From Virtual Images to Actions

Heinrich H. Bülthoff Daniel Berger Cengiz Terzibas

Max Planck Institute for Biological Cybernetics Tübingen, Germany

MPI for Biological Cybernetics

Basic Research

on biological information processing
How does the brain work?

Biological Hardware -
Neurophysiology Department Logothetis, 1997

Algorithms of Perception -
Psychophysics Department Bülthoff, 1993

Theory -

Empirical Inference Department
Schölkopf, 2001

Heinrich H. Bülthoff
MPI for Biological Cybernetics

| Psychophysics Department

- Recognition
- scenes and faces
- categorization
- Spatial Cognition
- navigation
- spatial updating
- Sensory Integration
- visual-vestibular
- visual-haptic
- visual-auditory
- ...

Research Philosophy image-based computation

- study human perception in natural settings using
- Computer Graphics to generate natural but well controlled stimuli
- Image-based material editing E. Khan, E. Reinhard, R. Fleming, H. Bülthoff, SIGGRAPH 2006

- Virtual Reality to study perception and action in a closed loop
- imaged-based navigation
- spatial updating
- visual capture

Classical Psychophysics open loop

Environment

VR Psychophysics closed loop

Multimodal Integration for Control tasks

- control task pose a whole new set of problems for integration
- new research direction of our lab
- how are cues integrated during active control of orientation in space
- 3D maze navigation (Vidal \& Berthoz, 2005)
- body sway (Cunningham et al, 2006)
- flight control (Beykirch et al, 2006)
- helicopter stabilization (Terzibas and Berger, 2005)

Unstable Helicopter Control

- a helicopter behaves like an inverse pendulum
- accelerates roughly in the direction it is tilted to
- different axes are dynamically coupled, so compensation for one axis effects other axes
- e.g., forward acceleration with cyclic stick tilts the rotor plane and therefore reduces the lift force. This has to be compensated by lifting the collective and the resulting increase in torque induces yaw rotation which has to be corrected with the pedals.

Experimental Question

- How are cues from multiple modalities integrated for action in a control task with the human 'in-the-loop'?

Experiment

- Let participants stabilize a simulated helicopter at a target location
- Measure stabilization performance in different visual and body motion cueing conditions
- Analyze which cues have significant influence on the subject's performance, and how different cues interact

Experimental Setup

Projection system for real-time computergenerated scenes

Motion base
with six degrees of freedom

) Helicopter Control Devices

Virtual Images --Collège de France
Heinrich H. Bülthoff MPI for Biological Cybernetics helicopter stabilization

Inertial information

- vestibular sense
- body senses for orientation and self-motion

Visual Information

- horizon
- optic flow
- movement of objects (landmarks)

Inertial Information

- Vestibular system signals rotations (canals) and linear accelerations including gravity (otoliths)
- Accelerations are also sensed by somatosensory receptors (skin, tendons)

In this experiment, we used whole-body rotation cueing vestibular + seat-of-the-pants

where the helicopter should be

where the helicopter currently is

Object (landmark) position and motion:

How much

information is provided by the two spheres al one?

The two spheres had to be shown in all conditions to provide feedback about helicopter and target position

Visual information - Horizon

Horizon indicates the absolute orientation of the observer with respect to

- earth-vertical --sideways roll
- forwards/backwards pitch

Sideways movement of objects at the horizon (far away) tells about rotations around the earth-vertical axis

In a helicopter, tilt of the observer is roughly equal to the direction of acceleration!

Visual information - Optic flow

Different motion vector fields signal self-motion:

- Rotation around a vertical axis
- Sideways translation

Visual information - Optic flow

Different motion vector fields signal self-motion:

- rotation around a vertical axis
- sideways translation
- forward / backward translation

Visual information - Optic flow

Different motion vector fields signal self-motion:

- rotation around a vertical axis
- sideways translation
- forward / backward translation
- up / down translation
.. as well as other rotations and translations
Motion fields mix for more complex movements
Optic flow can only signal relative position and movements

Experimental Stimuli

Visual Stimuli:

- black background (B)
- optic flow (OF)
- horizon (H)
- optic flow + horizon

Inertial Stimuli:

Platform rotations
On/Off

- Task: stabilize helicopter at a target spot
- Measure: mean distance, velocity, and tilt angles

The Experiment

- Subjects had several hours of training before the experiment (all participated in a previous experiment)
- In each trial, participants had to stabilize for 2 minutes
- 5 experimental blocks with 10 trials each (10 conditions, overall 20 minutes per condition)

The Experiment

The Experiment

Virtual Images --Collège de France
Heinrich H. Bülthoff MPI for Biological Cybernetics

Optic flow + Horizon

Virtual Images --Collège de France
Heinrich H. Bülthoff MPI for Biological Cybernetics

Black background

Example trajectories

- Platform off
- Platform on

Heinrich H. Bülthoff MPI for Biological Cybernetics

Results

Absolute left/right distance

Absolute back/front distance

ANOVA Results

- ANOVA with direction (front/back vs. left/right), platform (on/off), optic flow (on/off), and horizon (on/off) as within-subject factors:
- All main effects are significant, as are most interactions
- Front/back stabilization worse than left/right
- Adding cues improves performance

Effect of single cues

Platform and additional cues

Left/right

Front/back

Horizon and additional cues

Left/right

Front/back

Optic flow and additional cues

Left/right

Front/back

Maximum Likelihood (MLE)?

- Measured response is the output of a complex dynamic helicopter-pilot system
- No easy way to estimate the cue reliabilities from the responses
- However, reliabilities and response quality should be correlated: better self-motion perception (for example if additional cues are provided) should lead to better control
- General results are consistent with MLE

Responses consistent with MLE: Effect of platform rotations

Participant 1, left/right distance

Participant 1, front/back distance

- Platform off B: black background, OF: optic flow
- Platform on H: horizon, OF+H: optical flow and horizon

But...

Participant 3, left/right distance

Participant 3, front/back distance

- Platform off B: black background, OF: optic flow
- Platform on H: horizon, OFHH: optical flow and horizon

Results

- All three cues (platform, horizon, optic flow) significantly helped participants to stabilize
- Horizon position less important than horizon motion
- If more cues are available, stabilization performance increases (consistent with MLE)
- But: for some participants in some conditions, adding a cue decreases performance
- Not explainable with a statistically optimal Bayesian integration framework
- Possibly evidence for a strategy change

A model of a helicopter pilot

Outlook

- More participants
- Model helicopter pilot as dynamical system and fit model to responses
- Include platform translation
- Investigate different motion cueing algorithms

Astros
Beykirch Chatziastros

Gerald Franz

Paolo
Pretto

Franck
Caniard
Hans-Günther
Andreas Nusseck Wacker

Cengiz
Jörg Terzibas Schulte-Pelkum

Michael Weyel

Marc Ernst

Harald Teufel

Heinrich
Bülthoff

Jan
Wiener

Manuel Vidal

ACM Transactions on Applied Perception

ACM Transactions on APPLIED PERCEPTION

An interdisciplinary journal to foster synergy between computer science and perception

Audio
Vision Haptics Graphics Visualization

बैनितio Pikarion

www.acm.org/tap

APGV

- Interdisciplinary meeting to foster synergy
- between perception and computer science
- every year
- alternating between SIGGRAPH and ECVP

This symposium seeks to provide a forum
for the wider exchange of ideas and information

- between members of the graphics and visualization communities who are using insights from visual/auditory/haptic perception to advance the design and guide the evaluation of methods for more effective visual/auditory/haptic representation,
- and members of the vision sciences community who are using computer graphics to facilitate the investigation of fundamental processes of perception.

