattern of a child node is made by adding one edge. As the pattern gets larger,
the frequency decreases monotonically. If the frequency of the generated pattern
T} is s, it is guaranteed that the frequency of any supergraph of Tj is less than
s. Therefore, the exploration is stopped there (i.e., tree pruning). By repeating
node generation until all possibilities are checked, all frequent subgraphs are
enumerated.

In the tree expansion process, it often happens that the generated pattern is
isomorphic to one of the patterns that have already been generated. It leads to
significant loss of efficiency because the same pattern is checked multiple times.
The gspan algorithm solves this problem by the minimum DFS code approach,
and we also adopted it for pruning isomorphic patterns.

In weighted substructure mining (11), the search tree is pruned by a different
condition. Let us rewrite the weight as w; = y;d; where d; = |w;| and y; =
sign(w;). Then, the following bound is obtained: For any T; C Ty,

<,

Z wi(2xik — 1)

i=1
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Fig. 2. Schematic figure of the tree-shaped search space of patterns (i.e., substructures)

where v = max(y*,~v7) and

At =2 Z di*idiyi,
i=1

{ilyi=+1,T;CG:}

v =2 Z di+idiyi-
i=1

{ilyi=—1,T;CG}

See [7] for the proof. When a pattern T} is generated, the scores of its supergraphs
Ty, are upperbounded as above. Thus, if the upperbound is less than the current
best value, we can safely quit further exploration.

4.1 Use of multiple constraints

In practice we found that the computation time of our algorithm is dominated
by graph mining algorithm, so we propose to use multiple subgraphs for each
iteration (multiple pricing[20]) in order to decrease the number of graph mining.
This can be performed by mining top k£ subgraphs at each graph mining. In
order to implement this change, we use a band of 7 to maintain top k subgraphs
which maximizes | 37" | uiaij — S« _; UxZk;|. It should be noted that no matter
how many subgraphs we add for each iteration, the solution is kept optimal by
solving linear programming [18].

5 QSAR Experiments

We used Endocrine Disruptors Knowledge Base (EDKB) data provided by the
National Center for Toxicological Research? for measuring performance of our
algorithms. Endocrine disruption is caused by the interference of the endocrine
system by environmental or exogenous chemicals. The E-SCREEN assay of the
EDKB consists of 59 molecules with activities provided in real number (logRPP).

3 http://edkb.fda.gov/databasedoor.html
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Table 1. 5-fold cross validation results on 59 molecules. For MGK, stopping probability
0.5 is chosen from {0.1...0.9}. k = 3 is chosen for kNN, and a ridge le — 5 is used for
ridge regression. Proposed algorithm is stopped at 50 iteration.

Methods [, error l> error time[s] iterations subgraphs
MGK + kNN 0.3384+0.0326  0.240+0.0485  10.1 - -
MGK + ridge 0.3434+0.0282  0.213£0.0470  10.3 - -

Proposed (e = 0.01)| 0.2914+0.0185 0.1574+0.00701  30.7 10.3 9.6
Proposed (e = 0.1) | 0.239£0.0136 0.107£0.00481  46.4 15.2 14.2
Proposed (e = 0.2) |0.227+0.0124 0.101+0.00340 139 37.6 14.4
Proposed (e = 0.3) | 0.237£0.0124 0.123+0.00424 200 50 6.2
Proposed (e = 0.5) | 0.282£0.0200 0.170£0.00887 178 50 2

We also used 61 clearly negative data, and set z to the lowest active level in the
active data. The parameter C', which controls a generalization error, was set to
0.2. The performance was measured by 5 fold cross validation on Linux with
Pentium4 2.4Ghz processor.

We compared our method with marginalized graph kernel (MGK) [1] in com-
bination with ridge regression or kNN regression. MGK-based regression, how-
ever, cannot correctly include the information of clearly negative data, thus we
just added them with labels as same value as the lowest active level in the ac-
tive data. For comparison, we tried the same experimental setting on our graph
regression algorithm, and denoted it as Proposed* in Table 2.

The results in the EDKB dataset are shown in Tables 1 and 2. For MGK
with kNN regression or ridge regression, we can observe that inclusion of negative
data degrades the performance. Performance of our our method was constantly
better than MGK indifferent to regression algorithms suggests that our method
better extracted the structurally characteristic patterns. Also good performances
of “Proposed” over “Proposed*” in Table 2 validates our way of incorporating
clearly negative data.

All the extracted subgraphs from 120 molecules are illustrated in Figure 3.
Subgraphs are ordered from the top left to the bottom right according to their
weights.

There are pros and cons both for classification and regression, i.e., classifica-
tion involves a problem of discretization of activities while regression does not,
but regression does not take into account clearly negative data. In this sense,
our method is located between classification and regression.

While we built a regression model and found its component subgraphs, how-
ever, those extracted subgraphs are sometimes not so easy to interpret. For
example, if a simple carbohydrate chain with fixed length is extracted, there are
many ways of superimposing it on a molecule. Enriching atom and bond labels
would be a better way to overcome this difficulty, and we are investigating this
direction.

We can see from Figure 4 that the decrease in the number of iterations until
convergence is almost in proportion to k, and we can see a similar curve for
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Table 2. 5-fold cross validation results on 120 molecules. For MGK, stopping prob-
ability 0.5 is chosen from {0.1...0.9}. k¥ = 3 is chosen for kNN, and a ridge le — 5
is used for ridge regression. Proposed algorithm is stopped at 50 iteration. Proposed*
method regards 61 negative data labeled as lowest active value in the active data.

Methods l1 error lo error timels] iterations subgraphs
MGK + kNN 0.47440.0644 0.361£0.0469  29.0 - -
MGK + ridge 0.45440.0577 0.3354+0.0431  29.1 - -

Proposed (e = 0.01) | 0.234£0.0114 0.100£0.00262 57.0 11.6 10.6

Proposed (e = 0.1) |0.232+0.0108 0.087+0.00207 112 21.6 20.6
Proposed (e = 0.2) | 0.233+£0.0132 0.1014+0.00298 296 50 20.8
Proposed (e = 0.3) | 0.249+0.0154 0.126+0.00420 289 50 15.6
Proposed (e = 0.5) | 0.288+0.0201 0.163+0.00563 272 50 11.4
Proposed® (e = 0.01)| 0.277+0.0191 0.153+0.00997 51.2 10 9
Proposed® (e =0.1) | 0.267+0.0182 0.1284+0.00731 88.8 16.6 17.6
Proposed* (e = 0.2) | 0.2504+0.0139 0.104+0.00430 173 29.8 25.6
Proposed® (e = 0.3) | 0.238+£0.0124 0.106£0.00299 322 50 22.2
Proposed® (e = 0.5) | 0.2784+0.0205 0.147+0.00691 329 50 11.8

the time until convergence. The [; error and the number of subgraphs which
contributed to the final ensemble almost did not change over different k, which
guarantees the appropriate termination of the algorithm. The optimal number of
k which let the learning algorithm converge the fastest depends on the data, but
the LP theory gives validity of the final ensemble independent of the selection
of k, and we observed no practical disadvantages just by setting k large.

6 Discussions

We have presented a graph regression algorithm using multiple subgraphs weighted
by a linear programming. Experiments are carried out to show the usefulness of
the algorithm in regression problems.

A method that first discovers all the subgraphs satisfying a certain condition,
then classifies graphs by SVMs exists [21]. Our method, however, can discover
subgraphs and add them to an ensemble simultaneously, therefore can save the
cost of discovering subgraphs which satisfies some condition but do not con-
tribute to the final ensemble. Also, knowledge based SVMs [22, 23] can take into
account inequality constraints as well, but our algorithm is more efficient by the
same reason above.

The importance of aligning functional groups in QSAR/QSPR is discussed
in [4] and [5]. Alignment of pharmacophore was used to be done manually, but
our algorithm is alignment-free, and might be useful for this problem.

Our algorithm automatically selects sparse features due to sparse regularizer.
This has an advantage in interpretability, and we are not required to define or
pre-register key structures [24], or to find a pre-image [25]. However, combining
classical features such as partial charges, logP etc. might be useful to build a



94 Saigo, Kadowaki, Tsuda

P
/\/>/\ o )ﬁ/\/ NN N /\/\)\O \—>—<:>
0.517 0.340 0.224 0.134 0.122 0.120
/}<\ /\/\/ /\/\/\cl )k/\/\o /\/O P NN~
0.075 0.0704 0.0704 0.0491 0.0448 0.0395
o]
NN /\/\)\ /K/\Ao Wo M\A/\ JV\Ar
0.0356 0.0272 0.0260 0.0203 0.0114 -0.0764

Fig. 3. Extracted subgraphs from 120 molecules. Subgraphs are ordered from the top
left to the bottom right according to their weights. H atom is omitted, and C atom is
represented as a dot for visual interpretability.

more precise model, and we are investigating this direction. Finally, we focused
on mentioning properties and applications of our method in chemistry, but the
framework of graph classification and regression is general, and can be applied
to any data which consists of graphs.
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