

Heinrich H. Bülthoff Christian Wallraven

Multimodal Recognition and Categorization

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

www.kyb.mpg.de

Scientific perspective

- How does recognition work?
 - view-based or exemplar-based representations [Bülthoff, Edelman, 1992,...] or structural representations [Biederman, 1987, ...

Scientific perspective

- But recognition is of course not as simple as these two frameworks might suggest
- Aspects one needs to look at:
 - 1. transformation-costs of recognition processes
 - 2. spatio-temporal representations
 - 3. multi-modal/multi-sensory aspects
 - 4. recognition/categorization in the perception/action loop
- Before I address these points I will first report what I have learned from...

Shimon Ullman - Fragments

- "simple" fragments are very informative if applied properly
- the research on informative features is popular in computer vision motivating and validating many successful new approaches [Fergus et al., 2003, Fritz et al., 2005, Lowe, 2004; Ullman et al., 2002, Viola et al., 2004, Wallraven et al., 2001, 2003, ...]
- it also provides an interesting approach to the problem of creating efficient intermediate, structural representations

• Dan Kersten - Shape from X

- we share the viewpoint that Bayesian integration as a fundamental way to think about sensor fusion [e.g., Yuille, Bülthoff, 1996, Kersten et al., 2004,...]

Kersten, Knill, Mamassian & I. Bülthoff Nature **379**, 31 (1996)

Kersten, Mamassian & Yuille, 2004

- Irv Biederman challenging question:
 - how can we recognize something we have never seen before in a view-based framework?

My answer:

- view-based framework originally described only recognition at the subordinate/exemplar level
- difficult problem also for RBC
- more interesting is perhaps the question how to integrate recognition and categorization processes

[Graf 2006]

David Lowe - the fate of non-accidental features SCERPO, ~1986 SIFT, 2004 **2D Feature Extraction** 3D Model 2D Images CO PA **2D Projection** matching results matching results

Andrew Zisserman - the fate of geometry?

Forsyth et al., 1991

3D projective invariants

Fergus et al., 2005

2D appearance-based parts

Mike Tarr

- share very similar view [e.g., Tarr, Bülthoff, 1998] but Greebles are more fun than paperclips and amoebae
- the **role of expertise** in recognition
 - birds, cars, chicken, cows, dogs [Tarr, Cheng, 2003 but, see also Tsao et al., 2006]

- Mary Peterson holistic/analytic processes
 - inspired the perceptual work and computational modeling in our face recognition lab
 - the work stresses the importance of mid-level visual processes (figure ground segmentation, holistic representations)
 - need for integration of lowlevel and high-level processing

Schwaninger, Lobmaier & Collishaw, BMCV, 2002 Wallraven, Schwaninger & Bülthoff, Network, 2006

Current Work

[Christian Wallraven, 2001-2005]

Keyframe Model

- motivated by temporal association advantage in face recognition (Wallis & Bülthoff, PNAS, 2001)
- image sequences are represented as trajectories of fragments between keyframes
- keyframes are defined by smoothly changing image information
- this model has been applied to:
 - face, car recognition
 - perceptual modeling
 - perceptual learning
 - machine learning

Multi-modal/multi-sensory

[Theresa Cooke, 2003-2006]

Multi-modal representations

- controlled space of visual/haptic stimuli
- micro/macro geometry
- use MDS to find perceptual space for haptic, visual and bimodal exploration
- compare similarity and categorization performance across modalities
- we could show that representations are shared across modalities

(b)

Figure 1: Variations of macrogeometry and microgeometry create a twodimensional stimulus space (a). The stimuli are printed out into 3D objects (b).

Validation by comparison

Cooke, T., F. Jäkel, C. Wallraven and H. Bülthoff, *Neuropsychologia*, in press (2006)

Current work

Overall approach:

- perception and action in natural settings
- life-like, interactive, multi-sensory environments
- using Computer Graphics and Virtual Reality

• Benefits:

- not only more **informative about** *real-world* **behavior**, but also for developing **new tools for perception research**
 - MPI Face-Database (200 3D head models)
 - MPI Video-Database (40 videos of facial action units (FACS)
 - Morphable Face Models
 - Believable Face Models
 - FACS-driven Face Animation (Avatar)

Face Database

Morphing of Average Male Head into Average Female Head [Blanz, Vetter, 1999]

based on Ekman's action units

Action Unit 12 - Left Mouth Corner

Wallraven, Cunningham, Breidt & Bülthoff: APGV - SIGGRAPH (2004) Kleiner, Wallraven & Bülthoff: MPI-Technical Reports (123) (2004)

Synthetic Face Animations

[Curio, Breidt, Bülthoff, 2004]

"Motion Capture Driven Morph Animation of Realistic 3D Head Models"

Cristobal Curio, Martin Breidt, Heinrich H. Buelthoff Max Planck Institute for Biological Cybernetics

Submitted to Siggraph 2004

Virtual Human

[Breidt, Wallraven, Cunningham & Bülthoff, 2003]

Animation Test

"Facial Animation Based on 3D Scans and Motion Capture"

M. Breidt, C. Wallraven, D. W. Cunningham, H. H. Buelthoff

Submitted to SIGGRAPH 2003

• The "Chair" challenge

- The "Art" challenge: build a computer vision system that learns to interpret art images
 - such a system would need to deal with abstraction

Images © by Robert Pepperell, collaboration with MPI

- The "Art" challenge: build a computer vision system that learns to interpret art images
 - such a system would need to deal with abstraction

Images © by Robert Pepperell, collaboration with MPI

- The "Pawan Sinha" challenge
 - build a computer vision system that integrates the 20 results every CV researcher should know about face recognition http://web.mit.edu/bcs/sinha/papers/20Results_2005.pdf

eyebrows as important features

recognition under distortions

caricature effect for recognition

Integrative Model?

 How can we build an integrated hierarchy of processes going from scene gist to object recognition, and back to feature selection? [Graf, Schwaninger, Wallraven, Bülthoff, 2002]

• Thank you for your attention!